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Establishment and maintenance
of DNA methylation in
nematode feeding sites

Morgan Bennett, Tracy E. Hawk, Valeria S. Lopes-Caitar,
Nicole Adams, J. Hollis Rice and Tarek Hewezi*

Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
A growing body of evidence indicates that epigenetic mechanisms, particularly

DNA methylation, play key regulatory roles in plant-nematode interactions.

Nevertheless, the transcriptional activity of key genes mediating DNA

methylation and active demethylation in the nematode feeding sites remains

largely unknown. Here, we profiled the promoter activity of 12 genes involved

in maintenance and de novo establishment of DNA methylation and active

demethylation in the syncytia and galls induced respectively by the cyst

nematode Heterodera schachtii and the root-knot nematode Meloidogyne

incognita in Arabidopsis roots. The promoter activity assays revealed that

expression of the CG-context methyltransferases is restricted to feeding site

formation and development stages. Chromomethylase1 (CMT1), CMT2, and

CMT3 and Domains Rearranged Methyltransferase2 (DRM2) and DRM3, which

mediate non-CG methylation, showed similar and distinct expression patterns

in the syncytia and galls at various time points. Notably, the promoters of

various DNA demethylases were more active in galls as compared with the

syncytia, particularly during the early stage of infection. Mutants impaired in CG

or CHH methylation similarly enhanced plant susceptibility to H. schachtii and

M. incognita, whereas mutants impaired in CHG methylation reduced plant

susceptibility only to M. incognita. Interestingly, hypermethylated mutants

defective in active DNA demethylation exhibited contrasting responses to

infection by H. schachtii and M. incognita, a finding most likely associated

with differential regulation of defense-related genes in these mutants upon

nematode infection. Our results point to methylation-dependent mechanisms

regulating plant responses to infection by cyst and root-knot nematodes.
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Introduction

DNA methylation and demethylation pathways regulate many

aspects of plant development and stress responses through

reversible, non-genetic modification of cytosine to 5-

methylcytosine (5mC) (Fransz and De Jong, 2002; Henderson

and Jacobsen, 2007; Zilberman et al., 2007; Zhang et al., 2010;

Matzke and Mosher, 2014; Du et al., 2015; López Sánchez et al.,

2016; Hewezi et al., 2018; Hewezi, 2020). In plants, this occurs in the

CG, CHG, and CHH sequence contexts (where H is any nucleotide

except G) (Lister et al., 2008). The de novo formation of 5mC is

catalyzed by DNA methyltransferases DOMAINS REARRANGED

METHYLTRANSFERASE2 (DRM2) and DRM3 through the

RNA-directed DNA methylation (RdDM) pathway (Cao and

Jacobsen, 2002a; Cao and Jacobsen, 2002b; Cao et al., 2003;

Henderson et al., 2010). Following DNA replication and cell

division, DNA methylation is maintained in a sequence context-

specific manner (Saze et al., 2003). CG methylation is maintained

mainly by METHYLTRANSFERASE1 (MET1). MET1 paralogs,

MET2b and MET3, also contribute to CG maintenance but to a

much lesser extent (Kankel et al., 2003; Quadrana et al., 2016).

CHROMOMETHYLASE1 (CMT1), CMT2, CMT3, and the

RdDM pathway are responsible for maintaining non-CG

methylation (Henderson et al., 2010; Law and Jacobsen, 2010;

Costa-Nunes et al., 2014; Stroud et al., 2014). 5mC can be actively

removed and replaced by cytosine via the base excision repair

process mediated by the paralogous DNA demethylases

REPRESSOR OF SILENCING 1 (ROS1), DEMETER (DME),

DME-LIKE2 (DML2) and DML3 (Choi et al., 2002; Gong et al.,

2002; Agius et al., 2006; Morales-Ruiz et al., 2006; Penterman et al.,

2007b; Gehring et al., 2009; Zhang and Zhu, 2012). Together, DNA

methylation and demethylation fine-tune genome-wide

methylation levels and subsequent transcriptional reprogramming

(Gong et al., 2002; Penterman et al., 2007a; Penterman et al., 2007b;

Zhu et al., 2007; Ortega-Galisteo et al., 2008; Lei et al., 2015; Bennett

et al., 2022).

Recent studies have provided intriguing evidence for the

involvement of DNA methylation and active demethylation

pathways in modulating defense responses against various

phytopathogens (Hewezi et al., 2018). Genome-wide

methylation profiling of Arabidopsis leaves inoculated with

Pseudomonas syringae pv. tomato DC3000 (Pst) revealed

widespread changes in plant methylomes, particularly in gene-

rich regions (Dowen et al., 2012). Pst-induced DNA methylation

changes were associated with differential transcript abundances

of a significant number of stress-responsive genes (Dowen et al.,

2012). Similarly, infection of canola (Brassica napus) by the

fungal pathogen Leptosphaeria maculans triggered differential

DNA methylation in the promoters of thousands of genes both

in resistant and susceptible cultivars, of which numerous genes

are associated with defense responses (Tirnaz et al., 2020). The

correlation between genome-wide DNA methylation patterns

and gene expression levels were also reported in rice and tobacco
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in response to infection by rice Black Streaked Dwarf Virus and

Cucumber Mosaic Virus, respectively (Wang et al., 2018; Li

et al., 2020).

