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Unmanned aerial vehicles (UAVs) equipped with multispectral sensors offer high
spatial and temporal resolution imagery for monitoring crop stress at early stages of
development. Analysis of UAV-derived data with advanced machine learning models
could improve real-time management in agricultural systems, but guidance for this
integration is currently limited. Here we compare two deep learning-based strategies
for early warning detection of crop stress, using multitemporal imagery throughout
the growing season to predict field-scale yield in irrigated rice in eastern Arkansas.
Both deep learning strategies showed improvements upon traditional statistical learning
approaches including linear regression and gradient boosted decision trees. First, we
explicitly accounted for variation across developmental stages using a 3D convolutional
neural network (CNN) architecture that captures both spatial and temporal dimensions
of UAV images from multiple time points throughout one growing season. 3D-
CNNs achieved low prediction error on the test set, with a Root Mean Squared
Error (RMSE) of 8.8% of the mean yield. For the second strategy, a 2D-CNN, we
considered only spatial relationships among pixels for image features acquired during
a single flyover. 2D-CNNs trained on images from a single day were most accurate
when images were taken during booting stage or later, with RMSE ranging from
7.4 to 8.2% of the mean yield. A primary benefit of convolutional autoencoder-
like models (based on analyses of prediction maps and feature importance) is the
spatial denoising effect that corrects yield predictions for individual pixels based
on the values of vegetation index and thermal features for nearby pixels. Our
results highlight the promise of convolutional autoencoders for UAV-based yield
prediction in rice.

Keywords: convolutional autoencoder, remote sensing, UAS—unmanned aerial system, grain crop, precision
agriculture
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INTRODUCTION

Rice (Oryza sativa) is one of the most important staple food crops
globally (Khush, 2001). However, efficient production remains a
major challenge, and there is a growing need to increase yield
gains per unit land area while conserving natural resources to
meet current and future demands (Grassini et al., 2013). For
example, nitrogen fertilization is one of the most challenging
aspects of rice production, with recommended rates and timing
depending significantly on cultivar, soil type, and other factors
(Hardke, 2018). To optimize production while minimizing inputs
and environmental impacts, real-time monitoring could enable
more efficient identification of crop stress, yield projection, and
decision-making throughout the season.

Remotely sensed images acquired by Unmanned Aerial
Vehicles (UAVs) provide a flexible means to monitor crop stress
and other production factors throughout the growing season.
UAVs equipped with thermal sensors are sensitive to longwave
infrared radiation (7,000–12,000 nm) and since transpiration
rates and evaporative cooling decrease under water-limited
conditions, thermal sensors are particularly suitable for early
detection of drought stress (Maes and Steppe, 2019; Burns
et al., 2022). UAVs can also be equipped with multispectral
sensors that capture multiple spectral regions in relatively
broad bands. In addition to red, green, and blue (RGB)
bands, multispectral sensors capture wavelengths in the near-
infrared (NIR) range (730–900 nm). A healthy vegetative canopy
typically has very high reflectance in the NIR spectrum. Thus,
multispectral imagery is particularly adept at assessing nutrient
status for yield prediction (Maes and Steppe, 2019). Recently,
state-of-the-art deep learning approaches are proving to be
highly useful for yield prediction using analysis of images
acquired by UAVs (Nevavuori et al., 2019), outperforming
other methods.

An important consideration for the design of deep learning
models from UAV-derived data is how to account for temporal
variations in the spectral signatures of a developing crop. Rice
canopy structure changes rapidly during vegetative growth,
with early-season images mostly comprised of bare soil
during seed germination, emergence, and seedling development.
Approximately thirty days after planting at about the five-
leaf stage, the first rice tiller appears (Hardke, 2018). At this
time, flooding is initiated in the delayed-flood system used
in Arkansas. Increased tillering coincides with an increase
in green biomass, when the normalized difference vegetation
index (NDVI), calculated based on reflectance in NIR and
red bands (Table 1), begins to increase rapidly (Wang et al.,
2014). Panicle initiation marks the beginning of reproduction.
The developing panicle eventually emerges from the stem
and is fully visible at heading when flowering begins. After
pollination, the panicle develops, and the rice kernels fill,
changing in color from light green to yellow and, ultimately
tan, as the grains ripen and leaves senesce. Thus, spectral
signatures steadily change with the development and maturation
of the rice crop.

One strategy to account for variation in spectral and thermal
indices across development is to let the model learn important

features (such as changes in NDVI associated with developmental
stage) during training. For example, Nevavuori et al. (2019) used
Convolutional Neural Networks (CNNs) on wheat and malting
barley fields to predict crop yield from derived vegetation indices
and raw RGB data acquired from UAVs (∼0.3 m resolution).
These CNNs were trained on data combined from nine fields,
split into “early” and “late” growing season datasets based on
the image collection date. Mean absolute percentage error was
lower for models trained on early season (8.8%) compared to
late season data (11.4%). These results suggest that relatively high
performance can be achieved for yield prediction at the intra-
field scale, even without more fine-grained consideration of plant
developmental stage.

