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Deep mowing rather than
fire restrains grassland
Miscanthus growth via affecting
soil nutrient loss and microbial
community redistribution

Zhuxin Mao1, Yuchao Wang1, Qian Li1, Weimin Li1, Hong Wang1,
Yang Li1 and Ming Yue1,2*

1Xi’an Botanical Garden of Shaanxi Province/Institute of Botany of Shaanxi Province, Xi’an, China,
2Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University,
Xi’an, China
Fire and mowing are crucial drivers of grass growth. However, their effects on soil

properties, microbial communities, and plant productivity in dry-alkaline

grasslands have not been well investigated. This study evaluated the effects of

mowing (slightly and deeply) and fire on vegetation traits (Tiller number per cluster

and plant height) and biomass (plant dry weight), and soil availability of N, P, and K,

as well as soil microorganism abundance in aMiscanthus system. We designed one

control and three experimental grass plots (slightly and deeply mowed, and

burned) in 2020–2021 in the Xi’an Botanical Garden of Shaanxi Province, Xi’an,

China. Tiller number, plant height per cluster, and soil N, P, and K availability during

Miscanthus growth decreased significantly (p < 0.05) in all treatments compared to

the control. However, this effect was much greater in the deep-mowing plot than

in the other plots. After harvest, deep mowing induced the greatest effect on

biomass among all treatments, as it induced a 5.2-fold decrease in dry biomass

relative to the control. In addition, both fire and mowing slightly redistributed the

community and diversity of the soil bacteria and fungi. This redistribution was

significantly greater in the deep-mowing plot than in other plots. In particular,

relative to the control, deep mowing increased the abundance of Firmicutes and

especially Proteobacteria among soil bacterial communities, but significantly (p <

0.05) decreased Basidiomycota and increased Ascomycota abundance among soil

fungal communities. We conclude that nutrient limitation (N, P, and K) is crucial for

Miscanthus growth in both mowing and fire grasslands, whereas deepmowing can

induce soil nutrient loss and microorganism redistribution, further restraining grass

sustainability in dry-alkaline grasslands.
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1 Introduction

Grassland covers a large area of the planet, accounting for 24% of

the global vegetative land area (Ren et al., 2008). In China, the total

area is approximately 400 million hectare, contributing more than

40% of the total land area (Zhao and Li, 2018). Despite their

importance, grasslands face a high threat, as they have been rapidly

declining in the past decades due to biodiversity loss (Carbutt et al.,

2017; Wang et al., 2020a). Both the dynamics and diversity of

grassland ecosystems are easily affected by natural and artificial

disturbances such as fire, grazing, and mowing (Loram-Lourenco

et al., 2020; Vermeire et al., 2020; Slette et al., 2021; Qin et al., 2022).

These disturbances alter the plant community structure and

ecosystem function of grasslands as they are managed at

inappropriate scales, intensities, and frequency levels, thereby

leading to their degradation (Lu et al., 2012; Zhang et al., 2020). In

the past decade, prescribed burning and mowing have become

important tools for managing and restoring grassland ecosystems in

China (Lu et al., 2012; Zhu et al., 2021), even though they significantly

impact grasslands’ soil properties, plant growth, and nutrient cycles

(Dowhower et al., 2021), further disturbing various ecological

processes, such as herbivory and litter decomposition (Lu et al.,

2012; Bai and Cotrufo, 2022). Few studies have investigated the

effects of fire and mowing on the microbial community structure in

grassland ecosystems, despite the fact that microorganisms play key

roles in regulating the nutrient cycle and carbon fixation (Zhao et al.,

2020; Bai and Cotrufo, 2022).

Prescribed burning is a major strategy used worldwide to manage

grassland ecosystems, as it directly drives the use of natural resources,

such as water, light, and nutrients, by native plants (Fidelis et al., 2012;

Gordijn and O'Connor, 2021). Plant physiological processes that

require water, energy, and nutrients are altered by prescribed

burning (Lu et al., 2012; Boughton et al., 2013), and plant nutrition

is a key feature affected by the fire in grasslands (Fultz et al., 2016).

Reinhart et al. (2016) reported that nutrient concentrations (N and P)

were much higher in burned soils than in the control soils. Variations

in the nutrient cycle in response to prescribed burning may result in

changes in the primary productivity of grasslands (Fidelis et al., 2012).

Furthermore, previous studies have focused on the effect of fire on

plant diversity and soil nutrients, whereas its effects on microbial

community structure in grasslands are still not well investigated (Lu

et al., 2012; Wragg et al., 2018; Vermeire et al., 2020). Soil

microorganisms have greater potential to affect nutrient mobility.

