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Super resolution live imaging:
The key for unveiling the true
dynamics of membrane traffic
around the Golgi apparatus in
plant cells

Yoko Ito1* and Tomohiro Uemura2

1Institute for Human Life Science, Ochanomizu University, Tokyo, Japan, 2Graduate School of
Humanities and Sciences, Ochanomizu University, Tokyo, Japan
In contrast to the relatively static image of the plants, the world inside each cell

is surprisingly dynamic. Membrane-bounded organelles move actively on the

cytoskeletons and exchange materials by vesicles, tubules, or direct contact

between each other. In order to understand what is happening during those

events, it is essential to visualize the working components in vivo. After the

breakthrough made by the application of fluorescent proteins, the

development of light microscopy enabled many discoveries in cell biology,

including those about the membrane traffic in plant cells. Especially, super-

resolution microscopy, which is becoming more and more accessible, is now

one of the most powerful techniques. However, although the spatial resolution

has improved a lot, there are still some difficulties in terms of the temporal

resolution, which is also a crucial parameter for the visualization of the living

nature of the intracellular structures. In this review, we will introduce the super

resolution microscopy developed especially for live-cell imaging with high

temporal resolution, and show some examples that were made by this tool in

plant membrane research.
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Introduction

The advances in cell biology have been propelled by breakthroughs in cellular

microscopy imaging. After the first biological studies by microscopy in the 17th century,

which led to the discovery of the “cell”, one of the huge steps was the development and

application of the electron microscopy. As we can see from the historic works from the

group of George Palade, Albert Claude, and Keith Porter, the discoveries made by the

electron microscopy literally formed the foundation of modern cell biology (Claude,
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1975; Sabatini, 1999; Tartakoff, 2002; Satir, 2005). Since then, the

electron microscopy has been contributing a lot for the

investigation of membrane traffic within the cells including

plant cells (Otegui and Pennington, 2019; Liu et al., 2020;

Weiner et al., 2021).

However, the nature of membrane traffic is amazingly

dynamic, and many of the single-membrane bounded

organelles are not stable. For example, the Golgi structure is

maintained in the balance of membrane and protein exchange

between neighboring compartments at the early secretory

pathway. Therefore, the inhibition of transport between the

endoplasmic reticulum (ER) and the Golgi apparatus quickly

affects the Golgi structure within 5 minutes and leads to the

complete disappearance of the Golgi apparatus in almost 30

minutes in both animal and plant cells (Klausner et al., 1992;

Ritzenthaler et al., 2002; Schoberer et al., 2010; Ito et al., 2012; Ito

et al., 2014). Also in the endocytic pathway, the extracellularly

added lipophilic dye FM4-64 becomes visible at the early

endosome within only a few minutes, indicating that the small

endosomal vesicles quickly carry the dye from the plasma

membrane (Dettmer et al., 2006; Viotti et al., 2010). In

addition, although the plants look immobile to our eyes, the

intracellular components move even much faster than those in

animal cells. The speed of the actomyosin dependent movement,

called cytoplasmic streaming, reaches up to several micrometer

per second while the size of the organelles such as Golgi or

multivesicular bodies is less than 1 micrometer (Shimmen and

Yokota, 2004; Nebenführ and Dixit, 2018). The plant organelles

efficiently exchange materials with each other in the mid of this

stream. When we want to reveal what is really going on during

those trafficking processes, Achilles heel of the electron

microscopy is that it requires sample fixation. This means that

we can capture only one snapshot of a dynamic process. If we get

an electron microscopic image of two connected membrane

structures, there is no information whether they are under fusion

or fission.

The biggest turning point after the electron microscopy

would be the application of fluorescent proteins to the

subcellular observations. The genetically encoded fluorescent

tags enable the protein-specific labeling under the light

microscope, meaning that we can follow the behaviors of those

proteins and the organelles where they localize in living cells.

This innovation explosively expanded the world of cell biology.

In plant membrane trafficking research field, starting from

introducing ER-localizing green fluorescent protein (GFP),

fluorescent protein labeling was quickly applied not only to

mark the organelles but also to visualize cargos in order to

analyze the trafficking activity (Oparka et al., 1995; Boevink

et al., 1996; Batoko et al., 2000).

Fluorescent live imaging is available thanks to the visible

light, but the limitation of live imaging by optical microscopy
Frontiers in Plant Science 02
also comes from the physical nature of the light. As Ernst Abbe

and Lord Rayleigh formulated in the 19th century, the resolution

of microscopy is limited to approximately half of the wavelength

of the light, meaning that objects closer than about 200 nm

cannot be resolved even with perfect lenses as long as we use the

visible light. In this respect, the light microscopy is far less

advantageous than the electron microscopy, which uses

electrons with a 105 times smaller wavelength (Schermelleh

et al., 2010; Prakash et al., 2022).