An alternative approach explicitly accounts for temporal
aspects of variation in plant development in the model
architecture. Recurrent neural networks (RNNs) are well-
suited for sequential data due to the use of hidden states to
capture relevant information from prior states. RNNs have
been particularly successful for classification of land cover
data from satellite imagery, due to the ability to leverage
temporal patterns across image time series (Minh et al.,
2018; Sun et al., 2019). Temporal data structures can also
be considered with CNNs, when convolutions occur across
images in the temporal dimension as well as in the spatial
dimensions, and are called 3D-CNNs or temporal CNNs.
Temporal CNNs demonstrated slightly improved performance
compared to RNNs for land cover classification when considering
spectral and temporal dimensions of the data only (Pelletier
et al., 2019) and also when temporal, spectral, and spatial
dimensions were considered (Li et al., 2017; Ji et al., 2018).
While their utility is well-demonstrated for the task of land
cover classification from satellite imagery, it is unknown whether
temporal network architectures could also demonstrate improved
accuracies for tasks such as intra-field prediction of crop yield
based on higher pixel count images (as compared to satellite
images) from UAVs.

In this study, we assume that spatial variation in nutrient
and water availability drives intra-field variation in spectral
indices, and predict this variation will manifest as deviations
from average conditions, observable from UAV imagery. We
hypothesize that a model architecture that accounts for complex
spatio-temporal patterns (e.g., 3D-CNN architecture) will be
more informative for predicting intra-field yield variation
compared to a spatial-only model (e.g., 2D-CNN architecture,
Figure 1). We further determine whether deviations from
average conditions matter most at certain time points, or
if images taken during particular developmental stages are
equally predictive of future yield. Finally, we characterize the
nature of the benefit of the tested deep learning architectures
for our dataset.

MATERIALS AND METHODS

Study Site
Our study focuses on a single study site located in the
state of Arkansas, which contributes approximately half of
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TABLE 1 | Vegetation indices.

Index Abbreviation Equationa References

Normalized difference vegetation index NDVI (ρNIR−ρr )
(ρNIR+ρr )

Tucker, 1979; Hatfield and Prueger, 2010; Sharma et al., 2015

Chlorophyll index green CIgreen
(ρNIR)

ρg
− 1 Gitelson et al., 2005, 2003; Hatfield and Prueger, 2010

Red-edge normalized difference vegetation index RENDVI (ρNIR−ρRE )
(ρNIR+ρRE ) Gitelson and Merzlyak, 1997; Hatfield and Prueger, 2010

Green normalized difference vegetation index GNDVI (ρNIR−ρg)
(ρNIR+ρg)

Gitelson and Merzlyak, 1997; Hatfield and Prueger, 2010

Normalized area vegetation index NAVI 1− (ρr )
ρNIR

Carmona et al., 2015

Triangle greenness index TGI −0.5[(670− 480) ∗
(
ρr − ρg

)
Hunt et al., 2011, 2013

− (670− 550) (ρr − ρb)]

aReflectance (ρ) is measured at the wavelength denoted by the subscript: red (r), green (g), blue (b), red-edge (RE), and near-infrared (NIR).

FIGURE 1 | Study design. UAV images were collected at 11 time points during the season. Predictions were based on thermal data and six vegetation indices
derived from red, green, blue, red-edge, and near-infrared bands (CIgreen, GNDVI, NAVI, NDVI, RENDVI, and TGI). The field was divided into training, test, and
validation images as shown for four-fold cross-validation. These larger regions were divided into 5 × 5 pixel patches (50 cm resolution pixels). Convolutional neural
networks (CNNs) used an autoencoder-like structure to predict yield on an output 5 × 5 pixel patch based on 5 × 5 pixel input images, each with seven features.
Model training for the 2D-CNN was based on a single time point; 3D-CNN used the five time points centered around the reproductive phase of crop growth.

the agricultural land area harvested for rice grown in the
United States (United States Department of Agriculture
Economic Research Service [USDA], 2021). The study site is a
16-ha, zero-grade (0% slope) field within a large farm operation
in Lonoke County (e.g., Runkle et al., 2019). The farm produces
rice using a rice-after-rice (i.e., continuous rice) production
system and a drill-seeded, delayed flood program and burns
rice straw after harvest. Field soil is classified as silt loam: 33%

Calhoun silt loam (Fine-silty, mixed, active, thermic Typic
Glossaqualfs) and 66% Calloway silt loam (Fine-silty, mixed,
active, thermic Aquic Fraglossudalfs) (United States Department
of Agriculture Natural Resources Conservation Service, 2020).

Rice Agronomics
The rice hybrid Gemini 214CL (Rice Tec, Inc., Alvin, TX) was
drill seeded on 16 May 2019 using a seeding rate of 25 kg ha−1.
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TABLE 2 | Flyover dates for the 2019 season.

Date Days after
planting

Growth stage Average canopy
height (cm) (n = 5)

Leaf area index
(LAI) (n = 2)

Floodwater depth
(cm) (n = 5)

Apr. 04 NA NA NA NA NA

May 21 6 Pre-emergence NA NA 0

June 13 29 Vegetative —tillering 25 0.26–0.30 0

June 29 45 Vegetative – Tillering 55 2.42–5.43 9–15

July 11 57 Reproductive—R0—panicle initiation 73 6.79–7.17 0–5

Aug. 01 78 Reproductive—R2—booting 82 7.16–7.27 0–3

Aug. 13 90 Reproductive—R4—flowering anthesis 111 6.51–6.57 15–23

Aug. 21 98 Grain filling—maturation—hard stage 104 6.23–6.47 10–14

Aug. 28 105 Grain filling—maturation—hard stage 104 NA 0

Sep. 07 115 Grain filling—maturation—hard stage 104 6.50–6.83 0

Sep. 13 121 One day before harvest NA NA 0

Floodwater depth and LAI are given as ranges for the minimum and maximum values. For flyover days that occurred between dates when LAI or floodwater depth were
measured, values are from the nearest day (within ± 4 days). Measurements were performed in the north side of the field within a 15-m radius.