They may also compete with plants for the same limiting nutrients in

grasslands (Bing et al., 2016; Yang et al., 2020a; Bonanomi et al.,

2022). Predicting the complex response of biodiversity to fire

disturbance are also dependent on the microbial and functional

groups in soils (Farnsworth et al., 2014). Thus, a better

understanding of the relationships among plant growth, soil

nutrients, and microbial communities under the prescribed burning

treatment is needed to provide a context for the sustainable

development of grassland ecosystems (Gordijn and O'Connor, 2021).

Mowing, the mechanical removal of vegetation, is considered an

effective management practice in grasslands, which has characteristics

similar to those of prescribed burning (Vermeire et al., 2020; Török

et al., 2021). Compared with fire, mowing requires less planning and
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presents low ecological risk (Fidelis et al., 2012). Another benefit is

that mowing increases plant diversity in grassland ecosystems by

promoting aboveground conditions, besides preserving the high

conservation value of grassland ecosystems (Fidelis et al., 2012;

Vermeire et al., 2020). Therefore, mowing may be an attractive

alternative to prescribed burning for vegetation management.

However, plant productivity and soil nutrients are key factors that

potentially limit the response of ecosystems to mowing (Chen et al.,

2021). Yang et al. (2020b) found that mowing had no significant

influence on soil nutrient concentrations; however, plant N and P

content were increased by mowing. Soil microorganisms can

participate in the biogeochemical cycles of various nutrients (N and

P) in grassland ecosystems (Bing et al., 2016; Wang et al., 2020b;

Wilcox et al., 2022). However, the potential influence of mowing on

the microbial community in grasslands is not well understood.

Miscanthus, a perennial herb widely distributed in western China,

is the main forage in summer grasslands and forest steppes. It plays a

crucial role in sustaining the ecosystem functions of grasslands. The

goal of this study was to evaluate the effects of prescribed burning and

mowing on plant growth, soil properties, and microbial communities

in grassland ecosystems. The specific aims were to 1) assess their

effects on plant growth and soil properties, 2) further indicate their

effects on microbial communities (bacteria and fungi), and 3) analyze

the internal relations of plant biomass, soil properties, and

microbial community.

2 Materials and methods

2.1 Experimental site

The experimental site is located in Xi’an Botanical Garden of

Shaanxi Province (34°21′ N, 109°03′ E), Xi’an, China. This study site
is characterized by rainy summer and snowy winter. The annual

mean temperature was 14.1°C, and the monthly mean temperature

ranged from 4.1°C in January to 30.2°C in July. The annual mean

precipitation is 709 mm, with 59% of the rainfall occurring from July

to October. The area covered by Miscanthus grass was 1650 m2.
2.2 Experimental design and sampling

At the end of 2020, the selected Miscanthus growing area at four

years-old was divided into four plots of 10 × 10 m2, each threat of

which had three replicates. As being illustrated in (Figure 1A), these

plots were treated as follows: without any practices as a control (CK),

with 5-cm stubble height by mowing (SH5), with 20-cm stubble

height by mowing (SH20), and burned in situ (BG). All the treatments

were performed under natural conditions.

In 2021, all four treatments during Miscanthus growth were

measured both the number of buds and plant heights in February,

May, August, and November, respectively. At the end of November,

we harvested all four treatments to determine their respective

aboveground biomass, while there were left the stubble with a 2cm-

height. The plant samples were collected by hand mowing during a

vigorous growth period. Plant samples were collected by hand during

the vigorous growth period, and then taken to the laboratory for oven
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drying (65°C for 24 h) to determine the dry plant biomass. After

removing the upper litter in each of the four treatments, we collected

five soil subsamples using a drill to mix one sample, and four samples

were taken randomly from each treatment (total of 16 samples in the

four treatments). All soil samples were sieved through a 2-mm mesh,

transported back to the laboratory, and then divided into two

subsamples: one was stored at –80°C for the analysis of soil

microbial diversity, and the other was stored at 4°C to measure soil

properties. After removing stones and plant and animal debris, the

soil samples were dried and weighed to obtain the dry weight of each

pot. The air-dried soil samples were ground, passed through a 100-

mesh (0.15 mm) nylon screen, and stored in the dark at a low

temperature for soil physicochemical analysis.
2.3 Plant traits

In 2021, the following plant traits of all four treatments during

Miscanthus growth in February, May, August, and November were

measured: tiller number per cluster and plant height per cluster. Each

trait was replicated five times for each treatment.
2.4 Determinations of soil physical-
chemical properties

Soil pH was measured with a pH meter in a 1:2.5 (m:v) soil-to-

water extract using the potentiometric method. The total soil organic

carbon (SOC) was determined using the potassium dichromate

oxidation heating method. Total nitrogen (TN) was determined by

microwave digestion and the Kjeldahl method. Total phosphorus

(TP) and total potassium (TK) were determined by the sodium
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hydroxide melt-molybdenum antimony colorimetric method and

the sodium hydroxide melt-flame photometry method, respectively.

