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Spraying alginate
oligosaccharide improves
photosynthetic performance
and sugar accumulation
in citrus by regulating
antioxidant system and
related gene expression

Zhiming Li1, Songpo Duan1, Bosi Lu1, Chunmei Yang1,
Hanqing Ding2 and Hong Shen1*

1College of Natural Resources and Environment, South China Agricultural University,
Guangzhou, China, 2Guangdong Nongken Tropical Agriculture Research Institute Co.,
Guangzhou, China
Alginate oligosaccharides (AOS) are functional substances in seaweed extracts

that regulate crop quality and stress tolerance. In this paper, the effects of AOS

spray application on the antioxidant system, photosynthesis and fruit sugar

accumulation in citrus was investigated through a two-year field experiment.

The results showed that 8-10 spray cycles of 300-500mg L-1 AOS (once per 15

days) increased soluble sugar and soluble solid contents by 7.74-15.79% and

9.98-15.35%, respectively, from citrus fruit expansion to harvesting. Compared

with the control, the antioxidant enzyme activity and the expression of some

related genes in citrus leaves started to increase significantly after the 1st AOS

spray application, while the net photosynthetic rate of leaves increased

obviously only after the 3rd AOS spray cycle, and the soluble sugar content

of AOS-treated leaves increased by 8.43-12.96% at harvest. This suggests that

AOS may enhance photosynthesis and sugar accumulation in leaves by

antioxidant system regulation. Moreover, analysis of fruit sugar metabolism

showed that during the 3rd to 8th AOS spray cycles, AOS treatment increased

the activity of enzymes related to sucrose synthesis (SPS, SSs), upregulated the

expression of sucrose metabolism (CitSPS1, CitSPS2, SUS) and transport (SUC3,

SUC4) genes, and promoted the accumulation of sucrose, glucose and

fructose in fruits. Notably, the concentration of soluble sugars in citrus fruits

was significantly reduced at all treatments with 40% reduction in leaves of the

same branch, but the loss of soluble sugars in AOS-treated fruits (18.18%) was

higher than that in the control treatment (14.10%). It showed that there was a

positive effect of AOS application on leaf assimilation product transport and

fruit sugar accumulation. In summary, AOS application may improve fruit sugar

accumulation and quality by regulating the leaf antioxidant system, increasing

the photosynthetic rate and assimilate product accumulation, and promoting
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sugar transfer from leaves to fruits. This study shows the potential application of

AOS in the production of citrus fruits for sugar enhancement.
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1 Introduction

Citrus are one of the most important sources of natural

nutrient supplements for the human body, providing a wide

range of nutrients, and they are also the most widely grown fruit

crops in China, with an annual production of more than 45

million tons and great industrial value (Sheng et al., 2017;

Batista-Silva et al., 2018). However, inconsistent fruit quality

has been a bottleneck limiting the development of the citrus

industry. The soluble sugar content in citrus fruits is an

important indicator of their quality, directly affecting

consumer preference and purchase choices (Lin et al., 2015;

Guo et al., 2016). However, sugar accumulation in fruits is a

complex process that is strongly influenced by multiple factors,

such as highly regulated carbohydrate transport and metabolism

as well as the external environment. Considering the

contradiction between long breeding cycles and urgent market

demand, rapid and effective improvement of sugar accumulation

and fruit quality is a top priority for researchers. Many studies

have shown that the use of exogenous harmless natural

biostimulants, including natural biostimulants, plant growth

regulators and antioxidants, may be a good strategy to

improve fruit quality (Cai et al., 2014; Raza et al., 2014; Zhao

et al., 2020).

Alginate oligosaccharides (AOS) are low-molecular-weight

polymers generated by the degradation of alginate and consist of

2-20 monosaccharides (Courtois, 2009). These biostimulants

have the advantages of low molecular weight, high solubility

and stability, easy absorption by the body and natural

nontoxicity and exhibit great potential for application (Liu

et al., 2019a). The available literature reports that AOS can act

as signaling molecules or excitons when they enter plants,

participating in a variety of physiological activities in plants

and regulating plant growth and development. For example,

AOS can activate the accumulation of b-amylase in maize,

promote root growth in lettuce, mustard, barley and soybean

seedlings, and increase the levels of free proline, total soluble

solids and abscisic acid in tomato (Keith, 2003; Liu et al., 2009;

Aftab et al., 2011; Luan et al., 2012). AOS can also reduce

oxidative damage and maintain metabolic balance in crops by

activating antioxidant enzymes such as catalase (CAT),

superoxide dismutase (SOD), and peroxidase (POD), which in
02
turn enhance crop resistance to stressful environments (Zhang

et al., 2020). Therefore, AOS application at the right time, at the

right dose, or in the right form can enable the realization of their

potential benefits in plant.

Sugar accumulation in citrus is influenced by leaf

photosynthesis and multiple sucrose-metabolizing enzymes in

the fruit. During fruit development, sucrose in fruit is degraded

by acid convertase (AI), neutral convertase (NI) and sucrose

synthase-catabolic direction (SSc) to form fructose and glucose,

which is then resynthesized to sucrose by sucrose phosphate

synthase (SPS) and sucrose synthase-synthetic direction (SSs)

phosphorylation (Shen et al., 2017). The photosynthetic

products of leaves (source) are the main source of sucrose

accumulation in citrus fruits (reservoir). Chloroplasts in leaf

pulp cells convert carbon dioxide (CO2) to propyl phosphate via

the tricarboxylic acid cycle under light conditions, and propyl

phosphate is transferred from chloroplasts to cytoplasm via

transporter to further synthesize propyl 6-phosphate. While

propanose 6-phosphate and UDP-glucose (UDPG) are

synthesized into sucrose under the catalytic conditions of

sucrose phosphate synthase (SPS) and sucrose phosphorylase

(SPP) and then transported to the fruit (Fu et al., 2011; Chen

et al., 2012; Ruan, 2014). However, maintaining good

photosynthesis requires that the leaves remain in a favorable

environment, which is a challenge in citrus production, as

during citrus development, the plants are often under biotic or

abiotic stress of varying intensity (Sina et al., 2021). Previous

studies have shown that the application of algal oligosaccharides

can improve the light and action capacity and activate the

antioxidant system in crops under conditions such as drought,

salinity, extreme weather or disease (Liu et al., 2009; Kailemia

et al., 2014; Zhang et al., 2020). Rice seedlings also produced

more CAT, POD, and SOD enzymes and exhibited improved

leaf photosynthesis when AOS with an average polymerization

index of 13.9 at 3000 mg mL-1 were applied through spraying

(Qiao and Ouyang, 2013). AOS application promotes crop

photosynthesis and metabolite accumulation by alleviating the

environmental stress on the crop through activation of the

antioxidant system to alleviate unfavorable survival conditions.