Fertilizer was applied on 03 June (20 kg ha−1 N and 52 kg ha−1

P2O5 using diammonium phosphate), 11 June (101 kg ha−1

K2O using potassium chloride), 12 June (101 kg ha−1 N using
urea), and 25 June (50 kg ha−1 N using urea). To conserve
water resources, the field was irrigated using alternate wetting
and drying flood management (Bouman and Tuong, 2001; Henry
et al., 2017).

The field was mechanically harvested on 14 September 2019
using a commercial combine and a circular harvest pattern with
an 8.5-m header width. Rough rice yield was measured using a
calibrated yield monitor (GPS-enabled John Deere Greenstar 3
2630 harvest monitor). Yield data were excluded from a 10-m
buffer surrounding the field perimeter and associated drainage
ditch. The data were checked and filtered using Yield Editor
software (Sudduth and Drummond, 2007), and the harvest
grain moisture content was 14.6%. ArcGIS software was used to
develop a raster layer with a spatial resolution of 50 cm, using the
spherical model, within the Kriging/CoKriging tool (Burrough,
2001). To further characterize the study site, throughout the
growing season, growth, floodwater depth, canopy height and
Leaf Area Index (LAI) were measured within 4 days of each
flyover date (Table 2). Canopy height and floodwater depth
were measured in five locations, while LAI was measured in two
flagged locations with a total area of 1 m2 for each location using
the LAI-2200C (LI-COR Biosciences). These measurements were
performed on the north side of the field within a 15-m radius of
each other, and the northern field edge.

For further evaluation of trained models, we also considered
a separate 27-ha field within the same farm in the 2020 growing
season. This field was water seeded (seeds broadcasted from an
airplane over a flooded field) with CL XL745 rice hybrid cultivar
(Rice Tec, Inc., Alvin, TX) on 02 April 2020 using a seeding
rate of 32.5 kg ha−1. Fertilizer was applied on 01 June (22 kg
ha−1 N and 57 kg ha−1 P2O5 using diammonium phosphate),
11 June (52 kg ha−1 N using urea), 18 June (52 kg ha−1 N using
urea) and 25 June (52 kg ha−1 N using urea). The field was also
irrigated using alternate wetting and drying flood management to
conserve water resources, and the rice residue was also burnt. The
field was harvested on 17 August 2020 using the same combine

previously described, and the harvest moisture was 15.6%. Field
soil is classified as silty clay: Perry Silty Clay (Very-fine, smectitic,
thermic Chromic Epiaquerts) (United States Department of
Agriculture Natural Resources Conservation Service, 2020).

Unmanned Aerial Vehicle Data Collection
A UAV with an Altum sensor (multispectral and thermal)
was used for image data collection. Data were collected at
approximately 7-day intervals, weather permitting (Table 2). The
Matrice 210 V-2 quadcopter (DJI, Shenzhen, Nanshan District,
China) was used and equipped with an Altum sensor (MicaSense,
Seattle, Washington) to collect blue (B, 475 nm), green (G,
560 nm), red (R, 668 nm), red edge (RE, 717 nm), near-
infrared (NIR, 840 nm), and thermal (11,000 nm) data. Data
collection occurred within 2 h of solar noon local time. Prior
to each flight, radiometric calibration images were captured
(MicaSense, Seattle, Washington). Flight design parameters were
calculated using the MicaSense flight calculator, while the Atlas
Flight application was used to deploy flight missions (MicaSense,
Seattle, Washington). The flight altitude was 120 m above
ground level (AGL), and horizontal velocity was 10 m s−1 with
75% front/side overlap. The Pix4D mapper software (Pix4D
Inc., Prilly, Switzerland) was used to stitch the raw imagery,
producing orthomosaics. The model builder tool within ArcMap
10.7.1 (ESRI, 2011, Redlands, California) was used to calculate
six vegetation indices, including CIgreen, Normalized Area
Vegetation Index (NAVI), NDVI, Red-Edge NDVI (RENDVI),
Green NDVI (GNDVI), and Triangular Greenness Index (TGI)
based on the equations in Table 1. The six derived vegetation
indices and the thermal layer were used as the input features
for model training.

For the 2020 growing season, UAV data were collected on 05
July 2020 for the 27-ha field only, during booting stage.

Image Processing
After producing orthomosaics and generating vegetation indices,
images were further processed in R ver. 4.0 (R Core Team, 2020).
Images were downsampled from 5 to 50 cm resolution, using the
“aggregate” function of the raster package, and then split into
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5× 5 pixel tiles. This enabled faster processing of image data and
a match to the spatial resolution of yield data. Images were then
stacked across time. After cropping out the edges of the field and
removing tiles with missing values, tiles were partitioned for four-
fold cross-validation. Tiles were split into training (∼50%), test
(∼25%), and validation (∼25%) datasets, in the four-fold shown
in Figure 1. This strategy was used so that some field regions
were never seen during training, rather than randomly assigning
images to the test set, which would inflate model performance.
For the two deep learning models, the validation set is used
during model training, where model weights are updated each
epoch if performance on the validation set improves; the test set
is held out for the final evaluation after training. For the statistical
models (linear, null, and XGBoost models), the training and
validation sets can be considered equivalently. Non-overlapping
tiles of 5 × 5 pixels were output as .csv files and then converted
into .npy arrays for faster reading in Python 3.