The measurement of soil available nutrients was performed following

Lu (2000), i.e., alkali-hydrolyzed nitrogen (AN), available phosphorus

(AP), and available potassium (AK) were measured using the alkali

solution diffusion method, the spectrophotometric colorimetry

method (Olsen, 1954), and flame photometry, respectively.
2.5 Extraction, amplification, and
sequencing of soil sample DNA

Following the manufacturer’s instructions, microbial DNA was

extracted from soil samples (0.5 g) in triplicate using the E.Z.N.A.®

soil DNA Kit (Omega Bio-tek, Norcross, GA, U.S.). An ABI GeneAmp®

9700 polymerase chain reaction (PCR) thermocycler (ABI, CA, USA)

(Yusoff et al., 2013) was used to amplify the V4-V5 region of bacterial 16S

rRNA genes with primer pairs 515F (5’-GTGCCAGCMGCCGCGG-3’)

and 907R (5’-CCGTCAATTCMTTTRAGTTT-3’). The PCRs were

performed in a 20-mL reaction with the mixtures of 5 × TransStart

FastPfu buffer (4 mL), 2.5 mM dNTPs (2 mL), 5 mM primer (0.8 mL),
TransStart FastPfu DNA polymerase (0.4 mL), template DNA (10 ng),

and double-distilled water (10 mL). The PCR thermal cycling program

was as follows: initial denaturation (95°C, 3 min), followed by 27 cycles at

95°C (30 s), 55°C (30 s), and 72°C (45 s), a final extension at 72°C

(10 min), and ending at 4°C. The PCR products were isolated using

agarose gel (2%), purified by AxyPrep DNA Gel Extraction Kit (Axygen

Biosciences, Union City, CA, USA), and then quantified by Quantus™

Fluorometer (Promega, USA). Finally, the NCBI short-read archive with

Bioproject ID (PRJNA765434) was used to deposit raw

amplicon sequences.
FIGURE 1

Concept map of experimental design with four treatments of control (CK), slightly (SH5) and deeply mowed (SH20), and burned grass plot (BG) (A), and
their effects on traits of Miscanthus with the growth period: Tiller number per cluster (B), Plant height with different treatments (C), and Miscanthus
biomass (dry weight per cluster) after harvest (D). Within each subgraph according to Tukey’s mean separation test, values with the same lower case
presents a non-significant difference (p= 0.05), while different lower-case letters show a significant (p < 0.05) difference.
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Following the method described by Adams et al. (2013), ITS1F

(5′-CTTGGTCATTTAGAGGAAGTAA-3′) and ITS2 (5′-GCTGCG
TTCATCGATGC-3′) primers were used to amplify the fungal ITS1

region. PCR was performed as described for the bacterial 16S rRNA

gene amplification. Equal amounts of purified amplicons with paired-

end sequencing (2 × 300 bp) were carried out using standard

protocols (Majorbio Bio-Pharm Technology Co. Ltd., Shanghai) on

the Illumina MiSeq platform (Illumina). Raw reads were deposited

into the NCBI Sequence Read Archive (SRA) database.
2.6 Bioinformatic analyses

Following the method of Magoč and Salzberg (2011), the Illumina

sequencing data were analyzed using Flash with the option max-

overlap 200, while the unassembled sequences were removed. FASTQ

files were generated and implemented in QIIME 1.9.1, as described by

Caporaso et al. (2010). Bacterial sequences were searched against the

Ribosomal Database Project Classifier to identify and discard

chimeric sequences (Schloss et al., 2009). Operational taxonomic

units (OTUs) with 97% similarity cutoff were clustered using

UPARSE (version 7.1), and the taxonomy of each OTU

representative sequence was analyzed against the 16S rRNA

database (Silva) using a confidence threshold of 0.7. Fungal ITS

sequences were assigned to taxa by using a naive Bayesian classifier

(Abarenkov et al., 2010). OTUs with 97% similarity cutoff were

clustered following previous studies (Caporaso et al., 2010; Edgar,

2013). OTUs of the bacterial and fungal datasets with low abundance

were filtered and discarded following the OTU table (Brown et al.,

2015; Oliver et al., 2015). Alpha diversity of bacterial and fungal

communities (i.e., OTU richness, Sobs, Shannon’s diversity index,

Shannon and Shannon’s evenness index, Shannon-even) were

calculated using the method described by Schloss et al. (2009).
2.7 Data analysis