Changes in DNA methylation levels seem to impact plant

interactions with fungal pathogens and oomycetes. For example,

hypomethylated mutants defective in the establishment of DNA

methylation increased plant resistance to Hyaloperonospora

arabidopsidis (Hpa), whereas hypermethylated mutants

impaired in active DNA demethylation increased plant

susceptibility to both Hpa and Fusarium oxysporum (Le et al.,

2014; Lopez Sanchez et al., 2016). Gene expression analyses of

these mutants provided strong evidence for the involvement of

DNA methylation in the regulation of numerous genes with

defense- and stress-related functions. Notably, modulation of

defense- and stress-responsive genes in hyper- or

hypomethylated mutants showed opposite responses to various

phytopathogens (López Sánchez et al., 2016).

Cyst nematodes (Globodera and Heterodera spp.) and root-

knot nematodes (Meloidogyne spp.) are sedentary obligate

biotrophs that infect the root systems of a broad-spectrum of

host plants, including the model plant Arabidopsis. Nematode

parasitism of host plants is characterized by the formation of

syncytia and giant-cells as permanent feeding sites for cyst and

root-knot nematodes, respectively. The formation of giant-cells

by root-knot nematodes is accompanied by the formation of

galls at the site of infection as a result of increasing cell division

of neighboring cells. The parasitic second-stage juveniles (J2s)

feed from these metabolically hyperactive feeding cells and

develop into adult females and complete the life cycle. Several

experimental evidences indicate that epigenetic mechanisms,

particularly DNA methylation, play important roles in plant-

nematode interactions (Hewezi, 2020). For example, mutants

partially impaired in non-GC DNA methylation exhibited

reduced susceptibility to cyst and root-knot nematodes

(Hewezi et al, 2018; Ruiz-Ferrer et al., 2018; Atighi et al.,

2021). Genome-wide DNA methylation analysis of soybean

roots exposed to soybean cyst nematode (SCN, Heterodera

glycines) revealed widespread DNA hypomethylation in the

promoter and transcribed regions of a substantial number of

genes (Rambani et al., 2015) that were previously reported to be

differentially expressed in the syncytium (Ithal et al., 2007; Klink

et al., 2009, Klink et al., 2010; Kandoth et al., 2011). Similarly,

beet cyst nematode (BCN, Heterodera schachtii) was found to

induce considerable increases in hypomethylation levels of

protein-coding genes and transposable elements (TEs) (Hewezi

et al., 2017; Piya et al., 2017). Further analysis indicated that

BCN-induced DNA methylation changes may directly impact

the transcript abundance of more than one-fourth of

differentially expressed genes in syncytium (Hewezi et al.,

2017). Methylome analysis of two near isogenic lines of

soybean differing in their response to SCN revealed distinct

and specific methylation profiles over protein-coding and

miRNA genes as well as TEs (Rambani et al., 2020a; Rambani
frontiersin.org
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et al., 2020b). While the susceptible line exhibited global

hypomethylation patterns, the resistant line showed global

hypermethylation (Rambani et al., 2020a; Rambani et al.,

2020b). Global DNA hypomethylation patterns, predominantly

in the CHH context, were also observed in early developing galls

induced by the root-knot nematode Meloidogyne graminicola in

rice (Atighi et al., 2021). In contrast, it has been recently shown

that early developing galls formed byMeloidogyne javanica have

undergone hypermethylation particularly in the CHG context

(Silva et al., 2022).

The biological significance of DNA methylation changes

induced by parasitic nematodes was established using various

functional assays of overexpression and mutant analyses

(Hewezi et al., 2017; Rambani et al., 2020a; Rambani et al.,

2020b; Atighi et al., 2021; Silva et al., 2022). However, the

transcriptional activity of key genes involved in DNA

methylation and active demethylation in nematode feeding

sites remains mostly unknown. We addressed this issue by

profiling the spatio-temporal expression patterns of genes

involved in maintenance and de novo establishment of DNA

methylation as well as those involved in active DNA

demethylation in the syncytia and galls induced respectively by

H. schachtii and M. incognita in Arabidopsis roots. Also,

mutants of these genes were assayed for susceptibility to H.

schachtii and M. incognita. Our analyses revealed a key role of

DNA methylation and active demethylation in mediating plant

susceptibility to two evolutionary distant nematode species.
Materials and methods