Model Training
Evaluation Metrics
To evaluate each model, four statistical parameters were used to
assess model performance: Root Mean Squared Error (RMSE),
coefficient of determination (R2), mean absolute error (MAE),
and mean bias error (MBE), calculated as follows:

RMSE =

[
1
n

n∑
i=1

(
Yi − Ŷi

)2
]0.5

R2
=

[
∑n

i=1(Yi − Ȳobs)(Ŷi − Ȳexp)]
2∑n

i=1(Yi − Ȳobs)2 ∑n
i=1(Ŷi − Ȳexp)2

MAE =
1
n

n∑
i=1

|Ŷi − Yi|

MBE =
1
n

n∑
i=1

(
Ŷi − Yi

)
where Yi is the observed yield for pixel i, Ŷi is the predicted
yield for pixel i, n is the total number of pixels in the dataset,
Ȳobs is the mean observed yield for all pixels, and Ȳexp is the
mean predicted yield for all pixels. MAE and RMSE measure the
average magnitude of difference in the observed and predicted
response, with RMSE placing greater penalty on large errors.
MBE is also a measurement of the error between the predicted
and observed response but takes into account the sign of the
errors. However, MBE should be interpreted with caution as large
errors may cancel each other out if they are in the opposite
direction. R2 represents the proportion of variance in the dataset
that is explained by the model.

Null Models
As a baseline for comparison, we considered the difference
between each pixel and a constant layer assigned the value of the
mean yield calculated from all pixels assigned to the training set.
Evaluation metrics for the null model on the training set vary
slightly across time points as a result of differences in the number
of missing values on different days.

Linear Models
We fit linear models to predict yield using seven predictors (all six
vegetation indices and thermal rasters) using the lm() function
from R version 4.0 (R Core Team, 2020).

XGBoost
We trained gradient boosted decision trees using the R
implementation of XGBoost (Chen and Guestrin, 2016; Chen
et al., 2021). This model was designed to capture complex
interactions among predictor values, but did not consider spatial
or temporal dimensions of our data structure. We did not
perform extensive parameter tuning for every individual model,
but chose parameter values that gave similar performance on
training sets as observed for 2D-CNN models on a subset of
data. Specifically, we used default settings with the exception of
a slower learning rate (eta = 0.2), a maximum tree depth of 2
(max_depth = 2) to capture only pairwise interactions among
predictors, and 200 rounds of training (nrounds = 200). The same
parameter values were used to train all XGBoost models.

2D-Convolutional Neural Networks
We included “spatial models” (2D-CNNs) to determine whether
considering information from nearby pixels improved yield
prediction. We developed a 2D-CNN with an autoencoder-like
structure. An autoencoder is a neural network trained to encode
data into a compressed representation and then reconstruct the
original data from the encoded representation (Figure 1). Here,
we take advantage of this type of architecture to predict an output
5× 5 pixel image of yield, based on an input 5× 5 image patch for
the same location acquired by a UAV. Each image was associated
with seven input features, corresponding to values from the
thermal sensor or for a different vegetation index (Figure 1).
We did not train models using data for 13 June 2020 due to a
malfunction in the thermal sensor.

Our 2D-CNN was implemented in Python 3.8 using Keras
with a TensorFlow v2.2.0 backend (Abadi et al., 2015; Chollet,
2015). The final architecture involved one sub-network of
three convolutional layers for encoding, followed by two
fully connected layers, and a second sub-network of three
convolutional layers for decoding. The parameter specifications
for each layer are shown in Table 3. A “ReLU” activation
function was used for each layer in the network besides the
last layer, which used a linear activation function. We used
the “adam” optimizer and quantified loss based on the mean
squared error. CNNs were trained for 50 epochs, and weights
for models with the best performance on the validation set
were saved to evaluate performance on the test set. Preliminary
models were trained for up to 200 epochs, but only minor
improvements in model performance were observed with
additional training.

3D-Convolutional Neural Networks
To determine whether considering information from nearby
time points improved yield prediction, we developed “spatial-
temporal models” (3D-CNNs). For this analysis, we used 5 days
beginning just prior to the reproductive phase (flyover dates
from 29 June 2019 through 21 August 2019), which ended
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FIGURE 2 | Variation in temperature and six vegetation indices over time in 2019. Gray shaded areas indicate time prior to seeding and the reproductive phase
(panicle initiation through flowering anthesis). Additional details regarding growth stages for each flyover date are provided in Table 2. First flooding occurred on 29
June, resulting in a dip in NDVI and GNDVI. Plotted values are the mean for 50 cm × 50 cm pixels with yield in the lower 10% (n = 52,649), the upper 10%
(n = 52,537), or all pixels (n = 526,735). Thermal was not available for the flyover on 13 June.

approximately 3 weeks prior to harvest and also included the
days that we anticipated to be most informative with respect
to variation in vegetation indices (Figure 2). We also tested
3D-CNNs that included all 11 time points, but found early on
during testing that they primarily learned to weight features from
the final time point, just prior to harvest. Our 3D-CNNs were
designed to have a parallel structure to our 2D-CNNs with the
exception that convolutions occurred in three dimensions in the
encoding stage of the network (Figure 1).