A one-way analysis of variance (ANOVA) followed by Tukey’s

post hoc test (p < 0.05) was used to test the effects of treatments on

plant traits, soil properties, and soil microbial community

composition. Before statistical analyses, all data were tested for both

variance homogeneity and distribution normality, and log-

transformation analysis was used when necessary.

Non-metric multidimensional scaling (NMDS) was used to

visualize differences in microbial community composition among

treatments using the Bray-Curtis dissimilarity matrix. Based on the

Bray-Curtis distance matrixes with 9999 permutations (with the

Adonis function), permutational multivariate analysis of variance

(PERMANOVA) was carried out to test the respective effects of

treatments on the soil microbial communities. Redundancy analysis

(RDA) and the heatmap function were used to visualize the

correlations between plant traits, soil properties, and microbial

community composition. In addition, relationships between

microbial alpha diversity, soil properties, and plant traits were

determined using Pearson correlation analysis. All analyses were

performed using R version 3.6.2.
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3 Results

3.1 Variations of Miscanthus traits with
four treatments

The variation in the selected Miscanthus traits with four

treatments over time is shown in Figure 1. In all treatments, both

tiller number per cluster and plant height showed a natural increasing

trend with Miscanthus growth (Figures 1B, C). However, the tiller

number per cluster ofMiscanthus in the mowed plot and burned plot

was altered and significantly (p < 0.05) less than that of the control at

the end of growth. Plant height in both the mowed and burned plots

was lower than that of the control at the end of Miscanthus growth,

but not significantly. After harvest, the dry plant weight per cluster in

both the mowed and burned plots was significantly lower than that of

the control. In particular, the dry weight showed a 5.2-fold decrease in

the SH5 plot relative to the control (Figure 1D).
3.2 Variation of soil physical-chemical
properties with four treatments

The selected properties of soils with four treatments (CK, BG,

SH5, and SH20) for Miscanthus growth (soil pH and total

concentration of SOC, N, P, and K) are shown in Table 1. Relative

to the control plot, the soil pH (0–20 or 20–40 cm) in both the mowed

and fire plot was not significantly (p < 0.05) altered and ranged from

7.73 to 8.00. Similarly, both mowing and fire did not significantly alter

the total concentration of SOC, N, P, and K in neither the 0–20 nor

the 20–40 cm layer.

Variations in available K, P, and alkali-hydrolyzed N in soils with

four treatments over Miscanthus growth are shown in Figure 2. For

available soil K, both mowing and fire significantly reduced its

concentration in both the 0–20 cm and 20–40 cm layers, while this

concentration was much greater in the 0–20 cm layer than in the–20–

40 cm layer. In the 0–20 cm layer during Miscanthus growth, the

concentration of available K in the soil quickly decreased from 09/02/

2021 to 08/05/2021 and then slightly increased until 06/11/2021. This

trend was similar to that of the 20–40 cm soil layer in all treatment

plots, except for the control plot, in which soil available K slightly

decreased from 09/02/2021 to 06/11/2021 with Miscanthus growth.

For available soil P, both mowing and fire significantly (p < 0.05)

decreased its concentration in both soil layers relative to the control.

In both soil layers, soil P concentration in all treatment plots

increased with Miscanthus growth, and this trend was much larger

in the control plot than in the other plots. Unlike soil available P, soil

available N slowly decreased withMiscanthus growth in all treatment

plots. Both mowing and fire significantly decreased the soil available

N concentration in the 20–40 cm layer, but not in the 0–20 cm layer.
3.3 Bacterial and fungal community
compositions with various treatments

A total of 882,695 bacterial and 1,159,799 fungal sequences were

obtained from soils subjected to four treatments by high-throughput
frontiersin.org
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sequencing (Table S1). The sequences were classified into 1846

bacterial and 1663 fungal OTUs at a 97% sequence similarity cutoff

(Figure S1). The 1846 bacterial OTUs obtained were divided into 10

phyla, and the 1663 fungal OTUs obtained were divided into 10 phyla.

These bacterial and fungal rarefaction curves suggested that the 16S

rRNA and ITS gene sequences for all samples reached the sequencing

depths (Figures S2A, B).