In addition, AOS can accelerate growth hormone biosynthesis

and transport in crops by upregulating the expression of growth

hormone-related genes such as OsYUCCA1, OsYUCCA5,
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OsIAA11, and OsPIN1 (Zhang et al., 2014; Zhang et al., 2015).

Therefore, spray application of AOS may be beneficial to fruit

growth and sugar accumulation.

AOS have been shown to have positive effects on crops in

terms of yield promotion and induction of resistance. However,

studies on the effect of AOS in enhancing sugar accumulation

and improving the quality of citrus fruits, as well as the

underlying mechanisms of action, have not been reported.

Therefore, the following hypotheses are proposed: (1) AOS

spray application could increase fruit sugar accumulation and

improve citrus quality, and (2) AOS affect sugar accumulation by

regulating the leaf antioxidant system, increasing the

photosynthetic rate, and promoting sugar transfer from leaves

to fruits. To verify this correlation, the effects of AOS spray

application on the citrus leaf antioxidant system, photosynthesis

and fruit sugar accumulation were investigated through a two-

year field experiment (2020-2021), and the mechanism

underlying the effect of AOS action on citrus fruit sugar

metabolism was preliminarily investigated. This study provides

new insights into the enhancement of sugar production in

citrus fruits.
2 Materials and methods

2.1 Preparation and characterization
of AOS

Referring to our previous study (Yang et al., 2020). Briefly, a

5% (w/v) solution of sodium alginate was prepared with

deionized water, and the alginate lyase AlgSH7 (produced by

the algal-degrading strain Microbacterium sp. SH-1) was added

and allowed to react at 40°C for 24 h. Then, the undegraded

product was precipitated with 4 times the volume of ethanol and

centrifuged, and the supernatant was freeze-dried to prepare the

AOS. The products were qualitatively and quantitatively

analyzed by thin-layer chromatography (TLC), electrospray

ionization–mass spectrometry (ESI–MS, Bruker, Germany)

and high-performance liquid chromatography (HPLC, Agilent

1200, United States). The results are shown in Supplementary

Figure S1. The main components of this AOS product are

oligosaccharide complexes with degrees of polymerization(DP)

2, 3, 4 and 5, percentages of each component are 11.39, 19.25,

40.81 and 23.51%, respectively.
2.2 Experimental site and
experimental design

2.2.1 Field experiment
The experimental orchard was located in Shuikoukan village,

Zhengguo town, Zengcheng District, Guangzhou city,

Guangdong Province, China (N 23°27′36.85″, E 113°49′
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28.48″). The soil properties were as follows: organic matter,

21.90 g kg-1; alkaline decomposed nitrogen, 138.29 mg kg-1;

effective phosphorus, 38.83 mg kg-1; effective potassium, 170.32

mg kg-1; and pH, 6.10. The test citrus trees were 5–7 year–old

“Shatangju” fruit trees. The experiment was set up with three

levels of AOS spray application: 0 mg L-1, 300 mg L-1 and 500 mg

L-1, recorded as CK, 300AOS and 500AOS, respectively. There

were 4 replications and 12 citrus trees in each treatment. Spray

application in 2020 began in mid-July and was performed, once

every 15 days, for a total of 10 spray cycles. Spray application in

2021 began in early August and was performed, once every 15

days, for a total of 8 spray cycles. Each tree was treated with 2 L

of solution per spray. Leaves and fruits of each treatment were

collected for assimilation product and quality determination

during the harvesting period at the orchard (December 10,

2020, and December 5, 2021). In addition, in the 2021

experiment, leaves and fruits were collected at 30-d intervals

starting from the spray application treatments for a total of four

times (recorded as 1 time, 3 times, 5 times and 8 times,

respectively). These samples were used for the detection of leaf

antioxidant enzyme activities, photosynthesis and fruit sugar

fractions, and sample collection and photosynthesis were

performed on the morning of the second day after each AOS

spray application. Specific orchard scenarios, treatments and

collection times are shown in Figure 1 and Supplementary Table

S1. Fruit samples were collected as 24 randomly collected

representative fruits per treatment at each time point, and leaf

samples were collected as functional leaves from around the fruit

for each planned collection. There were three periods of fertilizer

management during fruit tree planting: (1) 5.0 kg/tree basal

fertilizer (1.5 kg of organic fertilizer + 0.2 kg of compound

fertilizer) was applied after the harvest of the previous citrus

season. (2) 0.5 kg/tree compound fertilizer was applied in mid-

April, after the fruit trees had flowered. And (3) 1.0 kg/tree high-

potassium compound fertilizer was applied in mid-August. The

rest of the routine management, such as dosing, pruning, and

insect repellent use, was carried out according to local farming

practices, and the rainfall and temperature conditions are shown

in Supplementary Figure S2.