Plant materials and growth conditions

All transgenic Arabidopsis (Arabidopsis thaliana) lines

expressing the GUS reporter gene under the control of various

DNA methylation and demethylation related-genes were

generated in the Columbia‐0 (Col‐0) background (Bennett et al,

2021). All mutant lines were generated in the Col‐0) background,

expect ros1 (CS66099) is in the C24 background. The mutant lines

cmt3-7 (CS6365, Lindroth et al., 2001), drm2-2 (CS16386, Cao and

Jacobsen, 2002a), and ros1-1 (CS66099, Gong et al., 2002) have

been previously characterized. T-DNA insertional mutants for

met2 (SALK_102231C and SALK_093835C ) , met3

(SALK_024049C and SALK_099592C), cmt1 (SALK_138685C

and SALK_030404C), cmt2 (SALK_012874C and CS879822),

cmt3 (CS6365) drm2 (CS16386 and SALK_129477C), drm3

(SALK_136439C and SALK_024820C), ros1 (CS66099 and

SALK_045303C) , dml2 (SALK_131712C ) and dml3

(SALK_056440C) were obtained from Arabidopsis Biological

Resource Center (ABRC) (Supplementary Figure 1A). mRNA

expression levels of these genes were quantified in

uncharacterized mutant lines and the corresponding wild-type

plants using reverse transcription quantitative PCR (RT-qPCR)
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(Supplementary Figure 1B). Ten-day-old plants grown in plates

containing MS medium were used for RNA extraction and

quantification of gene expression levels as described below.

Length of the main root of 15 two-week-old plants per line was

measured, and statistically significant differences from wild-type

plants were calculated using t tests (P < 0.05). In addition, shoot

and root phenotypes of all mutant lines along with the

corresponding wild-type plants were assessed in four-week-old

soil-grown plants.
RNA isolation and RT-qPCR

Total RNA was isolated from mutant lines and the

corresponding wild-type plants using the method previously

described by Verwoerd et al. (1989), and then treated with

DNase I (Invitrogen). DNase-treated RNA samples were

diluted to a concentration of 50 ng/µL and used as a template

for RT-qPCR reactions. The reactions were performed using

Verso 1-step RT-qPCR (Thermo Fisher Scientific) in

QuantStudio 6 Flex (Applied Biosystems) under the following

conditions: 50°C for 15 min, 95°C for 15 min, and 40 cycles of

95°C for 15 s and 55°C for 30 s. Gene expression levels were

quantified using 3 biological and 2 technical replicates.

Quantification of expression levels was conducted using the 2-

DDCT method (Livak and Schmittgen, 2001). Actin8

(AT1G49240) and PROTEIN PHOSPHATASE 2A SUBUNIT

A3 (PP2AA3, AT1G13320) were used as internal control to

normalize gene expression levels (Piya et al., 2019; Piya et al.,

2020; Bennett et al., 2021). DCT values determined using Actin8

and PP2AA3 were very similar. Primers used for RT-qPCR

assays were provided in Supplementary Table 1.
Histochemical analysis of GUS activity

Seeds of the transgenic GUS reporter lines were sterilized

using a 2.8% bleach solution for 5 minutes followed by several

washes with sterilized distilled water. The sterilized seeds were

randomly planted in culture plates (BD Biosciences) containing

modified Knop’s medium solidified with 0.8% Daishin agar

(Brunschwig Chemie). Ten-day-old plants were inoculated

with about 100 surface-sterilized J2 of Heterodera schachtii or

Meloidogyne incognita. Histochemical GUS staining was

performed at 3, 7, 10, and 14 days post inoculation (dpi) for

H. schachtii and 4, 7, and 14 dpi for M. incognita, according to

Jefferson et al. (1987). Samples were incubated with the X-Gluc

substrate (5-bromo-4-chloro-3-indolyl-beta-D-glucuronic acid,

cyclohexylammonium salt) at 37°C and checked every 30

minutes for colorimetric changes. After staining, the GUS

solution was replaced with 70% ethanol to terminate the

reaction and samples were stored in ethanol at room

temperature. At least two independent transgenic lines were
frontiersin.org
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assayed for each reporter line, with at least 24 replicated plants

per line. Nematode-inoculated roots were imaged immediately

following GUS staining. Images were captured using an EVOS

M7000 microscope with a 4x lens for 3 and 4 dpi images and a 2x

lens for all other time points.
Nematode susceptibility assays

H. schachtii infection assays were determined in 12-well

plates containing modified Knop’s medium (Sijmons et al., 1991)

solidified with 0.8% Daishin agar. Seeds of the mutants and

corresponding wild type were surface-sterilized and planted in a

randomized block design. Ten days after planting, each seedling

was inoculated with approximately 200 surface-sterilized J2 ofH.

schachtii. Following inoculation, the plates were incubated in the

dark at 24°C for 3 days to facilitate nematode infection. The

plants were then grown in 16-h-light/8-h-dark cycles at 24°C for

three weeks before counting the number of J4 females per root

system. Two independent experiments were performed with 20

replicates per genotype for each mutant and their corresponding

wild-type controls.

For M. incognita infection assays, seeds of the mutants and

wild type were surface-sterilized and planted on modified

Knop’s-containing plates. Ten-day-old seedlings were then

transplanted to pots containing steam‐sterilized sand mixed

with top soil at a 3 to 1 ratio and organized in a randomized

complete block design. A week after transplantation, each plant

was inoculated with approximately 500 J2 M. incognita and

grown in 16-h-light/8-h-dark cycles at 26°C. Whole root systems

were collected five weeks after inoculation and the number of

galls per root system was counted using light microscope.