Computational Infrastructure
The XGBoost, linear, and null models were trained in minutes
or less on a personal desktop computer (16 Gb RAM; Intel Core
i5 3 GHz processor). Each 2D-CNN was trained on a single
node of the Trestles cluster at the University of Arkansas High
Performance Computing Center (AHPCC). Each of these nodes
is equipped with 64 Gb of memory and four AMD 6136 2.4 GHz
CPUs for a total of 32 cores; 2D-CNNs required approximately
five hours to train (eight CPU hours) and a maximum of 10 Gb
of virtual memory. We used the same computing infrastructure
for training 3D-CNNs as for 2D-CNNs; each 3D-CNN required
approximately 18 hours (24 CPU hours) to train.

Model Comparison
In comparing our models, we sought to answer three questions:
(1a) Do model architectures that capture spatial information
improve yield prediction over traditional statistical learning
approaches? (1b) If so, do models that also include data from
multiple time points improve yield prediction over models that
only include spatial information? (2) Which day(s) have the
strongest signal for deep-learning based yield prediction? and (3)
What are the most important spectral features for prediction?

For the first two questions, we compared average test set RMSE
across time points for all models. To qualitatively determine the
impact of different model architectures on yield predictions, we
also projected models to field scale. Input images containing
vegetation indices and thermal layers were processed in R as
described for model training. CNN models were loaded into R
using the “reticulate” package to enable interoperability between
R and python codes (Ushey et al., 2020). Predictions for each tile
were generated iteratively and tiled together for the prediction
map for the field.

For the last question, we determined the relative importance
of each feature for the trained 2D-CNNs by removing variation
observed for that feature in input images from the test set. To
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TABLE 3 | Parameters for CNNs.

Layer Parameters (2D-CNN) Parameters (3D-CNN)

Conv2D (for 2D-CNN) or
Conv3D (for 3D-CNN)

Filters = 64 Filters = 64
Kernel_size = (3,3) Kernel_size = (3,3,3)

Padding = “same” Padding = “same”

Activation = “relu” Activation = “relu”

Input_shape = (5,5,7) Input_shape = (5,5,5,7)

Conv2D (for 2D-CNN) or
Conv3D (for 3D-CNN)

Filters = 128 Filters = 128
Kernel_size = (2,2) Kernel_size = (2,2,3)

Padding = “same” Padding = “same”

Activation = “relu” Activation = “relu”

Conv2D (for 2D-CNN) or
Conv3D (for 3D-CNN)

Filters = 256 Filters = 256
Kernel_size = (1,1) Kernel_size = (1,1,5)

Padding = “valid” Padding = “valid”

Activation = “relu” Activation = “relu”

Reshape Target_shape = (5,5,256)

Flatten NA

Dense Units = 256

Activation = “relu”

Dense Units = 5,400

Reshape Target_shape = (5,5,256)

Conv2D Filters = 128

Kernel_size = (2,2)

Padding = “same”

Activation = “relu”

Conv2D Filters = 64

Kernel_size = (3,3)

Padding = “same”

Activation = “relu”

Conv2D Filters = 1

Kernel_size = (1,1)

Padding = “same”

Activation = “linear”

Each Keras layer refers to a building block of the neural network, including
convolution layers (Conv2D and Conv3D), reshaping layers (Flatten and Reshape),
and fully connected layers (Dense). Besides the last layer, all layers used a rectified
linear unit (“relu”) activation function that directly outputs the input, if positive, or
zero otherwise.

“blank” variation in a feature, all actual values for that feature
in each tile were replaced by the mean value observed across all
pixels in the test set. Test set RMSE was then determined using
the function call to Keras “evaluate” (Chollet, 2015).

Code Availability
Python and R code used to process data, train and evaluate
models, and recreate Figures 2–5, is available at https://github.
com/em-bellis/XASU_rice.

RESULTS

Rice Yield Variation
We first characterized intra-field variation in yield in the 2019
growing season. Rough rice yield was 9.06 ± 0.9 Mg ha−1

(mean ± std. dev.) measured across 526,735 grid cells at 50-
cm resolution. As expected, vegetation indices varied with rice

crop developmental stage and differed between high- and low-
yielding areas of the field (Figure 2). CIgreen and RENDVI showed
the greatest contrast during reproduction, peaking at booting
stage (CIgreen) or flowering (RENDVI) in the highest-yielding
areas of the field. TGI values also differed among high- and low-
yielding areas of the field, particularly during vegetative growth
and booting stage (Figure 2).

Spatial vs. Non-Spatial Models
We next evaluated the ability of deep learning-based, spatially
explicit models to predict yield from vegetation index and
thermal feature information. Compared to the null model,
all models showed improved performance during training,
indicating that vegetation indices and thermal features provided
useful information for predicting yield (Figure 3). Linear models
performed worst for the training set data for eight out of 10 days.
Non-spatial (XGBoost) models performed best on training set
data for six of 10 days, reaching the best performance on images
acquired a week prior to harvest (Figure 3).