2.2.2 Leaf reduction experiment
The treatments were set up in 2021 in the above orchard

with two levels of AOS application (0 mg L-1 and 300 mg L-1)

and two levels of leaf reduction (no leaf reduction and 40% leaf

reduction, recorded as 0%LR and 40%LR, respectively), and the

leaf reduction treatments were carried out on two branches of

the same citrus tree selected for comparable fruit volume. The

reduced leaves were the functional leaves around the fruit. There

were 4 replicates of each treatment applied to 12 citrus trees, and

the number and timing of the sprays were the same as in the

2021 field experiment. Citrus fruits of each treatment were

collected at harvest time and used to test the soluble sugar

content and soluble sugar loss rate of the fruits.
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2.3 Determination of fruit flavor quality

The soluble solid content was determined using a digital

glucose meter (TD45, Guangzhou, China). The content of

vitamin C (Vc) was determined using molybdenum blue

colorimetry (Laurentin and Edwards, 2003). The homogenized

juice was titrated with 0.1 mol L-1 NaOH to determine the

concentration of titratable acid (TA) (Wu et al., 2020). The

contents of total soluble sugar and cellulose were determined by

using the phenol-concentrated sulfuric acidmethod and anthrone

colorimetry, respectively (Gao, 2006). The sugar-acid ratio was

calculated as the ratio of total soluble sugar to titratable acidity.
2.4 Analysis of leaf-related indicators

Photosynthesis was measured using a Li–6800 portable

photosynthesis measurement system (Li–6800, LI–COR,

United States) from 9:00 a.m. to 11:00 a.m. The leaves were

selected from the functional leaves around the fruit, and the

environmental conditions were as follow: an air flow rate of 500

mL min-1, a light quantum flux of 10,000 µmol m-2 s (red and

blue light sources), a CO2 concentration of 410 ± 20 µmol mol-1,

and an ambient temperature of 35 ± 5°C. The instantaneous net

photosynthetic rate (Pn), transpiration rate (Tr), stomatal

conductance (Gs) and intercellular CO2 concentration (Ci)

were measured five times for each citrus tree, and the five

measurements was taken (Zhao et al., 2014). The chlorophyll

content was determined by selecting leaves around the fruit in

the frozen sampling phase, cutting 0.5 g of leaves without veins

into 1 mm2 pieces, placing them in a 25 mL volumetric flask,

bring the volume to 25 ml using 80% acetone (v/v), and
Frontiers in Plant Science 04
extracting the samples in the dark for 24 h until the leaves

turned completely white. Absorbance was measured at 664 and

647 nm using a UV-1600 spectrophotometer (UV-1600,

Shimadzu, Japan), and the contents of chlorophyll a (Chl a),

chlorophyll b (Chl b), and total chlorophyll and the chlorophyll

a/b rate were calculated (Ding et al., 2018). The determination of

the soluble protein content of leaves was performed by the

bicinchoninic acid (BCA) method by extracting leaf tissue with

0.05 M phosphate buffer solution (PBS), incubating the

supernatant with BCA reagent at 37°C for 30 min, cooling

the solution to room temperature and reading the absorbance

of the solution at 562 nm (Smith et al., 1985). The soluble sugar

content in the leaves was determined by the sulfuric acid-

anthrone method, where in the leaf tissue was extracted with

80% ethanol, the extract was incubated with sulfuric acid-

anthrone reagent at 90°C for 15 min, and the absorbance of

the solution was measured at 620 nm (Giannakoula et al., 2010).

The starch content was measured by the I2-KI color

development method by homogenizing three 6 mm diameter

leaf discs in 2 mL centrifuge tubes with steel beads, heating them

in boiling water for 10 min, centrifuging them at 2,500 rpm for

2 min, adding 50 µL of I2-KI to the supernatant to colorize the

starch, and measuring the absorbance value at a wavelength of

594 nm (Whitaker et al., 2014).
2.5 Sugar component extraction and
HPLC analysis

Extraction of soluble sugar components: Citrus pulp (2.0 g)

was homogenized in 5 mL of 90% ethanol and centrifuged at

10,000 ×g for 15 min at 4°C to collect the supernatant. This
FIGURE 1

Citrus test site scenario map (A, B), Citrus fruit tree diagram (C).
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procedure was repeated three times, and the collected

supernatant was evaporated in an 80°C water bath and then

diluted to 10 mL with ultrapure water. After the solution was

filtered through a 0.45 mm injection filter, HPLC (Agilent 1200,

United States) was used to determine the concentration of

soluble sugars (fructose, glucose, and sucrose). To determine

the concentrations of sucrose, fructose and glucose, a differential

detector and ZORBAX NH2 column (250 mm× 4.6 mm, 5 µm)

were used. The chromatographic conditions were as follows:

mobile phase, acetonitrile/water (75:25); flow rate, 0.75 mL min-1;

and column temperature, 25°C.
2.6 Analysis of enzyme activities related
to leaf antioxidants

Antioxidant enzymes activity were determined using the

method of Liu et al. (Liu et al., 2018). Extraction of crude enzyme

solution was conducted as follows: 0.5 g of leaves was placed in 5

mL of 50 mmol L-1 phosphate buffer (pH 7.8, containing 1%

polyvinyl pyrrolidone (PVP)). The enzyme solution was

extracted by grinding in an ice bath, homogenized and

centrifuged at 12,000 × g and 4°C for 20 min, and the

supernatant was taken as the crude enzyme extract.

The SOD activity was assayed by measuring its ability to

inhibit the photochemical reduction of nitroblue tetrazolium,

with 50% inhibition of the photochemical reduction of NBT as

one unit of enzyme activity. The CAT activity was measured as

the decline in absorbance at 240 nm due to the decrease of

extinction of H2O2, and a decrease of 0.01 per minute was

defined as one unit of enzyme activity. The POD activity was

measured as the increase in absor-bance at 470 nm due to

guaiacol oxidation, defining an increase in OD of 0.01 per

minute as 1 unit of enzyme activity. The APX activity was

measured by the decrease in absorbance at 290 nm as ASA

was oxidized, measured as the decrease in ASA per minute

(Gong et al., 2014).
2.7 Analysis of enzyme activities related
to sugar metabolism