However, of course the biologists’ desire is in between the

limits of those two microscopy technologies; observation of

smaller structures in living cells. Recent efforts in the light

microscopy by many approaches are actually breaking the

limit. The optical microscopy techniques that overcome the

diffraction limit are generally called super-resolution

microscopy. Among them, the most famous are the Nobel

prize-winning methods called stimulated emission depletion

(STED), structured illumination microscopy (SIM), and

photoactivated localization microscopy or stochastic optical

reconstruction microscopy (PALM/STORM). Each of them

realizes the super-resolution less than 100 nm in XY plane by

unique techniques taking advantage of the physical nature of the

light or fluorescent proteins (Prakash et al., 2022). In addition,

microscopy companies have developed easy-to-use “soft super-

resolution” methods that can be added to conventional confocal

systems, such as ZEISS Airyscan with the resolution 1.7 times

better than the diffraction limit (Huff, 2015). These methods are

quickly evolving and becoming more and more accessible, and

are already applied in many plant studies (Komis et al., 2015;

Schubert, 2017; Liu et al., 2020; McGinness et al., 2022).

Nevertheless, those super-resolution methods still have some

points that do not fit well with the live-cell imaging of membrane

trafficking. Because usually the spatial and temporal resolutions

are in a trade-off relationship, most of the super-resolution

systems have some trouble in high-speed acquisition, and this

is not only problematic for the observation of rapidly moving

objects but also often results in photobleaching or phototoxicity.

The low acquisition rate is also a bottleneck for 3D observation,

while the organelles and carriers move around in 3D. Some of

the systems have also a limitation in the multicolor acquisition

with more than two colors, which means that for example there

is a high hurdle for the observation of a cargo transported

between two different organelles (Colin et al., 2021; Prakash

et al., 2022).

With a demand of a super-resolution system with a more

weight on the high-speed multicolor acquisition, a system

named Super Resolution Confocal Live Imaging Microscopy

(SCLIM) was developed (Tojima et al., 2023; Nakano, 2002;

Kurokawa et al., 2013; Kurokawa and Nakano, 2020). Here, we

introduce the system and its application to the actual biological

studies especially in plant cells.
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SCLIM for membrane
traffic research
SCLIM is based on the spinning-disk confocal system, the

strength of which is the capacity of high-speed scanning. The

bottleneck of spinning-disk scanning often comes from the low

signal intensity that requires longer exposure time for the detection,

which consequently reduces its advantage in speed. SCLIM is

equipped with image intensifiers with a custom-made cooling

system for each EM-CCD camera that achieve thousands-fold

signal amplification in high signal-to-noise (S/N) ratio at video

rate (30 frames/s) (Kurokawa et al., 2013). This high-sensitivity

detection is the most important feature of the system. The collected

images with precise information give high accuracy to the post-

acquisition mathematical processing (deconvolution), which

realizes the resolution 180 nm in XY that is beyond the

diffraction limit of light (Figure 1). Additionally, acquiring 3D

images with the slice-to-slice interval much smaller than the

optical slice thickness can be regarded as “oversampling” that also

contributes to the precise deconvolution processing. The specially

designed dichroic mirror/band-pass filter set is able to separate up

to five fluorescent proteins, and the cameras for each fluorescence

window enable the exact simultaneousmulticolor acquisition. So far

in living plant cells, three color 4D (XYZ plus time) observation of

GFP, RFP (red fluorescent protein), and iRFP (infra-red fluorescent

protein) has been successfully performed with multiple

combinations of labeled proteins (Ito et al., 2018; Shimizu et al.,

2021). In short, although its spatial resolution is not extremely high

as other common super-resolution methods, SCLIM is designed to

show its best performance in the observations of dynamic processes

with multiple players in living cells.
Frontiers in Plant Science 03
The first biological question that SCLIM challenged was the

big controversy about the intra-Golgi trafficking. The Golgi

apparatus consists of multiple membrane sacs called cisternae

which usually pile up to form stacks. Stacks are clearly polarized

between the cis and the trans side, and the cargos delivered from

the ER travel through the organelle from cis to trans. About how

the cargos are transported in the Golgi, there were two major

models: one was that the cargos are packed in the vesicles that

emerge from the stable cisternae and travel forward to the next

cisternae (“vesicular transport”), and the other was that the

cargos stay in the cisternae and the resident proteins of each

cisterna are transported back to the pervious cisterna by

retrograde vesicles (called “cisternal maturation” because the

nature of the cisternae changes during this process) (Glick and

Nakano, 2009; Nakano and Luini, 2010). Taking advantage of

the yeast Saccharomyces cerevisiae that has the unstacked Golgi,

SCLIM detected that the localizing proteins are displaced by the

proteins of later cisternae within one cisterna in 4D, which was

one of the first direct evidence of cisternal maturation (Losev

et al., 2006; Matsuura-Tokita et al., 2006). Afterwards, the

following improvement of SCLIM has made it possible to

observe the cisternal maturation with the cargo stays in the

same cisternae (Kurokawa et al., 2019).

With the success in yeast, SCLIM came to be applied for the

membrane traffic research in other cell types including plants.