The relative abundances of bacterial and fungal communities at

the phylum level were diverse among the CK, SH5, SH20, and BG
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treatments (Figure 3; Table S1). These four bacterial communities

were dominated by Acidobacteria (372 OTUs, 27% sequences)

(Figure 1A; Table S1), followed by Proteobacteria (452 OTUs, 25%

sequences), Actinobacteria (292 OTUs, 17% sequences), and

Chloroflexi (193 OTUs, 10% sequences) (Figure 1A; Table S1). In

addition, the four fungal communities were dominated by

Ascomycota (926 OTUs, 50% sequences) and Basidiomycota (337

OTUs, 35% sequences) (Figure 1B; Table S1). Relative to other

treatments, SH5 showed a much greater increase in the relative
TABLE 1 Selected properties (pH, total concentration of soil organic carbon [SOC], N, P, and K) of soil under four treatments.

Sampling date Treatment
Soil layer pH SOC TN TP TK

cm mean s.d mean s.d mean s.d mean s.d mean s.d

09/02/2021

CK
0–20 7.78 0.11 18.20 0.80 1.69 0.06 0.68 0.00 20.53 0.18

20–40 7.82 0.15 17.59 1.40 1.44 0.08 0.74 0.00 20.31 0.28

BG
0–20 7.76 0.11 16.28 0.20 1.83 0.13 0.65 0.00 20.68 0.23

20–40 7.86 0.16 14.95 1.15 1.50 0.13 0.76 0.01 20.46 0.37

SH5
0–20 7.82 0.09 15.63 1.01 1.59 0.12 0.71 0.00 20.51 0.32

20–40 7.93 0.13 14.70 1.00 1.37 0.14 0.67 0.01 20.40 0.18

SH20
0–20 7.76 0.16 19.97 0.10 1.66 0.04 0.67 0.01 20.41 0.56

20–40 7.67 0.07 21.53 0.06 1.44 0.11 0.78 0.00 20.06 0.57

08/05/2021

CK
0–20 7.86 0.14 18.20 0.80 1.47 0.04 0.67 0.00 18.67 0.21

20–40 7.89 0.10 17.59 1.40 1.22 0.11 0.70 0.00 18.55 0.19

BG
0–20 7.81 0.15 15.89 0.25 1.55 0.05 0.73 0.01 18.87 0.10

20–40 7.94 0.15 14.31 0.47 1.29 0.04 0.81 0.01 18.71 0.17

SH5
0–20 7.87 0.14 17.61 1.17 1.64 0.06 0.68 0.01 18.54 0.15

20–40 7.97 0.10 15.06 0.15 1.50 0.07 0.66 0.01 18.24 0.06

SH20
0–20 7.72 0.13 17.96 1.32 1.81 0.10 0.68 0.00 18.40 0.03

20–40 7.90 0.20 19.79 0.69 1.69 0.02 0.71 0.01 18.47 0.15

07/05/2021

CK
0–20 7.70 0.12 19.09 0.09 1.62 0.02 0.68 0.01 19.51 0.21

20–40 7.89 0.12 17.63 0.21 1.18 0.05 0.69 0.01 19.34 0.24

BG
0–20 7.86 0.11 15.05 1.06 1.35 0.03 0.69 0.00 19.53 0.20

20–40 7.86 0.16 13.81 0.94 1.16 0.03 0.72 0.01 19.59 0.12

SH5
0–20 7.81 0.16 15.32 1.25 1.37 0.02 0.68 0.00 19.24 0.10

20–40 8.00 0.17 14.21 1.36 1.17 0.01 0.67 0.02 19.59 0.41

SH20
0–20 7.77 0.06 16.81 1.04 1.51 0.04 0.69 0.01 19.55 0.14

20–40 7.88 0.14 19.18 0.14 1.61 0.04 0.73 0.01 19.62 0.16

06/11/2021

CK
0–20 7.81 0.01 18.38 0.94 1.55 0.09 0.67 0.01 19.37 0.29

20–40 7.85 0.03 18.54 0.11 1.28 0.04 0.73 0.01 18.74 0.30

BG
0–20 7.81 0.01 15.90 1.01 1.60 0.04 0.68 0.01 19.01 0.30

20–40 7.91 0.01 15.09 0.30 1.37 0.03 0.66 0.01 18.79 0.12

SH5
0–20 7.75 0.02 17.79 1.27 1.79 0.01 0.68 0.01 18.92 0.10

20–40 7.94 0.02 16.91 0.11 1.28 0.04 0.76 0.00 18.52 0.19

SH20
0–20 7.73 0.00 17.68 0.92 1.51 0.03 0.68 0.01 18.86 0.26

20–40 7.93 0.01 18.08 0.82 0.95 0.03 0.66 0.01 18.65 0.26
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abundance of Proteobacteria among all bacterial compositions but a

decrease in the relative abundance of Basidiomycota among the

fungal communities.
3.4 Bacterial and fungal community diversity
of four treatments

