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Introduction: Submergence stress creates a hypoxic environment. Roots are

the first plant organ to face these low-oxygen conditions, which causes damage

and affects the plant growth and yield. Orchardgrass (Dactylis glomerata L.) is

one of the most important cold-season forage grasses globally. However, their

submergence stress-induced gene expression and the underlying molecular

mechanisms of orchardgrass roots are still unknown.

Methods: Using the submergence-tolerant ‘Dianbei’ and submergence-

sensitive ‘Anba’, the transcriptomic analysis of orchardgrass roots at different

time points of submergence stress (0 h, 8 h, and 24 h) was performed.

Results: We obtained 118.82Gb clean data by RNA-Seq. As compared with the

control, a total of 6663 and 9857 differentially expressed genes (DEGs) were

detected in Dianbei, while 7894 and 11215 DEGswere detected in Anba at 8 h and

24 h post-submergence-stress, respectively. Gene Ontology (GO) enrichment

analysis obtained 986 terms, while Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment analysis obtained 123 pathways. Among them, the DEGs in

plant hormones, mitogen-activated protein kinase (MAPK) and Ca2+ signal

transduction were significantly differentially expressed in Dianbei, but not in Anba.

Discussion: This studywas thefirst tomolecularlyelucidate thesubmergencestress

toleranceintherootsoftwoorchardgrasscultivars.Thesefindingsnotonlyenhanced

our understanding of the orchardgrass submergence tolerance, but also provided a

theoretical basis 36 for the cultivation of submergence-tolerant forage varieties.

KEYWORDS

Dactylis glomerata L., transcriptome, submergence stress, differentially expressed
genes, molecular mechanisms
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Introduction

Water is essential for plants, but excessive water, waterlogging

or flooding can cause stress by preventing the exchange of gases

between the soil and the atmosphere, which negatively impacts

plant growth and development (Striker and Colmer, 2016; Wang

et al., 2017). Although oxygen accounts for ~20% in the air, it has

extremely low solubility in water. The diffusion rate of oxygen in

flooded soil is 104 times slower than in air. Furthermore,

respiration of soil microorganisms and plant roots rapidly

depletes the oxygen level (Kaur et al., 2021). Root is the first

organ facing the decline of oxygen tension. Since they can’t

produce oxygen through photosynthesis, it will soon face

hypoxia under submergence stress, ultimately causing more

damage to the roots (Panozzo et al., 2019). Plants with

submergence-tolerant depend heavily on multiple morphological

and physiological changes that are regulated by different genes.

RNA-seq has been widely used in plant field in recent years,

especially in the research of plant resistance (Li et al., 2018).

Transcriptome analysis revealed that ethylene and ABA synthesis

in Phalaris arundinacea were inhibited by waterlogging stress

(Wang et al., 2021). In deep-water rice (Oryza sativa) cultivar, the

elevated ethylene levels promoted the expression of SK1/SK2, and

reduced abscisic acid (ABA) biosynthesis, which further increased

gibberellin (GA) content and induced cell elongation (Zhou et al.,

2020). In maize (Zea mays), invertase and hexokinase expression

were up-regulated under waterlogged stress in roots, providing

more energy for self-stabilization (Arora et al., 2017). The

insufficient energy resulting from the stress-induced oxygen

shortage triggers reactive oxygen species (ROS) formation

(Yeung et al., 2018; Anee et al., 2019). The hypoxic

environment inhibits ATP production, restricts mitochondrial

respiration, and alters the ratios of ATP to ADP and ATP to

AMP (Sairam et al., 2008). Submergence causes plants to grow

under hypoxic conditions, which limits the gas exchange

capability of plants and impairs the metabolic balance and

nutrient transport of plant roots, resulting in an ‘energy crisis’

(Herzog et al., 2016; Zhou et al., 2020). In a word, submergence

can cause plant morphological damage, increasing the

susceptibility of plant to diseases and insect pests, and even

cause plant death (Phukan et al., 2016). RNA-seq can be used

to study the molecular mechanism of plant response to

submergence stress.

Grasslands are distributed worldwide except for Antarctica.

The grassland covers an area of 52,544,000 km2, which is 40.5%

of the world’s land area. It is the second largest land type for

human habitation after agricultural land (Karunarathna et al.,

2021). Orchardgrass is a cold-season, and perennial forage grass

native to Eurasia and North Africa. As one of the four major

forages in the world, it can be used as pasture or hay grass and

has gained good ecological and economic benefits in China

(Hirata et al., 2011). As an important forage grass for cultivating
Frontiers in Plant Science 02
livestock worldwide, orchardgrass has the advantages of fast

growth, high yield, good palatability, rich nutrition and strong

stress resistance (Feng et al., 2018). Orchardgrass is mainly

distributed in Sichuan, Chongqing, Yunnan, Guizhou, and

other regions in China. Because of rich germplasm resources,

orchardgrass has been widely planted and applied. It is an

important species for land management and restoration in

Southwest China (Peng et al., 2008). Therefore, in the world of

increasing forage resources demand, submergence-tolerant is a

key for orchardgrass breeding programs.