Statistically significant differences between the mutant lines

and wild-type controls were calculated using a modified t test

in the statistical software package SAS, where P values less than

5% were considered statistically significant.
Results

Promoter activity of DNA
methyltransferases and demethylases in
the syncytia induced by the beet cyst
nematode Heterodera schachtii

Seeds of transgenic Arabidopsis lines (T2 generation)

expressing the b-glucuronidase (GUS) reporter, guided by the

promoter of 12 different DNA methyltransferase and

demethylase genes were planted. Ten‐day‐old seedlings were

inoculated with second‐stage juvenile (J2) nematodes of

Heterodera schachtii or Meloidogyne incognita. Promoter

activity was determined by staining the plants at various time

points post inoculation. In response to H. schachtii infection, the
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major CG methyltransferase MET1 was highly expressed in the

syncytia at 3- and 7-day post infection (dpi), as indicated by

strong GUS. At later time points, however, no GUS activity

directed by MET1 promoter was detected in the syncytium

(Figure 1A). The MET1 homolog MET3, whose expression was

not detected in roots tissues under non-infected conditions

(Bennett et al., 2021), was strongly upregulated in the

syncytium at 3 dpi. No activity of MET2b promoter was

detected in the syncytium at any time points (Figure 1A).

These expression patterns indicate that maintenance of the

CG-context methylation in the syncytia is restricted to early

stages of syncytium formation and development.

Promoter activity of CMT3, the main CHG methyltransferase

gene, and its homolog CMT1, revealed similar patterns of high

expression in the syncytium at all time points (Figure 1B),

suggesting that CHG-context methylation is actively maintained

in the syncytium during early and late stages of H. schachtii

infection. In contrast, the expression of CMT2was not activated in

the syncytium at any time points. The RdDM methyltransferase

genes DRM2 and DRM3 showed similar expression patterns of

upregulation in the syncytia at 3 dpi and downregulation at 14 dpi

(Figure 1B). However, at 7 and 10 dpiDRM2 andDRM3 exhibited

opposite expression patterns, i.e., DRM2 was downregulated and

DRM3 was upregulated in the syncytia (Figure 1B). These results

suggest that de novo DNA methylation is actively established in

the syncytia.

The DNA demethylase genes ROS1, DME, and DML3 were

downregulated in the syncytia during early and/or late infection

stages. Unlike these three DNA demethylases, DML2 was

upregulated in the syncytia at 3 and 7 dpi (Figure 1C),

suggesting active DNA demethylation in the syncytium is

mediated solely through the activity of DML2.

To further confirm promoter activity data, we quantified the

expression levels of MET1, MET3, DRM2, ROS1, and DML2 in

H. schachtii-infected roots of wild-type Col-0 plants using

reverse transcription quantitative PCR (RT-qPCR) at 4 dpi.

The expression levels of MET1, DRM2, ROS1, and DML2 were

significantly upregulated in infected roots relative to non-

infected control plants (Figure S2), confirming the increased

promoter activity of these genes upon H. schachtii infection.

However, MET3 , showed significant downregulation

(Supplementary Figure 2) despite its promoter was strongly

and specifically upregulated in the syncytium, suggesting

opposite regulation of MET3 in roots versus syncytial cells in

response to H. schachtii infection.
Mutations of DNA methylation and
demethylation-related genes alter plant
susceptibility to Heterodera schachtii

We next investigated the impact of mutations in these DNA

methylation-related genes on plant response to nematode
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A

B

C

FIGURE 1

Promoter activity of DNA methyltransferases and demethylases in the syncytia induced by (H) schachtii on Arabidopsis roots. Time-course
experiments showing GUS activity controlled by the CG methyltransferases MET1, METb, and MET3 (A), the non-CG methyltransferases CMT1,
CMT2, CMT3, DRM2, and DRM3 (B), and the DNA demethylases ROS1, DME, DML2, and DML3 (C) at 3, 7, 10, and 14 dpi. Red arrows point to
syncytia. Scale bar = 200 µm.
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infection. Homozygous T-DNA insertional mutants for 10 genes

were identified and phenotypically analyzed. This included

mutants of MET2b (SALK_093835C and SALK_102231C),

MET3 (SALK_099592C and SALK_024049C) , CMT1

(SALK_138685C and SALK_030404C), CMT2 (SALK_012874C

and CS879822), CMT3 (CS6365), DRM2 (CS16386 and

SALK_129477C), DRM3 (SALK_024820C and SALK_136439C),

ROS1(SALK_045303C and CS66099) DML2 (SALK_131712C),

and DML3 (SALK_056440C) (Supplementary Figure 1).

Homozygous mutants of MET1 and DME are embryonic

lethal or associated with severe developmental irregularities

(Choi et al, 2002; Kankel et al., 2003; Saze et al., 2003; Mathieu

et al, 2007), and therefore were not included in the susceptibility

assays. No severe morphological irregularities in the shoots of

mutants assessed in this study were detected when compared

with the wild-type plants (Supplementary Figure 3). With the

exception of the short root phenotypes observed in the ROS1

mutants (SALK_045303C and CS66099), no noticeable

morphological changes in root structure and length were

noticed in these mutants as compared with wild-type plants

(Supplementary Figure 4).