The Simpson diversity, ACE, and Chao 1 richness indices of the

four treatments showed no significant (p > 0.05) differences

(Figures 4A, C, E), whereas the Shannon index was lower in

SH20 than in the other three treatments, and this index
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among BG, SH5, and CK showed no significant (p > 0.05)

difference (Figure 4G).

The ACE richness and Simpson diversity indices of the four

fungal treatments showed no significant (p > 0.05) differences

(Figures 4B, F). The Chao 1 indices of SH20 and SH5 were higher

than those of CK and BG treatments, while there was no significant

difference between SH20 and SH5 or between CK and BG

(Figure 4D). The Shannon index of BG and SH5 was higher than

that of SH20 and CK, while there was no significant difference

between BG and SH5 or between SH20 and CK (Figure 4H).

Principal coordinate analysis (PCoA) showed that the bacterial

community composition between BG and other treatments
A B

FIGURE 3

Taxonomic compositions (i.e., operational taxonomic unit [OTU], sequence, and relative abundance at the phylum level) of microbial community in soil
samples under the CK, BG, SH5, and SH20 treatments: (A) bacteria and (B) fungi.
FIGURE 2

Variation of available K (A, B), P (C, D), and N (E, F) in soils under different treatments (left, 0–20 cm soil layer; right, 20–40 cm soil layer) over
Miscanthus growth from 09/02/2021 to 06/11/2021.
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significantly (p < 0.05) differed (Figure 5A, Table 2). In addition, the

fungal community composition between SH20 and the other

treatments was significantly (p < 0.05) different (Figure 5B, Table 2).
4 Discussion

Our experimental results positively highlight that both mowing

and fire significantly (p < 0.01) reduced Miscanthus growth and dry

material weight. This finding is consistent with results of previous

studies on induced fire (Toma et al., 2010) and mowing (Clifton-

Brown et al., 2017; Magenau et al., 2021). However, this effect was

larger in the deeply mowed plots than in the burned plots. In

particular, deep mowing induced a 5.2-fold decrease in dry plant

biomass relative to the control, which is attributed to the significant

alteration of plant growth traits, soil nutrient availability, and the

community and structure of soil microorganisms.

First, after harvest, the tiller number per cluster in SH5 was the

lowest among all treatments, as it showed a 2.2-fold decrease relative

to that of the control (125 vs. 265); however, fire only induced a 1.1-

fold decrease in the tiller number per cluster relative to that of the
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control (231 vs. 265). The decrease in tiller number in Miscanthus

growth generally induced a decrease in aboveground dry weight,

which is indicated by the significantly positive relationship between

the dry plant weight per cluster and the tiller number per cluster

(Figure 6). This finding is consistent with those of previous studies

(Lee et al., 2017; Malinská et al., 2020). In addition, plant height in the

deep-mowed plot was the lowest among all treatment plots. This

could be directly affected by soil nutrient availability (Cadoux et al.,

2012; Ivanyshyn et al., 2018) and will be discussed later.

Second, during Miscanthus growth, the soil nutrient availability

(K and P) was much lower in both the mowed and burned plots than

in the control, and this effect was much larger in the deep-mowed

plot. This can be attributed to the removal of the aboveground straw

by mowing, which directly leads to the loss of nutrients over their

decomposition into soils (Kahle et al., 2001), similar to grasslands

(Bakker et al., 2002; Hejcman et al., 2010; Magenau et al., 2021) and

croplands (Buyanovsky andWagner, 1986; DuPont et al., 2010; Cade-

Menun et al., 2013). Fire also induces nutrient loss, as the burned soil

is easily washed away by rain (Andreu et al., 1996; Thomas et al., 1999;

Gimeno-Garcı́ a et al., 2000). As documented in many studies

(Cadoux et al., 2012), soil nutrient availability is generally
D

A B

E F

G H

C

FIGURE 4

Alpha diversity index in the BG, SH20, SH5 and CK treatments. Left: Bacterial community diversity (A, C, E, G); Right: fungal community diversity (B, D, F, H).
Within each subgraph according to Tukey’s mean separation test, values with the same lower case presents a non-significant difference (p = 0.05), while
different lower-case letters show a significant (p < 0.05) difference.
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considered a key factor affecting Miscanthus growth (Himken et al.,