To extract and determine the AI and NI enzyme activities,

1.0 g of citrus pulp was ground in liquid nitrogen, and then the

powder was homogenized with 8 mL of Tris-HCl extraction

buffer [pH 7.0, containing 5 mmol L-1 MgCl2, 2 mmol L-1

EDTA-Na2, 2% ethylene glycol, 0.2% bovine serum albumin

(BSA), 2% PVP, and 5 mmol L-1 DL-dithiothreitol (DTT)] and

centrifuged at 10,000 ×g for 20 min at 2°C. The supernatant was

collected, placed in a dialysis bag, and dialyzed overnight with a

dialysate (diluted 10-fold with the extraction buffer), and the

dialysate was changed twice during the process. After dialysis,

the enzyme solution was stored at 4°C to obtain the enzyme
Frontiers in Plant Science 05
extract. The AI enzyme activity assay was carried out in a

mixture containing 80 mM sodium citrate buffer (pH 4.5), 100

mM sucrose and enzyme extract. After incubation of this system

for 30 min at 37°C, the reaction was terminated by using 0.03 M

3,5–dinitrosalicylic acid (DNS) at 100°C for 5 min. After cooling,

the absorbance at 540 nm was recorded. The conditions for the

determination of NI activity were similar to those for AI activity

except that 100 mM sodium phosphate buffer (pH 7.5) was used.

The units of AI and NI are expressed as the amount of glucose

produced every hour at pH 4.5 and pH 7.5, respectively (Liu

et al., 2019b).

Extraction and determination of SPS, SSs, and SSc enzyme

activities were conducted as follows: 1.0 g of citrus pulp was

ground in liquid nitrogen and then homogenized with 8 mL of

0.2 M Hepes-NaOH buffer (pH 7.5, containing 5 mM MgCl2,

0.1% b-mercaptoethanol, 0.05% Triton X-100, 0.05% BSA, 2%

crosslinking polyvinylpyrrolidone (PVPP), 1 mM EDTA, 1 mM

EGTA, 10 mM AsA, 10 mM cysteine and 2% glycerol) and

centrifuged at 10,000 × g for 20 min at 2°C. The SPS enzyme

activity assay was carried out in a mixture containing 50 mM

Hepes-NaOH buffer (pH 7.5), 15 mM MgCl2, 1 mM EDTA, 5

mM NaF, 16 mM UDPG, 4 mM fructose-6-phosphate (F-6-P),

20 mM glucose-6-phosphate (G-6-P) and enzyme extract. After

incubation of this system for 30 min at 30°C, the reaction was

terminated with 2 MNaOH at 100°C for 10 min. After cooling, 1

mL of 0.14% anthraquinone was added to the reaction system,

and the system was kept at 40°C for 20 min. Then, the

absorbance at 620 nm was recorded. The SSs enzyme activity

measurement was carried out in a mixture containing 80 mM

Hepes-NaOH buffer (pH 8.5), 5 mM DTT, 5 mM NaF, 15 mM

UDPG, 100 mM fructose and enzyme extract. After incubation

of this system for 30 min at 30°C, the reaction was terminated

with 2 M NaOH at 100°C for 10 min. After cooling, 1 mL of

0.14% anthraquinone was added to the reaction system, and the

system was kept at 40°C for 20 min, and the absorbance at 620

nm was recorded. For SSc enzyme activity measurement, the

reaction mixture containing 80 mM Mes buffer (pH 8.5), 5 mM

NaF, 5 mM UDP, 100 mM sucrose and enzyme extract was

incubated at 30°C for 30 min. The reaction was terminated with

0.03 M DNS at 100°C for 10 min. After cooling, the absorbance

at 540 nm was recorded. SSc activity is expressed as the amount

of glucose produced every minute, whereas SPS and SSs activities

are expressed as the amount of sucrose synthesized per minute

(Zhou et al., 2018; Li et al., 2019).
2.8 Analysis of related genes

Plant total RNA extraction was conducted as follows: total

RNA from citrus leaves and fruits was extracted and purified

using a Spin Column Plant Total RNA Purification Kit (Sangon

Biotech, China). The integrity of the RNA was evaluated by 1%

agarose gel electrophoresis. An Aurora-800 ultramicro
frontiersin.org
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spectrophotometer (Aurora, HIPIE, China) was used for

spectrophotometric analysis, and the concentration and purity

of the extracted RNA were calculated from the A260/A280 ratio.

RNA was transcribed into cDNA using a HiScript III 1st Strand

cDNA Synthes i s Ki t wi th gDNA wiper (R323-01 ,

Vazyme, China).

Detection of relevant genes was performed as follows: five

antioxidant enzyme protein genes (CsFe-SOD, CsMn-SOD, CsCu/

Zn-SOD, CsPOD and CsCAT1), three sucrose synthase-related

genes (CitSPS1, CitSPS2 and SUS) and two sucrose transporter-

related genes (SUC3 and SUC4) were selected from the NCBI

database. The primer sequences are shown in Supplementary

Tables S2, S3. The primers were synthesized by Wuhan Tianyi

Huiyuan Biotechnology Co., Ltd., and then used for qRT‐PCR.

cDNAs were reverse transcribed as templates using an ABI7500

real-time fluorescent quantitative PCR instrument (ABI7500,

Applied Biosystems, United States) and a fluorescent dye (Taq

Pro Universal SYBR qPCR Master Mix, Vazyme, China) by qRT‐

PCR amplification. Three biological replicates were set up for each

sample, and the internal reference gene was Actin. The 2-DDCt

method was used to calculate the relative expression level of the

genes (Livak and Schmittgen, 2001).
2.9 Statistical analysis

The results are expressed as the means ± standard errors

(SE). SPSS Statistics 19.0 software (IBM Corporation, USA) was

used for statistical analysis. Duncan’s test (P < 0.05) was used to

evaluate the treatment effect. Origin 21.0 software (OriginLab

Corp, USA) was used for image production and principal

component analysis.
3 Results

3.1 Effect of AOS on citrus fruit quality

As shown in Figure 2, AOS spray application significantly

improved the quality of citrus fruits at harvest. Compared with

the control, the soluble sugar content of citrus fruits increased by

7.74–11.36% and 9.88–15.79%, respectively (Figure 2B). The

soluble solid content increased by 11.13–15.35% and 9.98–

15.16%, and the fruit sugar-acid ratio was also significantly

increased (Figures 2D, E). Compared to the CK treatment, the

fruit Vc content in the 300AOS treatment increased significantly

in both years, while the fruit Vc content in the 500AOS

treatment increased significantly in 2020 but not in 2021

(Figure 2F). In addition, both the 300AOS and 500AOS

treatments significantly reduced fruit titratable acid and flesh

cellulose contents in both years of the experiment (Figures 2C,

G). This result indicates that spray application of 300-500 mg L-1

AOS can effectively improve the nutritional and taste quality of
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citrus fruits by increasing sugar accumulation and decreasing the

titratable acid and cellulose contents.
3.2 Effect of AOS on the antioxidant
system of citrus leaves