Seeds of the mutant lines along with the corresponding wild

types were planted in 12-well plates and inoculated with freshly

hatched J2s of H. schachtii. The numbers of nematode J4 females

per root system were counted three weeks after inoculation and

used as a measurement of plant susceptibility. As shown in

Figure 2A, both mutant alleles of MET2b (SALK_102231C and

SALK_093835C) showed susceptibility levels similar to the wild-

type Col-0, consistent with the absence of MET2b:GUS activity in

the syncytium. In contrast, theMET3mutant (SALK_024049C) was

significantlymore susceptible toH. schachtii in comparison with the

wild-type Col-0 (Figure 2A), suggesting that CG hypomethylation is

associated with increased plant susceptibility to H. schachtii. All

mutants of the three CMT genes did not show any significant

impact on plant susceptibility (Figures 2B, C). Interestingly, both

mutant alleles of DRM2 and DRM3 showed statistically significant

increases in plant susceptibility (Figure 2D). These results suggest

that non-CG hypomethylation is also associated with increased

plant susceptibility to H. schachtii. All tested mutants of the DNA

demethylase genes ROS1, DML2, and DML3 were more susceptible

as compared with the corresponding wild-type Col-0 or C24

(Figures 2E, F), signifying that inhibition of active DNA

demethylation promotes H. schachtii parasitism of Arabidopsis.
Promoter activity of DNA
methyltransferases and demethylases in
the galls induced by the root-knot
nematode Meloidogyne incognita

The CG methyltransferase genes MET1, MET2b, and MET3

were expressed in the galls induced by the root-knot nematode

M. incognita at 4 dpi (Figure 3A). At 7 dpi, however, onlyMET1
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showed GUS staining in the galls. At 14 dpi, none of these three

genes was activated in the galls, suggesting that CG methylation

is maintained in the gall tissues during the early stage

of infection.

The CMT gene family members showed varied expression

patterns in the galls (Figure 3B). While the promoter activity of

CMT1 can be seen in the galls at 4, 7, and 14 dpi, CMT3

promoter was active in the galls only at 7 dpi. In contrast, GUS

activity driven by CMT2 promoter was not detected in the galls

at any time points (Figure 3B). These data suggest that variable

activities of the enzymes mediating CHG methylation occur in

the galls induced by M. incognita. DRM2 and DRM3 exhibited

high expression in the galls at all time points, implying a role for

de novo DNA methylation in establishing gall methylomes

during various parasitic stages.

The expression of ROS1, DME, DML2, and DML3 was

observed in the galls at 4 dpi (Figure 3C), signifying a role for

active DNA demethylation during early stage of M. incognita

infection. However, at 7 dpi, only DML2 showed strong GUS

staining in the galls (Figure 3C). ROS1 andDML3 showed weak but

visible GUS staining at 7 dpi (Figure 3C). At 14 dpi, none of these

four DNA demethylase genes showed detectable GUS staining in

the galls (Figure 3C), suggesting that active DNA demethylation

occurs primarily during the early stage of M. incognita infection.

Furthermore, the expression levels of MET1, MET3, DRM2,

ROS1, and DML2 were measured in M. incognita-infected roots

of wild-type Col-0 plants at 4 dpi using RT-qPCR to validate the

promoter activity of these genes. MET1, MET3, ROS1, and

DML2 showed between 2 and 5-fold upregulation in infected

roots compared with non-infected roots (Figure S5), consistent

with the strong GUS activity of these genes detected after M.

incognita infection at this time point.
Mutations of DNA methylation and
demethylation-related genes alter plant
susceptibility to Meloidogyne incognita

The T-DNA insertional mutants mentioned above were also

evaluated for their susceptibility to M. incognita. Three-week-old

plants growing in soil were inoculated with freshly hatched J2s ofM.

incognita, and the number of galls per root system was counted

three weeks after inoculation and used to determine susceptibility

levels of the mutants in comparison with the corresponding wild-

type plants. Of the genes involved in CGmethylation, we found that

mutant alleles of MET2b (SALK_093835C) and MET3

(SALK_099592C and SALK_024049C) were significantly more

susceptible as compared with the wild-type Col-0 plants

(Figure 4A). In contrast, mutants of CMT1 (SALK_138685C) or

CMT2 (SALK_012874C and CS879822) were statistically less

susceptible to M. incognita compared with Col-0 (Figure 4B).

Susceptibility level of the CMT3 mutant (CS6365) was

comparable to that of wild-type Ler-0 (Figure 4C). Mutant alleles
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of DRM2 (CS16386 and SALK_129477C) and DRM3

(SALK_136439C) showed statistically significant increases in plant

susceptibility (Figure 4D). These results suggest that genes involved

in the CG and non-CG methylation may exert opposite effects on

plant susceptibility to M. incognita. Interestingly, all examined

mutants of the DNA demethylases ROS1 (SALK_045303C and

CS66099), DML2 (SALK_131712C), and DML3 (SALK_056440C)

were statistically less susceptible to M. incognita as compared with

the corresponding wild-type Col-0 or C24 (Figures 4E, F), implying

the importance of active DNA demethylation for M. incognita

parasitism of Arabidopsis.
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Defense response genes are oppositely
regulated in DNA demethylase mutants
in response to infection by cyst and
root-knot nematodes