Performance on test sets, however, revealed a clear benefit
of our deep learning-based spatial models for predicting grain
yield both in terms of higher accuracy and lower variability in
predictions across folds (Figure 3 and Table 4). Similar ranking
of models was observed for all metrics (Table 4). 2D-CNNs
trained on images taken during booting stage (01 Aug) or later
showed the best performance (RMSE: 7.4–8.2% of mean yield;
Figure 3). Average test RMSE of XGBoost models during these
same developmental stages was higher, ranging from 8.5 to
10.3% of the mean yield. Performance of XGBoost models was
also highly variable across folds, with standard deviation up to
7.4% of the mean yield vs. 4.2% in 2D-CNNs (n = 4 folds,
based on observations over all time points). The difference in
performance of XGBoost models on training and test sets may
be indicative of overfitting. However, even for days on which
performance of CNNs and XGBoost models on the training
set was nearly identical (i.e., 29 June, 21 Aug, and 28 Aug),
2D- and 3D-CNNs showed markedly better performance on the
test set (Figure 3). 2D-CNNs also outperformed other models
with respect to MAE and R2, though not with respect to MBE,
suggesting that although they were more accurate, 2D-CNNs
tended to overpredict slightly more than other models (Table 4).
Models trained on images collected from the booting stage or
later performed best, though 2D-CNNs trained on images from
earlier time points also performed notably better than other
models (RMSE: 8.7–9.3% of mean yield; Figure 3).

To further evaluate the benefit of our spatial models, we
projected predictions from 2D-CNNs trained during the booting
stage to field scale (Figure 4). This analysis suggested that a main
benefit of the 2D-CNN model, compared to models that do not
incorporate information from nearby pixels, may be a spatial
denoising effect of the 2D-CNN. Compared to less complex
models, CNNs were less likely to underpredict yield, particularly
where yields were higher (Figures 4A,B).

Spatial vs. Spatial-Temporal Models
We observed comparable performance for the two deep learning
models using the tested architectures. Average test RMSE for
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FIGURE 3 | Summary of model performance. Root mean squared error (RMSE) relative to the mean yield for the field is shown as the average across all four data
folds. Note that results for the 3DCNN are for a single model based on input from five time points together, with relative RMSE (rRMSE) shown as a constant value
across the five included time points.

3D-CNNs only exceeded that of 2D-CNNs on 29 June and 11
July, likely due to the fact that the 3D-CNN model also included
data from the more informative, later time points (Figure 3). Our
results suggest that 2D-CNN models provide a benefit for the task
of yield prediction in rice over simpler models and may offer
similar performance to some deep learning architectures that
incorporate data from multiple timepoints. Future studies may
find further benefit of temporal network architectures relative to
the 2D-CNNs tested here, for example by altering the intervals of
the selected time points.

Spectral Feature Importance
The cost of a UAV increases with the number of sensors it carries
and sensor complexity. To assess if it is possible to achieve similar
prediction accuracy with fewer sensors or bands, we determined
the importance of each index on model performance of booting
stage 2D-CNNs. Booting stage is early enough to be useful to the
farmer, such as for determining the need for late boot nitrogen
fertilization of rice hybrids (Hardke, 2018). It was also found to
have one of the lowest RMSE values (Figure 3).

At booting stage, CIgreen was the most important feature
(index) for predicting rice yield with 2D-CNNs (Figure 5).
Depending on the fold, test-set RMSE increased by 0.03–
0.17 Mg ha−1 when variation among pixels in CIgreen was
removed, consistent with high variation in CIgreen among
yield groups at this time point (Figure 2). TGI and thermal

information were also important, but only for some data folds
(Figure 5). Other indices appeared to matter little to overall
model performance, with negligible or even positive effects on
model performance when observed variation in those features
was removed (Figure 5). However, since calculation of TGI
relies on three bands (red, green, blue), CIgreen relies on two
bands (green, NIR), and thermal information was also useful
for some models (Figure 5), a UAV equipped with all sensors
is recommended to achieve levels of performance reported here
on other datasets.

Generalization to New Datasets
To explore the extent to which our findings may generalize to new
contexts, we evaluated performance of late booting stage models
from 2019 (Figure 4) on a separate, nearby field imaged in the
2020 growing season. All 2019 models underpredicted yield in
2020 (Figure 6), consistent with substantially higher mean yield
for the 27-ha field compared to the training dataset (11.4 vs.
9.1 Mg/ha). Among all single-day UAV-based models, the 2D-
CNN model had the highest accuracy, indicating it was also more
translatable to a different field and growing season compared to
the other models (Figure 6).

Further improving performance in new contexts will require
a greater diversity of training images for different rice cultivars,
growing seasons, soil types, and management conditions. To
inform future experimental design, we determined the extent to
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FIGURE 4 | Yield prediction maps based on data for 01 Aug 2019, for models trained on the fold B dataset. Data for 2D-CNN is shown in (A,C) whereas data for
linear model is shown in (B,D). Prediction error (yield difference) is shown in (A,B) and represents observed yield minus predicted yield; (C,D) show predicted yield.
Black boxes in (A) indicate regions described in main text where yield was underpredicted to a considerably lesser degree in the 2D-CNN model compared to the
linear model. For (A,B), breakpoints for color scale are evenly spaced. For (C,D), breakpoints for the color scale are chosen based on the 10th, 25th, 50th, 75th, and
90th percentile values of observed yield. Mg/ha: megagrams/hectare.

which similar performance could be expected for models trained
on smaller datasets. A subset of 1,000 tiles was randomly selected
from the fold B dataset (Figure 1; ∼10% of tiles compared to
full-scale training). After 50 epochs, RMSE as low as 0.77 Mg/ha
was observed for the smaller training set; in contrast, lower
RMSE (0.68 Mg/ha) was achieved within 50 epochs for the full
training set. Given the modest increase in RMSE with the smaller
dataset, it may be prudent to train future deep learning models
using at least a similar-sized training set (∼7 ha) as the full-scale
training set used here.