To investigate the effect of AOS spray application on the

antioxidant system of citrus leaves, the activities of leaf

antioxidant enzymes and the expression of related genes were

measured. As shown in Figure 3A, AOS spraying significantly

enhanced the activities of antioxidant enzymes (SOD, POD, and

CAT) during citrus leaf development but had no significant

effect on APX activity. Compared with the control, the leaf of

SOD (30.86–47.91%), POD (43.12–84.95%) and CAT (36.83–

53.55%), enzyme activities increased, respectively, throughout

the treatment period for 300AOS treatment, while the leaf of

SOD (26.63–47.85%), POD (33.94–87.70%) and CAT (25.96–

64.81%) enzyme activities increased for 500AOS treatment.

There was no significant difference in antioxidant enzyme

activities between the two AOS levels (Figures 3A1–A3).

The expression of antioxidant enzyme-related genes in citrus

leaves wasmeasured, and the results are shown in Figure 3B. AOS

spray application mainly affected the expression of the leaf CsFe-

SOD, CsMn-SOD and CsPOD genes, while there was no

significant effect on the expression of the CsCu/Zn-SOD and

CsCAT1 genes. Compared with the control leaves, the

expression of CsFe-SOD, CsMn-SOD and CsPOD in 300AOS-

treated leaves was upregulated 2.11–5.33, 1.83–3.78 and 1.90–3.71

fold, respectively, in the four sampling periods, and the expression

of CsFe-SOD, CsMn-SOD and CsPOD in 500AOS-treated leaves

was upregulated 1.80–5.02, 2.74–4.30 and 1.75–4.42 fold,

respectively (Figures 3B1, B2, B4). However, the expression of

the CsCAT1 gene was significantly upregulated only after the 1st

and 8th AOS spray cycles (Figure 3B5). The expression of these

genes showed a consistent patternwith the changes in antioxidant

enzyme activities, and the peak upregulation of leaf antioxidant

enzyme-related gene expression also occurred mainly after the

3rd and 5th AOS treatments. This result indicates that AOS spray

application can rapidly induce the activation of the leaf

antioxidant system and increase antioxidant enzyme activity,

which may help optimize the survival environment of the leaves.
3.3 Effect of AOS on photosynthesis in
citrus leaves

As shown in Figure 4, compared with the control, the Pn in

citrus leaves with 300AOS and 500AOSdid not change significantly

after the 1st spraying but increased by 32.75–68.32% and 22.32–

62.68% from the 3rd spraying, respectively. TheTr of leaves also did

not change significantly after the 1st AOS spraying and decreased

by 12.25–23.73% and 9.17–18.46%, respectively, from the 3rd AOS
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spraying (Figures 4A, B). In addition, AOS spray application

significantly reduced the Gs of leaves only at 3rd spray. AOS

spraying had no significant effect on leaf Ci (Figure 4D). The

effect of AOS spray application on leaf photosynthesis was not

immediate, and there was no significant difference between the two

AOS concentrations, indicating that leaf photosynthesis did not

increase with the increasing AOS concentration.
3.4 Effect of AOS on leaf
assimilation products

Leaves are the main source of fruit sugars, and AOS spray

application facilitated the accumulation of leaf assimilation

products. As shown in Table 1, compared with the control,

both the 300AOS and 500AOS treatments significantly increased
Frontiers in Plant Science 07
the total chlorophyll and Chl a levels in citrus leaves at harvest,

and 300AOS was also significantly higher than the 500AOS

treatment. In addition, compared with the control, the leaf of

soluble sugar (12.96%), protein (14.41%) and starch (10.98%)

contents increased, respectively, throughout the treatment

period for 300AOS treatment, while the leaf of soluble sugar

(8.43%), protein (8.73%) and starch (9.33%) contents increased

for 500AOS treatment, but there was no significant difference

between the two AOS treatments (Table 1).
3.5 Effect of AOS on sugar metabolism in
citrus fruits

The main components of soluble sugars in citrus fruits are

sucrose, fructose and glucose, of which sucrose is the main factor
D

A

B

E F G

C

FIGURE 2

Effect of AOS on citrus fruit quality. Citrus fruit phenogram (A), total soluble sugar content (B), titratable acid content (C), sugar to acid ratio
(D), soluble solids content (E), Vc content (F) and cellulose content (G). Different lowercase letters indicate significant differences among the
treatments, based on the Duncan test (p < 0.05, n = 4).
frontiersin.org

https://doi.org/10.3389/fpls.2022.1108848
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2022.1108848
affecting citrus sweetness and is the main type of sugar

accumulated in citrus fruits. As shown in Figure 5A, AOS

spraying significantly increased the contents of sucrose,

fructose and glucose in fruits. Compared with the control, the

sucrose, fructose and glucose contents of both the 300AOS and

500AOS treatments were not significantly different after the 1st

spraying. The sucrose content increased by 26.18–35.70% and

23.65–31.57%, the fructose content increased by 14.07–39.56%

and 16.16–42.00%, and the glucose content increased by 25.26–

36.23% and 27.44–39.97% in the 300AOS and 500AOS

treatments, respectively, starting after the 3rd spraying. The

incremental impact of AOS application on sucrose content

was higher at the end of fruit development, while the

incremental impact on fructose and glucose occurred mainly
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at the early stage of fruit development, which might be related to

the pattern of sugar accumulation in citrus fruits themselves.