In recent years, with the rapid development of the next-

generation sequencing (NGS) technology and the assembly of

orchardgrass genome, a better platform for evaluating molecular

and genetic information of orchardgrass is available (McCombie

et al., 2019; Huang et al., 2020). WRKY, GRAs, and C2H2-type

zinc finger gene family have previously been studied in

orchardgrass (Xu et al., 2020; Ren et al., 2021; Shuai et al.,

2022). Studies on biotic and abiotic stress reports of orchardgrass

and other cold-season forage grasses had mainly focused on

drought, high temperature, and rust (Huang et al., 2015; Ji et al.,

2018; Yan et al., 2013, 2016; Hu et al., 2014; Sun et al., 2020).

Although there are some studies on submergence stress in

orchardgrass (Klaas et al., 2019; Qiao et al., 2020; Zeng et al.,

2020), but it’s underlying submergence stress mechanisms in

roots have not been reported. In the current study, the aim of

this study was to understand the gene expression and underlying

molecular mechanism of different submergence stress times

response in two orchardgrass cultivars roots by RNA-seq.

These findings can provide a basis for further study of the

submergence tolerance mechanism of orchardgrass.
Materials and methods

Plant materials and growth conditions

In this experiment, the submergence-tolerant ‘Dianbei’ (DB)

and submergence-sensitive ‘Anba’ (AB) were selected as test

materials. The seeds of orchardgrass were obtained from the

College of Animal Science and Technology of Southwest

University, China. The seeds of orchardgrass were germinated

in culture dish. Orchardgrass with the same growth trend were

transplanted to the flowerpot (diameter 15.0 cm, height 13.5 cm)

containing vermiculite, vegetative soil, and perlite (1:3:1, v/v/v).

The orchardgrass cultivars were grown in an incubator with

humidity of 70-85%, temperature of 22/15°C (day/night),

photoperiod 14 h/10 h (day/night), and 5000 lux light

intensity (Xu et al., 2017). Subsequently, the plants were

irrigated with 1/2 Hoagland nutrient solution twice a week.

At the 3-4 leaf stage, the submergence treatment was started.

Well-grown orchardgrass were selected for testing. Orchardgrass

were placed in a water tank (length 80 cm, width 57 cm, height 50
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cm), and water was added until the orchardgrass were completely

submerged. Root phenotype and root length were used as growth

characteristics data. The root length was measured and

photographed at 0 h, 8 h, 24 h, 48 h and 72 h after submergence

stress, and each treatment was repeated three times. Samples were

taken at 0 h, 8 h, and 24 h under submergence stress, frozen in liquid

nitrogen immediately, and stored at−80°C for further analysis. Each

treatment was repeated for three times, with a total of 18 samples.
RNA extraction and sequencing

Total RNA was extracted from roots at each time point

(three biological replicates per treatment) using Trizol reagent

(Invitrogen) according to the manufacture’s protocol. Total

amounts and integrity of RNA were assessed using the RNA

Nano 6000 Assay Kit of the Bioanalyzer 2100 system (Agilent

Technologies, CA, USA). Samples with a RIN > 6.5 were used in

RNA-seq library preparation. Total RNA was used as the input

material for the mRNA sample preparations. The mRNA was

purified from the total RNA by using poly-T oligo-attached

magnetic beads. Fragmentation was carried out using divalent

cations under elevated temperature in First Strand Synthesis

Reaction Buffer(5X). First strand cDNA was synthesized using

random hexamer primer and M-MuLV Reverse Transcriptase,

then use RNaseH to degrade the RNA.Second strand cDNA

synthesis was subsequently performed using DNA Polymerase I

and dNTP. Remaining overhangs were converted into blunt

ends via exonuclease/polymerase activities. After adenylation of

3’ ends of DNA fragments, Adaptor with hairpin loop structure

were ligated to prepare for hybridization. In order to select

cDNA fragments of preferentially 370~420 bp in length, the

library fragments were purified with AMPure XP system

(Beckman Coulter, Beverly, USA). Then PCR amplification,

the PCR product was purified by AMPure XP beads, and the

library was finally obtained. After the construction of the library,

the library was initially quantified by Qubit2.0. After the insert

size met the expectation, qRT-PCR was used to accurately

quantify the effective concentration of the library (the effective

concentration of the library was higher than that of 2nM) to

ensure the quality of the library.