DISCUSSION

In this study, we present an autoencoder-like CNN architecture
for intra-field prediction of rice yield. The best single-day
model showed improved performance compared to simpler
models trained on the same data, and comparable or improved
performance to similar UAV-based studies in wheat and
barley (Nevavuori et al., 2019), rice (Yang et al., 2019; Wan

et al., 2020; Duan et al., 2021), and soybean (Maimaitijiang
et al., 2020; Table 5). With respect to yield prediction
in rice, we report slightly better performance of our late
booting stage 2D-CNN compared to Yang et al. (2019), after
accounting for higher average yield in our study [RMSE of
0.72 (Table 4) vs. 0.76 Mg/ha (Yang et al., 2019)]. With
respect to RMSE, we report slightly lower performance for
rice yield prediction compared to two other studies; however,
these studies tested performance using leave-one-out cross-
validation (Duan et al., 2021) or random samples distributed
throughout the field (Wan et al., 2020), which could inflate
performance compared to the spatially explicit strategy for cross-
validation used here (Figure 1). Compared to other studies,
R2 values for our model were relatively low, likely because
of greater amount of overall yield variation in other studies
due to experimental nitrogen treatment (Wan et al., 2020)
and differing management practices (Yang et al., 2019). Our
findings additionally suggest a benefit of autoencoder-like 2D-
CNNs for spatial denoising of yield predictions by incorporating
information from nearby pixels. With the exponential rise in
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FIGURE 5 | Feature importance for model training on images from 01 Aug
2019. To blank observed variation in a feature, actual values were replaced by
the mean value across all pixels observed for that feature. 1RMSE was
calculated by subtracting the test set RMSE of the original model with no
feature blanked from the blanked feature model. 1RMSE is given relative to
the mean yield (1rRMSE). Larger, more positive 1rRMSE values indicate
higher feature importance for the respective feature.

adoption of UAVs for remote sensing in agriculture (Maes and
Steppe, 2019), this study provides timely guidance for future
large-scale training data collection efforts and their integration
with development of deep-learning models.

Surprisingly, we observed similar performance for yield
prediction for 2D-CNNs as for a 3D-CNN architecture
using data from multiple time points. However, 3D-CNN
architectures may show a greater increase in performance
if trained on diverse datasets that include multiple rice
cultivars and environments, particularly if there are significant
cultivar- or environment-specific differences in the pattern
of vegetation index change over time (Duan et al., 2021).
Exploring the benefit of 3D-CNNs for better generalization
across climate zones and cultivars is a promising area for
future work, since a primary benefit of these architectures
may be the ability to take into account shifts in phenology
across different climates and cultivars. The dataset utilized
here, which focuses on fine-scale yield prediction across a
large, heterogeneous field for a single year, minimizes variation
due to cultivar and environmental differences, and so any
temporal variation in vegetation indices associated with yield
may not contribute to a strong spectral signature in the dataset.
Our pre-processing pipeline also does not include any explicit
classification of soil- or weed-derived pixels, or inclusion of
canopy structure/texture features (e.g., Maimaitijiang et al.,
2020), which could also impact the relationships among
timepoints and the relative performance of 3D-CNNs. Use of
vegetation index features that are less sensitive to saturation
and soil background effects (e.g., Yang et al., 2019) is another
strategy which might influence 3D-CNN performance relative
to 2D-CNNs.

Our results also highlight the potential for UAVs to support
management recommendations even during early growth stages

(Nevavuori et al., 2019). Although the best single-day models
were obtained during booting stage or later, the 2D-CNNs
showed considerably better performance than other models
even when trained on data acquired during vegetative growth
stages (Figure 3). This difference in prediction for 2D-CNNs vs.
other models was observable even prior to planting when the
performance of single-day models was surprisingly competitive
with models based on information from later in the season
(Figure 3). Other studies demonstrate the success of 2D-
CNNs for corn yield prediction based only on pre-season
variables, including soil electroconductivity maps and satellite
imagery acquired after soil tillage (Barbosa et al., 2020). Bare-
soil images taken by UAVs prior to planting may also capture
features that correlate with soil properties important to yield
(Khanal et al., 2018).

For future large-scale efforts on a greater diversity of rice
cultivars from different fields, regions, years, and management
conditions, our results suggest it may be worthwhile to
focus data collection at time points just prior to common
crop management intervention points. In turn, growth-stage
specific single-day models can be trained using these data. For

TABLE 4 | Evaluation of model performance on the test set for single-day models
(trained on data at late booting stage) and 3D-CNN.

Model Fold RMSE (Mg/ha) MBE (Mg/ha) MAE (Mg/ha) R2

Null A 0.93 −0.50 0.79 n.d.

B 0.75 0.08 0.57 n.d.

C 0.80 0.30 0.60 n.d.

D 0.83 0.13 0.62 n.d.

Mean 0.83 0.00 0.65 n.d.