Sucrose–related metabolic enzyme activities were measured

during the accumulation of sugar in fruits (Figure 5B). AOS

application was found to significantly increase the activity of

sucrose synthesis-related enzymes. Compared to the control,

there were no significant differences in the activities of both SPS

and SSs after the 1st spraying in the 300 AOS and 500 AOS

treatments, but between the 3rd AOS spraying cycle and the 8th

spraying cycle, the activities of SPS increased significantly by

34.94–53.29% and 43.34–55.46%, while the activities of SSs

increased significantly by 34.61– 40.78% and 34.93–45.18%,

respectively (Figures 5B1, B2). In addition, the activity of SSc

in the 300AOS treatment increased significantly only from the
A

B

FIGURE 3

Effect of AOS treatment on the antioxidant system of citrus leaves. Antioxidant enzyme activity (A), the expression of antioxidant enzyme-related
genes (B). Different lowercase letters indicate significant differences among the treatments, based on the Duncan test (p < 0.05, n = 4).
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5th spraying cycle to the 8th spraying cycle, and the activities of

AI and NI enzymes increased significantly only in the samples at

the 3rd spraying cycle. While the activity of SSc in the 500AOS

treatment also started to increase significantly from the 5th

spraying cycle to the 8th spraying cycle, the activity of NI only

increased significantly in the samples at the 3rd spraying cycle,

while there was no significant effect on AI (Figures 5B3–B5). The

pattern of the effect of AOS treatment on the activities of

enzymes related to sucrose metabolism was consistent with the

changes in sugar fractions.

The expression of sucrose synthase-related metabolic and

transport genes was further examined in the fruit. As shown in

Figure 5C, compared with the control, there were no significant

differences in the expression of sucrose metabolism-related

genes (CitSPS1, CitSPS2 and SUS) in both the 300AOS and

500AOS treatments after the 1st spraying. The expression of the
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CitSPS1, CitSPS2 and SUS genes was significantly upregulated

starting after the 3rd spray cycle, and all of those genes exhibited

the highest fold upregulation of expression after the 5th spray

cycle (Figures 5C1–C3). Compared to the control, AOS

treatment also significantly upregulated the expression of the

sucrose transporter genes SUC3 and SUC4 after the 3rd spray

cycle, and the expression of all sucrose transporter-related genes

also peaked after the 5th spray cycle (Figures 5C4, C5).
3.6 Effect of AOS on sugar accumulation
in citrus under reduced leaf conditions

To determine whether there was a facilitative effect of AOS

treatment on the transport of assimilated products from leaves

to fruits, the content and rate of loss of soluble sugars in fruits
D

A B

C

FIGURE 4

Effect of AOS treatment on photosynthesis in citrus leaves. Net photosynthetic rate (A), transpiration (B), stomatal conductance (C) and
intercellular CO2 concentration (D). Different lowercase letters indicate significant differences among the treatments, based on the Duncan test
(p < 0.05, n = 4).
TABLE 1 Effect of AOS on assimilation products of citrus leaves.

Treatments Total Chl
(mg g-1)

Chl a
(mg g-1)

Chl b
(mg g-1) Chl a/b Soluble sugar

(mg g-1)
Protein
(mg g-1)

Starch
(mg g-1)

CK 1.04 ± 0.01c 0.81 ± 0.02c 0.23 ± 0.02a 3.57 ± 0.32b 23.84 ± 0.64b 2.29 ± 0.08b 46.53 ± 1.22b

300AOS 1.38 ± 0.03a 1.13 ± 0.03a 0.25 ± 0.08a 5.09 ± 0.34a 26.93 ± 0.72a 2.62 ± 0.06a 51.64 ± 1.27a

500AOS 1.25 ± 0.01b 1.05 ± 0.03b 0.21 ± 0.05a 4.92 ± 0.58a 25.85 ± 0.55a 2.49 ± 0.04a 50.87 ± 2.20a
f

Letters behind the values in the same column indicate significant difference at different treatments, p < 0.05.
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under 40% leaf reduction were examined (Figure 6). Under both

reduced and nonreduced leaf conditions, the fruit soluble sugar

content was significantly higher in the 300AOS treatment than

in the control treatment (Figure 6A). However, under reduced

leaf conditions, the fruit soluble sugar loss rate was 14.1% for

water spray application, which was lower than the fruit soluble
Frontiers in Plant Science 10
sugar loss rate of 18.18% for the AOS treatment (Figure 6B). The

leaves around the citrus fruit played a key role in soluble sugar

accumulation in the fruit, and the loss of 40% leaves in the AOS

treatment resulted in a higher rate in the soluble sugar loss,

indicating that AOS treatment had a facilitative effect on the

transport of assimilated products from the leaves.
A

B

C

FIGURE 5

Effect of AOS treatment on sugar metabolism in citrus fruits. Sucrose, fructose, and glucose contents (A), sucrose-related metabolic enzyme
activities (B), the expression of sucrose metabolism and transporter related genes (C). Different lowercase letters indicate significant differences
among the treatments, based on the Duncan test (p < 0.05, n = 4).
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3.7 Principal component analysis of AOS
on citrus leaf and fruit-related indicators

All 26 leaf antioxidant, photosynthesis and fruit sugar

metabolism-related index traits were grouped into two

principal components (PC1 and PC2), explaining 60.0% of the

total data variance. Most of the examined traits were

distinguished by PC1, which was explained by a relatively

large proportion of the variance (39.9%), while a lower

proportion of the variance (20.1%) was indicated by PC2

(Figure 7). The concentration distribution showed that the

AOS treatments and the control were almost completely

separated from each other, indicating a relatively pronounced

positive effect of AOS application on citrus indicator

characteristics, but increasing the AOS concentration had little

effect (Figure 7A). As shown in Figure 7B, the loaded indicators

could be divided into three main categories, namely, the

relationship between the leaf antioxidant system and

photosynthesis, the relationship between fruit sugar

accumulation and sugar metabolism, and the relationship

between photosynthesis and fruit sugar metabolism. The

relationship between both leaf antioxidant enzymes and

related genes was at an acute angle to the net photosynthetic

rate, the fruit soluble sugar fraction was at an acute angle to

sucrose synthase and its related genes, and the net

photosynthetic rate was also at an acute angle to fruit sucrose

synthase (SPS, SSs) and fruit sucrose transport-related genes

(Figure 7B). There was a significant positive correlation between

photosynthesis and the leaf antioxidant system, and the

accumulation of fruit sugars was mainly influenced by sucrose-

related synthase and its gene expression, but photosynthesis also

favored fruit sucrose transport and fruit sucrose synthase activity

and related gene expression.
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4 Discussion