Several reports have indicated that DNA hypomethylation

contributes to the regulatory mechanism of plant-induced

defense responses (Yu et al., 2013; Le et al., 2014; Lopez

Sanchez et al., 2016). Therefore, we examined the expression

levels of pathogenesis related (PR) genes in the DNA

demethylase mutants showing contrasting susceptibility
A B C

D E F

FIGURE 2

Mutations of DNA methyltransferases and demethylases enhance plant susceptibility to H. schachtii. (A–E): H. schachtii infection assays of mutant alleles
of MET2b (SALK_102231C and SALK_093835C), MET3 (SALK_024049C and SALK_099592C) (A), CMT1 (SALK_138685C and SALK_030404C) and CMT2
(SALK_012874C and CS879822) (B), CMT3 (CS6365) (C), DRM2 (CS16386 and SALK_129477C) and DRM3 (SALK_136439C and SALK_024820C)
(D), ROS1 (CS66099) (E), ROS1 (SALK_045303C), DML2 (SALK_131712C), and DML3 (SALK_056440C) (F). The number of J4 female nematodes per root
system was counted 3 weeks post inoculation. Data are presented as means ± SE (n = 20). Asterisks denote statistically significant differences from the
wild-type Col-0, Ler or C24 as determined by t tests (P < 0.05).
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FIGURE 3

Promoter activity of DNA methyltransferases and demethylases in the galls induced by M. incognita on Arabidopsis roots. Time-course
experiments showing GUS activity controlled by the CG methyltransferases MET1, MET2b, and MET3 (A), the non-CG methyltransferases CMT1,
CMT2, CMT3, DRM2, and DRM3 (B), and the DNA demethylases ROS1, DME, DML2, and DML3 (C) in the galls formed by M. incognita at 4, 7,
and 14 dpi. Red arrows point to galls. Scale bar = 200 µm.
g

https://doi.org/10.3389/fpls.2022.1111623
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Bennett et al. 10.3389/fpls.2022.1111623
phenotypes in response to infection by H. schachtii and M.

incognita. We first quantified the expression of PR1, PR5, and

PLANT DEFENSIN1.2 (PDF1.2) in the root tissues of ros1

(CS66099 and SALK_045303C), dml2 (SALK_131712C) and

dml3 (SALK_056440C) under non-infected conditions. As

shown in Figures 5A–C, PR1, PR5 and PDF1.2 expression was

comparable to that of the wild-type plants Col-0 or C24.

We next quantified the expression of PR1, PR5, and PDF1.2

in the root tissues of these four DNA demethylase mutants and

wild-type plants (Col-0 and C24) infected with H. schachtii or

M. incognita at 4 dpi. In response to H. schachtii infection, the
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expression of these genes showed significant downregulation in

infected wild-type roots compared with non-infected roots

(Figures 5D–F). Similarly, the expression levels of PR1, PR5,

and PDF1.2 were significantly downregulated in almost all H.

schachtii-infected mutant lines when compared with non-

infected mutants (Figures 5D–F). However, the levels of

downregulation of PR5 and PDF1.2 were much higher in the

infected mutants than the infected wild types (Figures 5E, F).

In response toM. incognita infection, the expression of PR1,

PR5, and PDF1.2 was downregulated in the infected wild-type

roots versus non-infected roots (Figures 5G–I). In the mutant
A B C

D E F

FIGURE 4

Mutations of DNA methyltransferases and demethylases alter plant susceptibility to M. incognita. (A–E): M. incognita infection assays of mutant
alleles of MET2b (SALK_102231C and SALK_093835C), MET3 (SALK_024049C and SALK_099592C) (A), CMT1 (SALK_138685C and
SALK_030404C) and CMT2 (SALK_012874C and CS879822) (B), CMT3 (CS6365) (C), DRM2 (CS16386 and SALK_129477C) and DRM3
(SALK_136439C and SALK_024820C) (D), ROS1 (CS66099) (E), ROS1 (SALK_045303C), DML2 (SALK_131712C) and DML3 (SALK_056440C)
(F). The number of galls per root system was counted 3 weeks post inoculation. Data are presented as means ± SE (n = 20). Asterisks denote
statistically significant differences from the wild-type Col-0, Ler or C24 as determined by t tests (P < 0.05).
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FIGURE 5

Expression levels of PR genes in DNA demethylase mutants in response to infection by cyst and root-knot nematodes. (A–C): RT-qPCR
quantification of the expression of PR1 (A), PR5 ) and PDF1.2 (C) in roots tissues of mutant alleles of ROS1 (CS66099 and SALK_045303C), DML2
(SALK_131712C), and DML3 (SALK_056440C) under non-infected conditions relative to wild-type plants. (D-F): Expression of PR1 (D), PR5
(E) and PDF1.2 (F) in the (H) schachtii-infected roots tissues of wild-type (Col-0 and C24) and mutant alleles of ROS1 (CS66099 and
SALK_045303C), DML2 (SALK_131712C), and DML3 (SALK_056440C) relative to non-infected root tissues. (G–I): Expression of PR1 (G), PR5
(H) and PDF1.2 (I) in the M. incognita-infected roots tissues of wild-type (Col-0 and C24) and mutant alleles of ROS1 (CS66099 and
SALK_045303C), DML2 (SALK_131712C), and DML3 (SALK_056440C) relative to non-infected root tissues. Relative gene expression levels were
obtained from three biological samples and presented as mean ± SE. PP2AA3 and actin8 were used as internal reference genes to normalize
gene expression. Asterisks indicate statistically significance differences from control treatments at P < 0.05.
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lines, however, we observed a general trend of upregulation of