After the library was qualified, the different libraries were

pooling according to the effective concentration and the target

amount of data of the machine, then being sequenced by the

Illumina NovaSeq 6000 (Illumina, San Diego, CA, USA). The

end reading of 150 bp pairing was generated. Library

construction and transcriptome sequencing were conducted by

the Novogene Bioinformatics Institute (Beijing, China). All

reads have been deposited in the sequence read archive (SRA)

under the accession numbers PRJNA897027 and PRJNA896863.
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RNA-Seq data analysis

The raw data size was at least 6 Gb for each sample. The end

reading of 150 bp pairing was generated. Clean reads were

obtained by removing reads containing adapter, reads

containing N base, and low quality reads from raw reads.

Reference genome and gene model annotation files were

down load ed f rom the genome web s i t e (h t t p s : / /

orchardgrassgenome.sicau.edu.cn/) (Huang et al., 2020).

Building of the reference genome index and alignment of the

paired-end clean reads were done using Hisat2 (v2.0.5) (Kim

et al., 2019). The mapped reads of each sample were assembled

by StringTie (v1.3.3b) (Pertea et al., 2015). The featureCounts

v1.5.0-p3 (Liao et al., 2014) was used to count the reads numbers

mapped to each gene. Then the fragments per kilobase of exon

per million mapped fragments (FPKM) of each gene was

calculated based on the gene length and the reads count

mapped to it. Differential expression analysis of two groups

was performed using the DESeq2 R package (1.20.0) (Love et al.,

2014). Padj < 0.05 and |log2(fold-change)| ≥ 1 were set as the

threshold for significantly differential expression. ClusterProfiler

(3.8.1) (Yu et al., 2012) was used for GO and KEGG enrichment

analysis.The overall workflow for transcriptomic analysis is

illustrated in Supplementary Figure S1.
Validation of RNA-Seq data by qRT-PCR

Eight DEGs were randomly selected for qRT-PCR. The qRT-

PCR reaction volume was 10 ml, containing 1 ml cDNA, 5 ml TB
Green Premix Ex Taq II (Tli RNaseH Plus) (2×), 0.4 ml ROX
Reference Dye II (50×), 0.8 ml of the forward and reverse

primers, and 7 ml ddH2O. Actin was used as the endogenous

reference gene. PCR reaction system: 95°C 30s; 95°C 5s, 60°C

34s, 40 Cycles; 95°C 15s, 60°C 1min, 95°C 15s. Primers were

designed using Primer 5.0 (Supplementary Table S1). The

application of the 2–DDC(t) method converts the instrument-

generated threshold cycle value output into the relative gene

expression level (Livak and Schmittgen, 2001). Three biological

replicates were generated and three measurements were

performed for each replicate.
Results

Different responses to submergence
stress between Dianbei and Anba

The morphologies of Dianbei and Anba under submergence

stress were compared at 0 h, 8 h, 24 h, 48 h, and 72 h (Figures 1A–E).
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At 0 h, the root of Anbawas 1.10 cm longer than Dianbei. After 72

h submergence stress, it was 2.33 cm longer than Dianbei. The

roots of Dianbei and Anba gradually elongated with the

increasing of submergence time. Anba showed a significant

difference at 24 h, while Dianbei showed a significant difference

at 72 h. As compared with 0 h, the roots of Dianbei and Anba

increased post-submergence-stress by 39.96% and 53.07%,

respectively (Figure 1F). Anba responded more positively to

submergence stress. Thus, Dianbei is more resistant to

submergence than Anba.
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Data analysis of RNA-Seq

To explore the gene expression and underlying molecular

response mechanism of orchardgrass under short-term

submergence stress. Illumina Novaseq 6000 was used to

sequence the transcriptome of two orchardgrass cultivars roots

at three different time points under submergence stress (0 h, 8 h,

and 24 h), and 18 qualified RNA libraries were separately

constructed (three library repeats for each time-point). After

filtering out low-quality reads and reads containing N base,
A B C

D E

F

FIGURE 1

Root phenotype and length in Dianbei and Anba. (A-E) The phenotype of Dianbei and Aaba at 0 h (A), 8 h (B), 24 h (C), 48 h (D), and 72 h
(E). (F) Effects of submergence on the root lengths of Dianbei and Anba. Error bars indicate the standard error, n = 3. Different letters indicate
the significant differences. Statistical analysis using one-way analysis of variance (ANOVA) using Duncan’s multiple range test (P < 0.05).
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792,201,680 clean reads and 118.82 Gb clean bases were obtained.