4.1 Effect of AOS spray application on
citrus fruit quality

AOS are important components of seaweed extracts with

various biological activities and have great potential for

application in agricultural production, especially in promoting

crop growth, increasing yield, improving quality, and enhancing

crop resistance (Zhang et al., 2020). For example, AOS can

increase the levels of soluble sugars and soluble proteins in wheat

leaves and improve the quality of wheat (Xu et al., 2003).

Treatment of postharvest strawberries and kiwis with AOS

maintained fruit hardness and soluble solid, organic acid,

soluble sugar, and vitamin C contents (Bose et al., 2020;

Liu et al., 2020). AOS spray application also increased the

effective spike number and grain number of rice and increased

rice yield (Zhang et al., 2014). However, relatively few studies

have examined the effects of AOS application on citrus fruit

quality. In the present study, the results of two years offield trials

showed that AOS spray application (300 and 500 mg L-1)

increased citrus fruit soluble solid content and Vc content,

improved the soluble sugar and sugar-acid ratio, and reduced

the levels of titratable acid and cellulose, thus improving the

nutritional and flavor quality of citrus. This result may be related

to the degree of aggregation of AOS. Iwasaki et al. demonstrated

that AOS with DP 2-6 had the strongest promotion effect on root

elongation in lettuce (Iwasaki and Matsubara, 2000). Zhang et al.

(2013). found that AOS with DP 2-4 could induce root

development in wheat. In contrast, the AOS prepared in this

study had a DP range of 2-5 (Supplementary Figure S1),

suggesting that these AOS may affect quality and sugar

accumulation by promoting crop growth. In addition, some
A B

FIGURE 6

Effect of AOS on soluble sugars in citrus fruits under reduced leaf conditions. Total soluble sugar content (A), Total soluble sugar loss rate
(B). Different lowercase letters indicate significant differences among the treatments, based on the Duncan test (p < 0.05, n = 4).
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studies pointed out that AOS could enhance the uptake and

utilization of elements by crops, which might help improve fruit

quality. For example, increased levels of elements such as

phosphorus (P) and potassium (K) promote fruit sugar and

acid accumulation (Wu et al., 2021a; Wu et al., 2021b), and an

increase in the levels of some elements could be essential for fruit

photosynthesis, respiration, energy metabolism, and cell

structure (Marschner, 2012).
4.2 Effect of AOS spray application on
the antioxidant system and
photosynthesis in citrus fruits

Soluble sugars are the main photosynthetic product of plants

and the main form of carbohydrate metabolism and storage, and

their accumulation in fruits is regulated by leaf photosynthesis

and related enzymes. Jover et al. (2012). showed that high

photosynthetic performance leads to high photosynthetic

assimilate translocation from leaves to roots in New Holland

orange, which facilitates the accumulation of sucrose and starch

in the root system. Similar to plant growth regulators, previous

studies have also confirmed that AOS can enhance

photosynthesis and maintain crop growth in cucumber

seedlings and cabbage under stress conditions (Qiao and

Ouyang, 2013; Li et al., 2018). Liu et al. (2013). also suggested

that AOS at different polymerization levels may promote root

growth in wheat seedlings by stimulating photosynthesis, a

process that also induces the expression of growth hormone-

related enzymes and genes in the root system. In this study, no

significant changes in leaf photosynthesis were observed after the

1st AOS spray cycle, while enhanced photosynthesis was
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detected after the third AOS spray cycle. AOS application

significantly increased the Pn in leaves and decreased the Tr,

which may be related to the fact that AOS activated the

antioxidant system and improved the survival environment of

leaves. After entering the plant, oligosaccharides can interact

with cells as signaling molecules or act as inducers to regulate the

growth pattern of plants and effectively regulate physiological

activities related to the antioxidant system, photosynthesis and

nutrient uptake, triggering the synthesis of different enzymes

and activating various responses via changes in gene expression

(Albersheim and Darvill, 1985; Ma et al., 2010). The antioxidant

capacity of leaves is required not only to cope with oxidative

damage caused by abiotic stress but also to maintain the

photosynthetic capacity of plant leaves, and maintaining a

high level of antioxidant capacity ensures that leaves maintain

normal levels of carbohydrate production under altered

environmental conditions (Liu et al., 2014). The intensity of

photosynthesis in plants has a significant effect on the

carbohydrate content in the plant body. Studies have also

confirmed that photosynthesis affects the area of the leaf to

varying degrees and has an impact on photosynthetic properties

such as photosynthetic rate and carbon fixation (Fu et al., 2017;

Overbeck et al., 2018). Leaf cell structural features also respond

to the intensity of photosynthesis; for example, the thickness of

fenestrations and spongy thin-walled tissues changes with light

intensity (Ajmi et al., 2018). AOS have been shown to be effective

in inducing antioxidant activity. The results of this study showed

that the effect of AOS application on the leaf antioxidant system

was more sensitive than that on photosynthesis. The antioxidant

enzyme system of leaves was activated rapidly after the 1st AOS

spray cycle, the activities of SOD, POD, and CAT were

significantly increased, and the expression of genes related to
A B

FIGURE 7

Principal component analysis of relevant indicators of leaf antioxidant system, photosynthesis and fruit sugar metabolism. The relationship between
the scores of principal component analysis of related indicators and the amount of AOS applied (A), principal component loading plot (B).
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antioxidant enzymes, such as CsFe-SOD, CsMn-SOD, and