Linear A 1.06 −0.78 0.93 0.17

B 0.70 0.07 0.51 0.18

C 0.94 0.59 0.70 0.15

D 0.83 0.10 0.63 0.04

Mean 0.88 −0.01 0.69 0.14

XGBoost A 0.88 −0.45 0.72 0.11

B 0.74 −0.02 0.53 0.19

C 0.83 0.50 0.61 0.22

D 0.83 0.11 0.63 0.04

Mean 0.82 0.04 0.63 0.14

2D-CNN A 0.73 −0.19 0.57 0.18

B 0.68 0.13 0.47 0.29

C 0.63 0.02 0.45 0.30

D 0.84 0.28 0.62 0.10

Mean 0.72* 0.06* 0.53 0.22

3D-CNN A 0.80 −0.37 0.67 0.08

B 0.67 0.17 0.48 0.27

C 0.77 −0.24 0.61 0.37

D 0.90 0.45 0.67 0.06

Mean 0.79 0.00 0.61 0.20

*Indicates significant difference in mean value between 2D-CNN and linear model
only (p ≤ 0.05; one-way ANOVA).
RMSE, root mean squared error; MBE, mean bias error; MAE, mean absolute
error;R2, coefficient of determination. n.d., not defined (observed ∼ predicted yield
is a vertical line for the null model).
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FIGURE 6 | Average performance of late booting stage models from 2019,
evaluated on a separate nearby field in the 2020 growing season. MAE, mean
absolute error; MBE, mean bian error; R2, coefficient of determination; RMSE,
root mean squared error; 2DCNN, two-dimensional convolutional neural
network.

example, Arkansas currently recommends nitrogen fertilization
after internode elongation (for some cultivars) or at late
booting (for hybrid cultivars) (Hardke, 2018); the most robust
models might be explicitly trained for optimal performance
at those stages. The use of growth-stage specific models
may be particularly valuable because the importance of
different vegetation indices for yield prediction varies over
time (Figure 2; Duan et al., 2019). Compared to 3D-
CNNs, 2D-CNNs would also require less computational and
environmental resources for training (Strubell et al., 2019;

Henderson et al., 2020; Bender et al., 2021) and fewer flyovers to
generate yield predictions when models are deployed.

Further contributing to the simplicity of our deep learning
models is the lower resolution of images used for the models
in our study (50 cm) compared to the resolution of images
available from the Altum sensor (5 cm). Using down-sampled
images, our 2D-CNNs reached maximum performance relatively
early during training. Contributing to this, the true relationship
between yield and vegetation indices may be relatively simple;
high linear correlations with yield are often reported (Duan et al.,
2019). Furthermore, higher resolution of input images would
not match the scale of accuracy of yield maps generated using
data collected by commercial harvesters (Figure 1). Conversely,
without a combine yield monitor, it would be very difficult to
acquire a sufficient volume of labeled data needed to train deep
learning models.

If the relationship between vegetation indices and yield is
relatively simple, and the resolution of imagery used here
precludes automated detection of individual objects in images,
what is the utility of our CNN architectures for yield prediction?
One of the primary benefits may be an image denoising effect
of the autoencoder-like model architecture. Autoencoders have
been widely successful for image denoising for a variety of
applications (Xie et al., 2012). Robustness to partial destruction
of the input is a characteristic of particular interest for denoising
autoencoders (Vincent et al., 2008). Our study suggests that
similar architectures are also useful for denoising “outputs.”
For example, although yield maps used for training included
noise (e.g., circular impressions due to the driving pattern of
the combine harvester), these patterns are absent in prediction
maps (Figures 4C,D). Future models trained to predict yield
using higher resolution images from UAVs might benefit from a
two-stage approach, where yield maps from a combine harvester

TABLE 5 | Model performance for comparable studies using UAV imagery for yield prediction.

References Crop Model Performance Description

This study Rice 2D-CNN 7.9% (rRMSE) Yield predicted from thermal and six VIs using data at late booting stage.

5.8% (MAPE) Performance based on 4-fold cross validation from the same field and season.

0.22 (R2)

Duan et al. (2021) Rice Neural network 5.3–7.1% (rRMSE) Yield predicted on two individual VIs from 6 or more imaging days.

0.48–0.62 (R2) Performance based on leave-one-out cross validation from the same field and season.

Wan et al. (2020) Rice random forest 2.75% (rRMSE) Yield predicted from four RGB- and multispectral-derived features. Data set included
substantial yield variation due to experimental nitrogen treatment.

0.83 (R2) Performance based on random held-out set from the same field and season.

Yang et al. (2019) Rice 2D-CNN 26.6% (MAPE) Yield predicted from raw RGB and multispectral imagery at ripening stage.

0.49 (R2) Performance based on held-out set of independently managed plots from the same
season.

Maimaitijiang et al.
(2020)

Soybean 2D-CNN 15.9% (rRMSE) Yield predicted from 72 features derived from multispectral, thermal, and RGB sensors
on a single day. Data set included substantial yield variation due to cultivar-specific
differences.

0.72 (R2) Performance based on held-out set from the same field and season.

Nevavuori et al.
(2019)

Wheat/barley 2D-CNN 8.8–12.6% (MAPE) Yield predicted from RGB or a single VI measured on a single day.
UAV data were combined for two crops, nine fields, and multiple imaging dates. Images
for “early” or “late” season models were sub-sampled, shuffled, and split into test and
train sets.

rRMSE, relative root mean squared error; MAPE, mean absolute percentage error.
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first undergo error correction using the model architecture
presented here (Figure 1).

Taken together, our study highlights the benefits of relatively
simple CNN architectures for yield prediction in rice using
remotely sensed images. Incorporating such models into data
analysis pipelines could balance the overall costs of data
collection and model training and demonstrates the potential
benefits of deep learning for sustainable agriculture and
precision management.
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