For each sample, the Q30 values exceeded 93%, GC content was

between 52.40 to 56.10%, and the error rate was only 0.03

(Supplementary Table S2). The distribution of gene expression

levels for each sample was similar, and the overall gene expression

level was high (Figure 2A, Supplementary Figure S2). The pearson

correlation between samples was more than 0.8 (Figure 2B).

Therefore, RNA-seq data was confirmed to be reliable and

could be used in subsequent analyses.

HISAT2 software was used to map the clean reads to

orchardgrass reference genome (Huang et al., 2020).

Moreover, the clean reads average mapping rate was 68.18%,

the unique mapping rate was between 60.92% to 70.88%

(Figure 2C), and more than 78.8% of the clean reads were
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mapped to the exon region (Figure 2D). By comparing the

FPKM of each sample, it was found that at each time point

~39.67% of the genes (DB_0h 39.05%, DB_8h 39.91%, DB_24h

40.96%, AB_0h 38.09%, AB_8h 39.21%, and AB_24h 40.8%)

were expressed (FPKM ≥ 1), with over 3.10% of the genes were

highly expressed (FPKM > 60) (Figure 2E).
Differential expression analysis of Dianbei
and Anba under submergence stress

To explore the DEGs of Dianbei and Anba in response to

submergence stress, the DEGs of two orchardgrass cultivars were

screened with the thresholds of |log2 (fold-change)| > 1 and padj
A B

C E

D

FIGURE 2

Mapping results of Dianbei and Anba. (A) The FPKM of Dianbei and Anba. The abscissa in the graph indicates different samples; the ordinate
indicates the logarithmic values of the sample expression FPKM. (B) Pearson correlation between Dianbei and Anba. (C-E) Mapping ratio (C),
percent of genome regions (D), and distribution of FPKM (E) in the roots of Dianbei and Anba under submergence stress.
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< 0.05. As compared with the control, a total of 6663 DEGs

(3096 up-regulated and 3567 down-regulated) and 9857 DEGs

(4779 up-regulated and 5078 down-regulated) were detected in

Dianbei, while 7894 DEGs (3801 up-regulated and 4093 down-

regulated) and 11215 DEGs (5752 up-regulated and 5463 down-

regulated) were detected in Anba at 8 h and 24 h post-
Frontiers in Plant Science 06
submergence-stress (Figure 3A, Supplementary Figure S3,

Supplementary Table S3), respectively. Venn analysis was

performed to examine the differential expression of roots

tissue at different time points under submergence stress

(Figures 3B, C). With 0 h as a control, 5455 and 6202 DEGs

were found to be expressed in Dianbei and Anba at both 8 h and
A B

C

D

FIGURE 3

DEGs under submergence stress. (A) the number of up- and down-regulated genes in four pair-wise sampling stages, including DB 8 h vs DB 0 h, DB
24 h vs DB 0 h, AB 8 h vs AB 0 h, and AB 24 h vs AB 0 h (B, C) Venn analysis of the DEGs at 8 h and 24 h of post-submergence-stress induction as
compared to control in Dianbei (B), and Anba (C). (D) the heatmap shows the respective expression levels of DEGs in each sample group, based on the
average FPKM of biological replicates. The y-axis shows the cluster dendrogram of DEGs, and the x-axis shows the sample groups.
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24 h, respectively. With the increasing submergence stress time,

the number of DEGs in the two orchardgrass cultivars

gradually increased.

Gene cluster analysis of the two orchardgrass cultivars under

submergence stress showed that Dianbei and Anba had similar

expression patterns at the same stress time points, thus

indicating that there were noticeable differences in the

expression patterns of DEGs at different stress time points

(Figure 3D). The differential expression of DEGs in Dianbei

was higher than that in Anba at 8 h and 24 h post-submergence-

stress, thus indicating that Dianbei, as a submergence-tolerant

cultivar, has more DEGs for responding to submergence stress.
GO and KEGG analysis of two
orchardgrass cultivars DEGs under
submergence stress

To explore the functional significance of DEGs at different

time points in Dianbei and Anba under submergence stress, we

subjected GO enrichment analysis and obtained 986 terms. The

DEGs were classified into three categories: biological processes

(BP), molecular functions (MF), and cellular components (CC).

The top 10 enriched terms of each category were selected for

plotting. DEGs were mainly enriched in terms of biosynthesis

and metabolism process, transcription factor activity, enzyme

activity and coenzyme binding, oxidative response, microtubule,

Golgi apparatus and vesicle (Figure 4, Supplementary Table S4).