CsPOD, was significantly upregulated. This result may be

related to the antioxidant capacity of AOS and the stress

caused formed by the higher daily temperature in the orchard

(Supplementary Figure S2). Available literature reports indicate

that a class of biostimulants, such as luteolin and zeaxanthin,

have a strong antioxidant capacity and can effectively inhibit the

activity of oxygen radicals, which can effectively reduce damage

to cellular structures caused by oxygen radicals during abiotic

stresses (Jahns and Holzwarth, 2012). Falkeborg et al. (2014).

also showed that enzymatically cleaved AOS can inhibit 100% of

lipid oxidation and scavenge reactive oxygen species that cause

damage. In this study, AOS spray application significantly

increased the chlorophyll content of leaves, as well as the

accumulation of carbohydrates such as soluble sugars and

starch. Therefore, it can be inferred that AOS may facilitate

the activation of the antioxidant system, optimize the survival

environment of leaves, improve photosynthesis in the leaves, and

thus promote the accumulation of assimilated products,

providing a basis for the subsequent accumulation of sugars by

the bank tissue, as similarly reported in the study of Antonietta

et al. (Antonietta et al., 2017).
4.3 Effect of AOS spray application on
sugar metabolism in citrus fruits

Sucrose, fructose and glucose are the major soluble sugar

components in citrus, and the breakdown of sucrose plays an

important role in regulating the accumulation of soluble sugars,

which determines the sweetness of citrus fruits (Qiao et al., 2017). In

citrus, sucrose is synthesized from the source leaves, transported

through the bast and distributed to the depot tissue organs, and

subsequently metabolized to fructose and glucose via AI and NI or

to fructose and UDP-glucose in the fruits via SSc (Martinoia et al.,

2012; Shen et al., 2017). This process leads to differences in sucrose

concentrations between fruit and siliques, driving sucrose

unloading in the tissues and thus promoting sucrose, fructose

and glucose accumulation (Wind et al., 2010). The results of this

study showed that AOS treatment significantly increased the levels

of sucrose, fructose and glucose in fruits starting after the 3rd AOS

spray cycle, which was related to the activity of enzymes and gene

expression related to sugar metabolism. Katz et al. (2011). showed

that sucrose accumulation in citrus fruits mainly originates from

photosynthesis of leaves and fruit metabolism during the

reproductive period, and this process is mainly influenced by

sucrose-related metabolic enzymes (SSc, SSs, SPS) and

translocases (AI, NI). Studies on Wenzhou honey tangerine

showed that fruit sugar accumulation was consistent with SPS

activity and was enhanced with the upregulation in the expression

of two members of the SPS family, CitSPS1 and CitSPS2. However,

there was no significant relationship between sucrose storage and

SPS activity in peach fruit (Komatsu, 2002; Vizzotto et al. al., 2010).
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Other genetic studies have also shown that sucrose-metabolizing

enzymes play an important role in fruit sugar accumulation. For

example, sucrose unloading capacity is reduced in young tomato

fruit harboring an antisense sucrose synthase gene, while sucrose

content is increased in melon fruits harboring an antisense acid

convertase gene (Yu et al., 2008). In the present study, the enzyme

activities of SPS and SSs related to sucrose synthesis showed a trend

of increasing and then stabilizing throughout the reproductive

period, while the enzyme activities of SSc, AI, and NI related to

sucrose catabolism showed a gradual decrease, which was

consistent with the results of previous studies (Wang et al., 2001).

The measured enzyme activities and sucrose synthase gene

expression levels were consistent with the change pattern of the

sugar content. The activities of fruit sucrose synthases (SPS, SSs)

were significantly increased starting after the 3rd AOS spray cycle,

and the expression of the CitSPS1, CitSPS2, and SUS genes, related

to sucrose synthases, was significantly upregulated. During fruit

development, changes in sucrose metabolizing enzyme activities

generally coincide with the accumulation of their transcriptional

products (Braun et al., 2014). Thus, the promotion of sugar

accumulation by AOS can likely be attributed to the

enhancement of leaf photosynthesis during development and the

correlation between AOS-triggered fruit sucrose synthase activity

and activation of sugar metabolism-related gene expression, which

was also confirmed in the principal component analysis (Figure 7).

In addition, AOS treatment upregulated the expression of the

sucrose transporter genes SUC3 and SUC4 (Figure 5C). The

results of the leaf reduction experiments also showed that the

reduction in fruit functional leaves in the AOS spray treatment

increased the rate of fruit soluble sugar loss (Figure 6), indicating

that AOS not only promoted the accumulation of leaf assimilation

products but also played an active role in the transport of sucrose to

the fruit, which is an interesting phenomenon that still needs to be

further investigated.
5 Conclusion

In summary, 300-500 mg L-1 AOS application improved

fruit quality and promoted sugar accumulation by regulating the

following biological processes in citrus trees: (1) AOS application

regulated the antioxidant system of citrus leaves. Specifically, the

activities of antioxidant enzymes such as SOD, POD and CAT

were increased, and the expression of antioxidant-related genes

such as CsFe-SOD, CsMn-SOD and CsPOD was significantly

upregulated, in leaves from the first AOS spraying. (2) The

activation of the antioxidant system helped the leaves maintain

good photosynthetic performance and improve the

accumulation of assimilated products. Starting after the 3rd

AOS spray cycle, the Pn of leaves increased significantly, and

the content of leaf carbohydrates increased significantly at

harvest. (3) AOS application promoted sugar metabolism and

translocation in fruits. Starting from the 3rd AOS spray cycle,
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the sucrose, fructose and glucose contents were significantly

increased, the activities of fruit sucrose synthases (SPS, SSs) were

significantly increased, and the expression of sucrose synthase-

related genes (CitSPS1, CitSPS2, SUS) and sucrose transporter-

related genes (SUC3, SUC4) was significantly upregulated.

Overall, this study found that AOS spray application may

improve fruit sugar accumulation and quality by regulating the

leaf antioxidant system, increasing the photosynthetic rate and

assimilating product accumulation, and promoting sugar

transfer from leaves to fruits. This study provides new insights

into the quality improvement production of citrus fruits and the

diversified utilization of marine oligosaccharide resources.
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