the PR1, PR5, and PDF1.2 transcripts in M. incognita-infected

roots versus non-infected roots (Figures 5G–I). Together, these

results suggest that opposite regulation of defense-related genes

in the mutant lines in response to infection by H. schachtii and

M. incognita may have contributed to the observed opposite

susceptibility phenotypes.
Discussion

Our analysis revealed an important role of DNAmethylation

and active demethylation pathways in mediating Arabidopsis

interactions with H. schachtii and M. incognita. Promoter

activity and mutant analyses of 12 key genes involved in DNA

methylation or active demethylation unveiled important

similarity and distinct differences between these two

pathosystems in term of expression patterns and plant

susceptibility. For example, the promoter activity of MET1 and

its homolog MET3 were both detected in the syncytia and galls

during the early stage of infection. In contrast, the expression of

MET2b was detected only in galls at 4 dpi (Figures 1A, 3A), a

finding that is consistent with increased susceptibility of met2b

mutant plants (SALK_093835C) to M. incognita but not H.

schachtii (Figures 2B, 4B). Strikingly, no such activity of MET3

promoter was detected in the root tissues under non-infected

conditions (Bennett et al., 2021), but this promoter was activated

specifically in the syncytia and galls only at 3 and 4 dpi,

respectively (Figures 1A, 3A). Consistent with this finding,

mutant alleles of MET3 were more susceptible to both H.

schachtii and M. incognita (Figures 2B, 4B). The finding that

MET3 expression is restricted to the developing embryo (Jullien

et al., 2012; Bennett et al., 2021) suggests a unique role of the

encoding enzyme in reprogramming CG methylation in the

syncytia and galls in a way similar to the developing embryos,

which undergo extensive DNA methylation changes (Xiao et al.,

2006; Gehring et al., 2009; Jullien et al., 2012; Wang et al., 2015;

Satyaki and Gehring, 2017).

Notably, none of the examined mutants of the CMT genes

were found to alter plant susceptibility to H. schachtii despite the

strong activation of CMT1 and CMT3 in the syncytia during

both early and late stages of infection. While this finding can be

attributed to a possible functional redundancy between CMT1

and CMT3, whose expression was detected in the syncytia

(Figure 1B), this explanation doesn’t support the results

showing that single mutants of this gene family were altered in

their susceptibility toM. incognita (Figures 4B, C). One possible

explanation is that global loss of CHG methylation in cmt1 and

cmt3 (Stroud et al., 2013) mutants have little or no effect on

syncytium formation and function. Alternatively, global

decrease in CHG methylation can be compensated with an

increase of CG and CHH methylation in the syncytium as

recently reported (Rambani et al., 2020b). In support of this
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hypothesis, the expression ofMET1 andMET2b as well asDRM2

and DRM3, which establish CHH methylation de novo, are

strongly induced in the syncytia (Figures 1A, B). Although

DRMs are established as CHH methyltransferases, they

regulate CHG methylation as well (Cao and Jacobsen, 2002b;

Stroud et al., 2013).

The intense GUS staining of the DRM2 and DRM3

promoters in the syncytia and galls (Figures 1B, 3B) along

with the results showing that mutant alleles of DRM2 and

DRM3 were more susceptible to both M. incognita and H.

schachtii point to the importance of establishing DNA

methylation de novo in syncytial and gall cells as a defense

mechanism to control cyst and root-knot nematode infection.

Similarly, RdDM-defective mutants were found to be more

susceptible to Botrytis cinerea and Plectosphaerella cucumerina

(López et al., 2011). More recently, it was shown that tomato

DRM5 expression is significantly upregulated in the roots of a

resistant tomato cultivar upon infection with a virulent root-

knot nematode field population (Leonetti and Molinari, 2020).

However, various rice mutants deficient in the RdDM pathway

were reported less susceptible to M. graminicola despite the fact

that more than 99% of the identified differentially methylated

regions in the galls were CHH-hypomethylated (Atighi et al.,

2020). Similarly, it has been recently shown that M. javanica

reproduction on drm1/drm2 double mutant was greatly reduced

(Silva et al., 2022). Together, these findings suggest that the

RdDM pathway regulates plant resistance against various

phytopathogens (Erdmann and Picard, 2020) including cyst

and root-knot nematodes.

It may be important to mention that the differences between

the two alleles of MET3 (SALK_099592C and SALK_024049C),

CMT1 (SALK_138685C and SALK_030404C), and DRM3

(SALK_136439C and SALK_024820C) in response to infection

by H. schachtii or M. incognita are most likely due to difference

in gene expression as shown in Supplementary Figure 1B.