It is speculated that submergence stress may stimulate the

expression of related genes in orchardgrass.

In addition, KEGG enrichment analysis was performed and

DEGs were mapped to 123 pathways (Figure 5, Supplementary

Table S5) . The results showed that pathways l ike

phenylpropanoid biosynthesis, glycolysis/gluconeogenesis, and

nitrogen metabolism were significantly enriched in both Dianbei

and Anba. Enrichment of these pathways might indicate that

submergence stress promoted their activation. It is worth

mentioning that plant hormone signal transduction, MAPK

signaling pathway, and plant-pathogen interaction were

significantly enriched in Dianbei, but not in Anba. Therefore,

it could be speculated that these pathways and genes might be

related to the submergence tolerance in Dianbei and Anba.
Plant hormone signal transduction in
orchardgrass roots under
submergence stress

Plant hormones regulate plant growth and other biological

processes as along with stress adaptation (Verma et al., 2016). In

this study, the DEGs under submergence stress condition were

analyzed for their KEGG pathway enrichment (Figure 5). The

results showed that submergence stress activated various plant
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hormones (auxin, cytokinin, ethylene, abscisic acid (ABA),

jasmonic acid (JA), salicylic acid (SA), brassinosteroids (BR),

gibberellin (GA), etc.) signal pathways in orchardgrass roots

(Figure 6, Supplementary Table S6). In Dianbei, multiple genes

related to ARF and GH3 in auxin, CRE1 in cytokinin, GID1 in

GA, PP2C, SnRK2 and ABF in ABA, and NPR1 in SA, were

down-regulated at 8 h and 24 h post-submergence-stress,

triggering speculation that these genes were inhibited under

submergence stress. Multiple genes related to PYR/PYL in ABA,

ETR and EBF1/2 in ethylene, and BRI1 in BR, were up-regulated

at 8 h and 24 h post-submergence-stress, indicating that these

genes were activated under submergence stress. Additionally,

multiple genes related to AUX1 in auxin, DELLA in GA, SIMKK

in ethylene, and TCH4 in BR, were up-regulated at 24 h, and PR-

1 in SA, JAR1 andMYC2 in JA, were down-regulated at 24 h, but

had no significant change at 8 h post-submergence-stress. These

results indicate that these genes may need a certain time to

respond to submergence stress. Most DEGs were down-

regulated post submergence stress. Thus, we speculated that

submergence stress may inhibit plant hormones signal

transduction, the inhibitory effect increased with the increasing

submergence time. In addition, among the DEGs involved in

plant hormone signal transduction, only 10 DEGs (DG2C00767,

DG2C00772, DG2C01118, DG2C02515, DG2C06118,

DG4C03948, DG5C01306, DG5C01122, DG6C01437, and

DG7C03758) had higher differential expression in Anba than

in Dianbei, while the other DEGs showed the opposite, thus

indicating that the differential expression of these genes may be

one of the reasons for the different submergence tolerance

capabilities between Dianbei and Anba.
MAPK signal transduction in
orchardgrass roots under
submergence stress

MAPK signal transduction is one of the most well-studied

plant signaling mechanisms, and plant MAPK cascades play

pivotal roles in signaling plant defense against biotic and abiotic

stresses. (Zhang and Klessig, 2001). The MAPK cascade is

minimally composed of different combinations of at least three

protein kinases: MAPKKK (MAP3K/MEKK/MKKK), MAPKK

(MKK/MEK), and MAPK (MPK), which activate each other

sequentially via phosphorylation (Danquah et al., 2014)

(Figures 7A, B). In this study, DEGs related to MAPK signal

transduction, FLS2 was up-regulated and activated the

transmembrane transport of flg22, while most DEGs related to

MAPK cascade signal were down-regulated, thus indicating that

submergence stress may inhibit the amplification of the MAPK

cascade signal. Two DEGs, DG1C06357 and DG1C04245,

showed significant differential expression at 8 h, but had no

significant change at 24 h of post-submergence-stress, thus

indicating that these two DEGs may play an important role in
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the early submergence stress response. The differential

expression of other DEGs showed an increasing trend with the

increasing submergence time. Out of these DEGs, seven DEGs

(DG6C02930, DG2C04602, DG3C07121, DG6C02696,

DG4C06428, DG5C04434, and DG4C03116) had no

significant change at 8 h, but showed significant differential

expression at 24 h post-submergence-stress, thus indicating that
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these genes may need some time to respond to submergence

stress. In addition, eight DEGs (DG0C00183, DG0C00192,

DG0C00190, DG5C03912, DG2C05975, DG6C00846,

DG6C00463, and DG1C05223) were differentially expressed at

8 h and 24 h post-submergence-stress in Dianbei, while showing

no significant expression in Anba, thus indicating that these

DEGs may be one of the reasons for the different submergence
A B

C D

FIGURE 4

The GO enrichment analysis. (A) DB 8 h vs DB 0 h (B) DB 24 h vs DB 0 h (C) AB 8 h vs AB 0 h (D) AB 24 h vs AB 0 h The ordinate indicates the GO id,
and the abscissa indicates the gene ratio. The size of the dot indicates the number of DEGs in the pathway, and the color indicates the different q-value.
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tolerance abilities between Dianbei and Anba (Figures 7B, C,

Supplementary Table S6).