1997). For example, in an alkaline grassland soil, both P and K

deficiencies generally induced a decrease in Miscanthus (Roncucci

et al., 2015; He et al., 2020). In particular, both mowing and fire

during Miscanthus growth significantly induced a decrease in soil N

availability in the 20–40 cm layer (Figure 2), which is the area of plant

root activity for N uptake. Indeed, the role of N limitation as a factor

determining successional processes in grass biomass production is

significant, as the most striking result of previous studies to date is the

significant response of plant growth to N fertilization (Van der

Woude et al., 1994; Craine and Jackson, 2010; Toma et al., 2010;

Whitaker et al., 2015; Zhao et al., 2016; Lee et al., 2017). If sustained,

our current experimental results indicate that nutrient limitation (N,

P, and K) is an important factor determining the rates of Miscanthus

accumulation in repeated fires and mowed grasslands where there is a

loss of soil nutrients.

Our third hypothesis is that variations in bacterial and fungal

composition are altered by fire and mowing, which indirectly alters

other soil factors, such as nutrient and micronutrient availability. Soil

microbial communities play a crucial role in regulating soil nutrient

availability (Cheplick et al., 1989; McCaig et al., 1999; Unger et al.,

2013), suggesting that their interaction determines soil sustainability

and the development and productivity of plants (Song et al., 2021).

Mowing and fires alter the source of energy and nutrients for soil

microbial growth, as illustrated in this study (Table 1; Figures 1–4), in

which both fire and mowing redistributed the community composition

and diversity of soil bacteria and fungi. This redistribution is much

greater in the deep mowing than in the BG, which could be a crucial

factor resulting in the diffidence of Miscanthus aboveground biomass.
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The coverage, richness, and diversity of the soil microbial community

were well isolated in soils with four grassland managements, according

to three alpha diversity indices (Figure 3; Figure S1). Thus, our

experimental findings indicate that deep mowing slightly altered the

composition of soil bacteria, but largely altered the composition of soil

fungal communities relative to other treatments (Figure 3). This finding

is consistent with previous research showing the responses of soil

bacterial and fungal communities to various grassland mowing and

management practices (Cui et al., 2020). This effect can be attributed to

two factors. Soil microbial communities are sensitive to variability in

mowing dryland ecosystems on a global scale owing to changes in

nutrient sources (Delgado-Baquerizo et al., 2017). Deep mowing

exacerbates the negative impacts of soil water loss on soil microbial

communities (Blagodatsky and Smith, 2012). Moreover, this practice

exacerbates the loss of soil nutrients (Figure 2) due to the greater loss of

the litter biomass (i.e., a much lower stubble heights-induced by the

deep mowing) relative to other treatments. Therefore, the bacteria and

fungi were significantly altered by deep mowing compared to other

treatments because of soil environmental conditions and nutrients.

First, deep mowing overMiscanthus growth significantly decreased soil

OC and N (Table 1), which can be used to provide a direct energy

source and nutrients to soil microbes, affecting their growth and

abundance. This study also observed that in SH5, soil microbial

abundance (e.g., Firmicutes, and especially Proteobacteria) increased

relative to that of the control (Figure 3). This is consistent with previous

results, demonstrating that Proteobacteria was abundant in less healthy

soils (Li et al., 2014), as its abundance is sensitive to soil nutrient status

(Esperschütz et al., 2007; Unger et al., 2013). This induced alteration in

deep mowing significantly led to a decrease in the abundance of
TABLE 2 The statistical test of similarity (ANOSIM) and permutational multivariate two-way analysis of variance (PERMANOVA) to analysis the differences
of bacterial and fungal community composition by amplicon sequencing.

Treatment DF (degrees of freedom)

PERMANOVA ANOSIM

Bray-Curtis Bray-Curtis

F P R P

Bacteria T 3 2.849 0.0001 0.5174 0.0001

Fungi T 3 3.215 0.0025 0.2821 0.0022
frontie
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FIGURE 5

Principal coordinates analysis (PCoA) of the bacterial (A) and fungal communities (B) at the operational taxonomic unit (OTU) level based on
Bray-Curtis dissimilarities.
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Basidiomycota and an increase in Ascomycota among the fungal

communities. In particular, it further illustrated a much greater effect

on fungal community diversity at the level of alpha diversity index

(considering the Simpson diversity, ACE, and Chao 1 richness indexes)

than other treatments (Figures 4, 5). Second, due to the loss of key

energy and nutrients induced by plant growth, the soil microbial

community diversity was altered. This study highlights that the

sources of N, K, and P in the deep mowing over Miscanthus growth

significantly decreased (Table 1); thus, the soil microbial community

diversity was significantly altered (Figures 3, 4). However, the reason for

this remains unclear and needs to be further investigated to determine

the differences between bacteria and fungi in soils with poor fertility.