Similarly, of the two mutant lines of MET2b (SALK_102231

and SALK_093835C) only SALK_093835C exhibited increased

susceptibility to M. incognita despite the fact that MET2b is

expressed at a similar level in both mutants. The differences

between the two mutant alleles could be related to different T-

DNA insertion sites (Supplementary Figure 1A), which may

impact the function of truncated transcripts.

Remarkably, the promoter activity of ROS1, DME, DML2,

andDML3 exhibited opposite expression patterns in the syncytia

and galls (Figures 1C, 3C). With the exception of DML2

upregulation in the syncytium at 3 and 7 dpi, the remaining

three DNA demethylase genes were either downregulated or not

expressed at a detectable level in the syncytia (Figure 1C). In

contrast, strong GUS activity was observed for all four

demethylase genes in young galls at 4 dpi (Figure 3C).

Consistent with the contrasting expression patterns, the

mutant alleles of ROS1, DML2, and DML3 showed opposite

responses to infection by cyst and root-knot nematodes. Indeed,
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the DNA demethylase mutants exhibited increased susceptibility

to H. schachtii and decreased susceptibility to M. incognita

(Figures 2C, 3C). The involvement of active DNA

demethylases in disease resistance has been reported in few

studies. For example, a loss-of-function mutation in the

Arabidopsis ROS1 gene enhanced plant susceptibility to the

bacterial pathogen Pseudomonas syringae pv. tomato DC3000

(Pto DC3000) (Yu et al, 2013). In addition, Arabidopsis ros1/

dml2/dml3 (rdd) triple mutant displayed enhanced disease

susceptibility to the fungal pathogen Fusarium oxysporum (Le

et al. , 2014). The opposite response of Arabidopsis

hypermethylated mutants to various plant pathogens has also

been reported. For instance, the hypermethylated mutant ros1

was less resistant to Hpa, but more resistant to the necrotrophic

fungi Alternaria brassicicola and Plectosphaerella cucumerina as

well asM. javanica (López Sánchez et al., 2016; Silva et al., 2022).

Our gene expression analysis of PR1, PR2, and PDF1.2

pointed to opposite regulation of defense-related genes in the

DNA demethylase mutants in response to infection by M.

incognita and H. schachtii (Figures 5B, C). This may partially

explain the opposite susceptibility phenotypes of these mutants

in response to infection by H. schachtii and M. incognita

(Figures 2C, 4C), and highlights the complexity of plant

defense pathways against plant-parasitic nematodes and their

interactions with active demethylation pathway. Our results are

consistent with the finding that active DNA demethylases

function mainly in regulating the expression of defense- and

stress-related genes (Yu et al., 2013; Le et al., 2014; Lopez

Sanchez et al., 2016) and point to distinct methylation-

dependent mechanisms regulating defense gene expression

upon infection by cyst and root-knot nematodes. Basal defense

response does not seem to be altered in the demethylase mutants

under non-infected conditions because PR1, PR2, and PDF1.2

are similarly expressed in these mutants and wild-type plants

(Figures 5A–C). Additionally, it is unlikely that changes in the

expression of PR1, PR5, and PDF1.2 are due to changes in

methylation status in cis at the promoters of these genes upon

nematode infection because nematode-induced potential

hypermethylation of these PR genes in four demethylated

mutants argues against upregulation of these genes in response

to M. incognita infection (Figures 5G–I). Furthermore, PR1,

PR2, and PDF1.2 are not subjected to DNA methylation changes

upon H. schachtii infection in Col-0 plants (Hewezi et al., 2017).

Additionally, it has been shown that the majority of defense-

related genes in ros1 mutant are indirectly regulated by DNA

methylation (López Sánchez et al., 2016; Halter et al., 2021).

Taken together, it is conceivable to suggest that changes in DNA

methylation patterns of trans-acting factors directly or indirectly

controlling the expression of defense- and stress-related genes in

DNA demethylase mutants are the causal factors contributing

towards opposite regulation of PR1, PR2, and PDF1.2 upon

infection by H. schachtii and M. incognita. Taken together, our

results set the stage for future studies to determine the exact
Frontiers in Plant Science 12
mechanism through which DNA methylation and active

demethylation of trans-acting factors modulate plant

immunity and basal defense response upon infection with

parasitic nematodes. This may eventually lead to the

development of novel approaches to improve plant resistance

to nematode infection.
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López Sánchez, A., Stassen, J. H., Furci, L., Smith, L. M., and Ton, J. (2016). The
role of DNA (de)methylation in immune responsiveness of Arabidopsis. Plant J. 88,
361–374. doi: 10.1111/tpj.13252

Mathieu, O., Reinders, J., Caikovski, M., Smathajitt, C., and Paszkowski, J.
(2007). Transgenerational stability of the arabidopsis epigenome is coordinated by
CG methylation. Cell 130, 851–862. doi: 10.1016/j.cell.2007.07.007

Matzke, M. A., and Mosher, R. A. (2014). RNA-directed DNA methylation: an
epigenetic pathway of increasing complexity. Nat. Rev. Genet. 15, 394–408.
doi: 10.1038/nrg3683

Morales-Ruiz, T., Ortega-Galisteo, A. P., Ponferrada-Marıń, M. I., Martıńez-
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