Additionally, studies have been shown that MAP kinases are

involved in ABA-mediated stomatal closure. The active SnRK2

kinase phosphorylates the NADPH oxidase RbohF, leading to

ROS accumulation. The ROS-mediated activation of MAPKs

positively regulates the ABA-mediated stomatal closure

(Danquah et al., 2014). In this study, three types of DEGs were

found to participate in this pathway (Figures 6H, 7C). Among

them, the genes related to PYR/PYL receptor proteins were up-

regulated, while the genes related to PP2C and SnRK2 kinase
Frontiers in Plant Science 09
biosynthesis were down-regulated. Dianbei showed a greater

variation than Anba, and the differential expression of DEGs

increased with the increasing submergence time. It indicated that

submergence stress activated the PYR/PYL expression in the

upstream, and inhibited the expression of PP2C and SnRK2 in

the downstream of ABA pathway, thus inhibiting ABA-mediated

stomatal closure and increasing the respiration of orchardgrass

under submergence stress, and promoting more oxygen uptake.

Therefore, Dianbei can respond more quickly and positively to

submergence stress, which may be one of the reasons for the

different submergence tolerance between Dianbei and Anba.
A B

C D

FIGURE 5

The KEGG pathway enrichment analysis. (A) DB 8 h vs DB 0 h (B) DB 24 h vs DB 0 h (C) AB 8 h vs AB 0 h (D) AB 24 h vs AB 0 h The ordinate
indicates metabolic pathway, while the abscissa indicates the gene ratio. The size of the dot indicates the number of DEGs in the pathway, while
the color indicates the different q-value.
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Ca2+ signal transduction in orchardgrass
roots under submergence stress

During the KEGG pathway enrichment analysis under

submergence stress in orchardgrass, it was found that in plant-

pathogen interaction signal transduction, 39 DEGs also

participated in the Ca2+-mediated hypersensitive response (HR)

besides MAPK signal transduction pathway (Figure 8,
Frontiers in Plant Science 10
Supplementary Table S6). Similar to the plant hormone and

MAPK signal transduction pathways, the differential expression

ofDEGs increasedwith the increase of submergence time except for

DG4C04884 and DG2C02769. The amplitude of variation in

Dianbei was greater than that in Anba, which again indicated

that Dianbei could respond more rapidly and positively than Anba

under submergence stress. Interestingly, the genes related to Ca2+

transmembrane CNGCs receptor proteins and NOS (NO synthesis
A B

D E

F

G

H

C

FIGURE 6

Plant hormone signal transduction pathway. (A-H) Auxin (A), Ethylene (B), Brassinosteroid (C), Jasmonic acid (D), Gibberellin (E), Cytokinine (F), Salicylic
acid (G), and Abscisic acid (H) biosynthesis pathway. The y-axis shows the cluster dendrogram of DEGs, and the x-axis shows the sample groups.
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A B

C

FIGURE 7

MAPK signal transduction pathway. (A) Plant MAPK cascades pattern. (B) Possible functions of various MAPK cascades in plants. (C) Heatmap of
DEGs involved in the MAPK signaling pathway. The y-axis shows the cluster dendrogram of DEGs, and the x-axis shows the sample groups.
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rate limiting enzymes) were up-regulated, which activated Ca2+

transmembrane transport, NO synthesis, and induced HR

production in orchardgrass under submergence stress.
Validation of transcriptome sequencing
data by qRT-PCR

To verify the reliability of transcriptome results, we selected

eight genes for qRT-PCR (Figure 9). The expression profiles of

these genes were consistent with the sequencing results,

indicating that our analysis based on transcriptome data

is reliable.
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Discussion

Water is essential for all plants, but excessive water or

submergence results in stress and prevents gaseous exchange

between the soil and atmosphere. Excessive water can inhibit the

growth and development and even lead to death. In this study, a

model was constructed by transcriptome analysis to understand

the response of orchardgrass under submergence stress (Figure 10).