More interestingly, the factors of soil pH, available P and K, total N

(TN), alkali-hydrolyzed N (AhN), and total OC explained 43% of soil

bacterial community and 66% of soil fungal community (Figure 7),

highlighting their importance for soil microbial communities. In

particular, for SH5, Proteobacteria and Acidobacteria at the phylum

level were significantly related to the sources of energy and nutrients,

including SOM, total N and P, and available N and P (Figure 7A).
Frontiers in Plant Science 09
Similarly, the soil factors in SH5 were significantly related to those in

most fungal communities. As discussed above, our experimental results

clearly indicated that deep mowing resulted in a higher redistribution of

the soil microbial community among all treatments. Although the

stability of microbial communities in grasslands significantly affects soil

quality and immunity (McCaig et al., 1999; Bonkowski and Roy, 2005;

Otto et al., 2005; Cui et al., 2020), the structure and function of

microbial communities in dry grasslands are influenced by numerous

physicochemical soil factors (Jangid et al., 2011; Griffiths and Philippot,

2013; Zheng et al., 2019). Microbial communities are, therefore,

regarded as a crucial mechanism affecting soil quality, which

supports our third hypothesis. The use of various grassland

managements has already been reported to alter the species

abundance and composition of the soil microbial community during

grass growth by altering soil nutrient availability, thereby affecting the

aboveground biomass, as illustrated in Table S2, which shows that

biomass best explained the interaction between soil quality and

microbial community. Here, our results demonstrate that the

composition of the soil microbial community is significantly affected

by deep mowing by altering soil chemical properties (especially soil N

and P availabil ity, as well as SOC), indirectly driving

Miscanthus productivity.
5 Conclusion

Both fire and mowing significantly decreased the soil available N,

P, and K content, tiller number per cluster, and plant height during

Miscanthus growth relative to the control. However, these effects were

greater in the deep-mowing plot than in the other plots. After harvest,

both fire and mowing significantly decreased the dry weight of

Miscanthus, whereas deep mowing induced a 5.2-fold decrease in

dry plant biomass relative to the control. This could be attributed to

the removal of aboveground straw by mowing, which directly leads to

the loss of nutrients in soils. If sustained, our current experimental

results indicate that nutrient limitation (N, P, and K) was an

important factor determining the rates of Miscanthus accumulation
A B

FIGURE 7

Redundancy analysis (RDA) of the correlations between soil microbial phylum (A: bacteria; B: fungi) and soil-plant variables under four treatments (CK,
BG, SH5, and SH20). Soil-plant variables include soils factors (soil pH, total P [TP], total N [TN], total K [TK], organic carbon [SOC], available P [AP],
available K [AK], and alkali-hydrolyzed N [AhN]) and a plant factor (dry biomass).
FIGURE 6

Plot of dry plant weight per cluster (kg/cluster) in four treatments
against the tiller number per cluster (n).
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in the repeated fires and the deep-mowing grasslands due to the loss

of soil nutrients. In addition, both fire and mowing redistributed the

community composition and diversity of the soil bacteria and fungi.

This redistribution was much greater in deep mowing than in fire and

light mowing. Soil bacterial abundance (e.g., Firmicutes, and

especially Proteobacteria) in the deep-mowing plot increased

relative to that of the control; this is consistence with previous

results, indicating that Proteobacteria are abundant in less healthy

soils as they are sensitive to the soil nutrient status. In contrast, deep

mowing led to a significant decrease in the abundance of

Basidiomycota and an increase in Ascomycota among the fungal

communities, whereas it had an even greater effect on fungal

community diversity at the level of alpha diversity indexes

(considering the Simpson diversity, ACE, and Chao 1 richness

indices) than other treatments. Thus, the variation in bacterial and

fungal composition was altered by deep mowing, which indirectly

altered other soil factors such as nutrient and micronutrient

availability, resulting in a decrease in plant productivity. This

finding indicates that deep mowing, rather than fire, induces soil

processes and health development, thus restraining grass

sustainability in a dry-alkaline grassland.
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