In one day of waterlogging, the partial pressure of O2 fell

from 20.9 to 1 kPa, leading to anoxia (Phukan et al., 2016). To

self-repair and maintain stability, tissues or organs specific

functions cells require the mitochondrial oxidative

phosphorylation of ATP (Phukan et al., 2016). Therefore, in
A

B

FIGURE 8

Ca2+ signal transduction pathway. (A) Schematic diagram of Ca2+ signaling pathway. (B) Heatmap of DEGs involved in Ca2+ signaling pathway.
The y-axis shows the cluster dendrogram of DEGs, while the x-axis shows the sample groups.
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order to survive the energy crisis in waterlogged or submerged

conditions, ATP related processes, like DNA synthesis and cell

division, are inhibited (Gibbs and Greenway, 2003). In this

study, we found that DEGs of two orchardgrass cultivars were
Frontiers in Plant Science 13
significantly expressed in biosynthesis and metabolism process,

transcription factor activity, enzyme activity and coenzyme

binding, oxidative response and cellular components

(microtubules, Golgi, and vesicles) terms under submergence
A B

C D

E F

G H

FIGURE 9

Validation of genes expression using qRT-PCR. (A) DG1C05385. (B) DG3C05831. (C) DG5C01300. (D) DG7C01296. (E) DG7C00992. (F)
DG7C02886. (G) DG3C06505. (H) DG6C03517. Error bars indicate the standard error, n = 3. Different letters indicate the significant differences.
Statistical analysis using one-way analysis of variance (ANOVA) using Duncan’s multiple range test (P < 0.05).
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stress (Figure 4). Therefore, the results indicated that the

synthesis and metabolism of intracellular molecules are

important in the submergence stress response of orchardgrass.

Waterlogging reduces the soil permeability, inhibits the plant

TCA cycle, promotes the fermentation of the glycolysis-generated

pyruvate acid to produce ethanol and NAD+, thus altering the

energy metabolism and causing the accumulation of toxic

substances in roots (Judge and Dodd, 2020). Glycolysis and

galactose metabolism are important glucose metabolism

processes in plants, which provide energy for the plant growth

and development. Strengthening the glycolysis pathway can

alleviate the hypoxia-induced energy shortage under

waterlogging stress (Kolahi et al. , 2021). In quinoa

(Chenopodium quinoa Willd.), the expression of saccharides

and alcohol-related genes in Dianli-1299 (waterlogging-resistant

cultivar) increased (Guo et al., 2022). Nitrogen application can

effectively improve the development of rapeseed roots and reduce

the waterlogging stress-induced damage (Men et al., 2020). In this

study, it was found that, phenylpropanoid biosynthesis,

glycolysis/gluconeogenesis, and nitrogen metabolism were

significantly enriched in two orchardgrass cultivars under

submergence stress (Figure 5), indicating that phenylpropanoid

biosynthesis, glycolysis/gluconeogenesis and nitrogen

metabolism participate in maintaining the balance of energy

metabolism in orchardgrass roots under submergence stress. In

addition, plant hormone signal transduction, MAPK signaling

pathway, and plant-pathogen interaction were significantly

enriched in Dianbei, but not in Anba (Figure 5). It is speculated

that these pathways might be related to the submergence

tolerance in Dianbei and Anba.
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Plant hormones mediate plants abiotic stress response (Shu

et al., 2018). The interaction of plant hormones is crucial in

waterlogging and submergence tolerance. Some plant

endogenous hormones, like abscisic acid, ethylene, auxin and

cytokinin, are very sensitive to waterlogging stress and can

effectively alleviate its adverse effects (Bashar, 2018; Qi et al.,

2019; Hu et al., 2020). The level of ethylene increases in

waterlogged plants, which has been identified as a signal that

regulates the early response to submergence stress (Phukan et al.,

2016). ERF transcription factors are regulated by ethylene.

Exogenous ethylene significantly promotes ERF transcription

activity in Arabidopsis and soybean (Glycine max L.) (Hess et al.,

2011; Tamang et al., 2014). ETR1 activates EIN2/EIN3, which

induces the expression of ERF transcription factors, and

promotes ethylene production under waterlogging stress

(Pierik et al., 2006). Plants, such as rice, which slowly

produces ethylene in its roots, positively respond to ethylene.

Ethylene reduces the level of ABA level and enhances the

sensitivity of GA in tissue (van der Knaap and Kende, 1995).

In rice, Sub1A inhibited the accumulation of DELLA, a GA-

responsive protein, and prolonged the submergence tolerance

time by preserving ATP and CHO content (Peña-Castro et al.,

2011). The endogenous ABA concentration did not decrease

under flooding in soybean, but it was decreased in untreated

plants. The transcriptional expression system in soybean which

provided exogenous ABA was better, thus indicating that

exogenous ABA enhanced the waterlogging tolerance in

soybean (Komatsu et al., 2013). In this study, in Dianbei, the

genes related to ETR, SIMKK, EIN3, and EBF1/2 in Ethylene

were up-regulated, GID1 and DELLA in GA were down-

regulated, and PYR/PYL were up-regulated, which inhibited

the downstream expression of PP2C, SnRK2, and ABF in ABA

under submergence stress (Figure 6). This indicates that

submergence stress stimulates ethylene biosynthesis and

metabolism, and reduces ABA and GA in Dianbei. These

results were similar to the results in rice and soybean under

waterlogging stress (Peña-Castro et al., 2011; Komatsu et al.,

2013). Most DEGs related to plant hormone signal transduction

were differentially expressed in Dianbei, and the differential

expression was down-regulated with the increasing

submergence treatment time (Figure 6). Therefore, we

speculate that the differential expression of these genes might

be one of the reasons for the different submergence tolerance in

Dianbei and Anba. In addition, the submergence stress may

inhibit plant hormone signal transduction, which increases with

the increasing submergence time.

Under waterlogging stress, an efficient carbohydrate

mobilization mechanism in plant roots enables cells to survive

prolonged hypoxia (Phukan et al., 2016). Cytosolic Ca2+

increased rapidly in maize and Arabidopsis, which ultimately

altered the expression of hypoxia-responsive genes in hypoxia

conditions (Subbaiah and Sachs, 2003; Bailey-Serres and Chang,

2005). Hypoxia leads to ROS production, in turn, ROS signal
FIGURE 10

A proposed model for orchardgrass under submergence stress.
The figure depicts the interplay and crosstalk of plant hormones,
pathogen interaction, and MAPK cascades in orchardgrass during
submergence stress.
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transduction promotes various defense responses (Steffens et al.,

2012). In Arabidopsis, ROS activates MAPK6 to improve the

survival under hypoxic conditions. (Chang et al., 2012).

However, excessive ROS causes oxidative damage. Therefore,

the ROS defense and signaling cascade are strictly regulated in

plants to maintain an appropriate balance between survival and

stress tolerance (Sachdev et al., 2021). Waterlogging could

induce MAPK cascades, promote the regulation of plant

hormones, and forme aerenchyma tissues, which modulates

the morphological adaptations in maize roots (Kaur et al.,

2021). In Arabidopsis, MAPK led to phosphorylation of ACC

synthase and participated in aerenchyma formation (Liu and

Zhang, 2004). In this study, CNGCs, Ca2+ transmembrane

transduction-mediating receptor proteins, were up-regulated

and activated Ca2+ transmembrane transport in orchardgrass

under submergence stress. Most genes in MAPK signal

transduction were down-regulated, which inhibited the

amplification of MAPK cascade signaling (Figures 7, 8).

Moreover, with the increasing submergence time, the

amplitude of differential expression of genes gradually

increased, and Dianbei was greater than Anba. Therefore, we

speculate that the differential expression of these genes might be

one of the reasons for the different submergence tolerance

abilities in Dianbei and Anba.
Conclusion

In this study, we tested the morphology indexes of roots of

two orchardgrass cultivars at 0 h, 8 h, 24 h, 48 h and 72 h.

Simultaneously, we obtained 118.82 Gb clean data from RNA-

seq analysis of orchardgrass roots. At 8 h and 24 h post-

submergence-stress, Dianbei identified 6663 and 9857 DEGs,

while Anba identified 7894 and 11215 DEGs, respectively. With

0 h as a control, 5455 and 6202 DEGs were differentially

expressed at 8 h and 24 h in Dianbei and Anba, respectively.

These results indicate that Anba has more genes to respond to

submergence stress. Moreover, genes related to biosynthesis and

metabolism, cellular component, transcription factor activity,

enzyme activity and coenzyme binding, phenylpropanoid

biosynthesis, glycolysis/gluconeogenesis, and nitrogen

metabolism were involved in the submergence stress response

in orchardgrass. The expression of genes involved in plant

hormone, MAPK, and Ca2+ signal transduction were

significantly in Dianbei, but not in Anba. The differential

expression of these genes and pathways may be the main

reasons behind the different submergence tolerance abilities in

Dianbei and Anba. Since the submergence tolerance of

orchardgrass is controlled by multiple genes, RNA-seq can be

used for comprehensively exploring submergence tolerance-

related genes and pathways. Therefore, the study can facilitate

further understanding of the molecular regulatory mechanism in

orchardgrass roots under submergence stress conditions.
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