The microscopy system itself is universal and can be used for

various organelles (Ebine et al., 2008; Ishikawa et al., 2018), but it

has been utilized the most for the observations around the Golgi

apparatus. Its major contribution to the research field would be

the characterization of organelle “sub-compartments” or “sub-

domains/zones” around the Golgi. The compartments and some

specific zones within them that were undistinguishable from the
FIGURE 1

Improvement of the spatial resolution of a SCLIM image by repetitive deconvolution. 3D image of the ER in a tobacco BY-2 cell (SP-iRFP-HDEL)
taken by SCLIM. The resolution was improved by the iterative restoration (repetitive deconvolution) of Volocity software. Raw image (left), after 5
iterations (middle), and after 10 iterations (right). Sacle bar = 5 mm.
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neighbors by the electron microscopy or conventional light

microscopy were demonstrated to have distinct nature

and dynamics.
The dynamics of Golgi entry:
GECCO as the universal
intermediate at the
ER-Golgi interface

At the “entry” side of the Golgi that receives materials from the

ER, the electron microscopic studies have suggested that the first cis

cisternae are formed by the collection of 3 to 5 ER-originated COPII

vesicles, and those one or two newly formed cis-cisternae are the

cargo sorting station without glycosylation activities (Donohoe

et al., 2013). Our study using the ER-Golgi traffic inhibitor

Brefeldin A (BFA) on tobacco BY-2 cells has demonstrated that

the cisternae on the most cis side of the Golgi stacks behave

differently upon BFA treatment; the proteins of those cisternae

localize to punctate structures while the other Golgi components are

absorbed into the ER. The cis-Golgi SNARE SYP31 and the

membrane protein retrieval receptor RER1B have been identified

to localize to such cis-most cisternae, which is reasonable from their

function in the traffic at the ER-Golgi interface (Ito et al., 2012).

Those cisternae are located more on the cis side than the ones

containing a-1,2-mannosidase I (ManI), the first Golgi-a-
mannosidase acting in the N-glycosylation chain, indicating that

they would be equivalent to the sorting-specialized cis cisternae

described in Donohoe et al. (2013). A recent study also revealed that

the ER-a-mannosidase MNS3, the enzyme acts one step before

ManI and important for the recognition of the misfolded

glycoproteins for degradation, actually localizes not to the ER but

to the Golgi and colocalizes with SYP31 at the punctate structures

upon BFA treatment (Schoberer et al., 2019). SCLIM observation

showed that the punctate structures after BFA treatment are not the

ER exit sites (ERES) but the compartments closely associated with

them (Ito et al., 2012). Moreover, 4D analysis revealed that the

trans-Golgi protein that has relocalized to the ER is transported

through the punctate structures during Golgi regeneration after

BFA removal. When coexisting at the same structure, the cis-most-

and the trans-Golgi proteins are not evenly mixed, similar to the

SCLIM super-resolution images of maturing cisternae in yeast

(Matsuura-Tokita et al., 2006; Ishii et al., 2016; Ito et al., 2018).

From these results, based on the function of receiving the other

Golgi components and being the scaffold for stack regeneration, we

have named those punctate structures (and in the broad sense also

the original cis-most Golgi cisternae) Golgi entry core compartment

(GECCO) (Ito et al., 2018; Ito and Boutté, 2020; Nakano, 2022).

In vertebrate cells that have a radial microtubule pattern, the

Golgi apparatus is concentrated close to the centrosome/

microtubule organizing center. Consequently, about a half of the

ERES are far apart from the Golgi and the long-distance transport is
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required at the ER-Golgi interface (Stephens, 2003). This is achieved

by the ER-Golgi intermediate compartment (ERGIC), which is

vesicular-tubular structures obviously separated from the main

body of the Golgi. ERGIC-53, the protein frequently used as the

ERGIC marker, is known to localize to punctate structures upon

BFA treatment in mammalian cells (Lippincott-Schwartz et al.,

1990). Considering the position at the entry side of the Golgi and

the behavior upon BFA treatment, GECCO seems to be the plant

counterpart of ERGIC, although it is not physically separated from

the other cisternae. The characterization of GECCO as the Golgi

sub-compartment that has a distinct nature brought us the idea that

the existence of such a specialized entry compartment at the ER-

Golgi boundary might be a shared feature of the eukaryotes. Indeed,

also in S. cerevisiae, the SCLIM 4D observation revealed that only

the cis-cisternae of the characteristic unstacked Golgi show specific

“hug-and-kiss” action to receive cargoes from the ERES (described

later). Further analysis of plant GECCO might contribute to unveil

the universal mechanism of ER-Golgi trafficking.
The dynamics of Golgi exit: Sorting
by specialized sub-organelle zones

At the “exit” side of the Golgi, there is another vesicular-

tubular compartment called trans-Golgi network (TGN), which

produces different kinds of transport vesicles and sorts the

cargos into them. TGN used to be thought as a part of the

Golgi and it was often referred to just as the trans-Golgi.

However, the localization analysis of TGN Qa-SNAREs by live

imaging in Arabidopsis protoplasts found that TGN is

sometimes separated from the Golgi (Uemura et al., 2004).

Subsequent electron microscopic studies reported that some

TGN-like structures seem to be detaching from the main

Golgi stack, and proposed that the late TGN cisternae become

independent organelle as they mature and get fragmented into

vesicles in the end of their life (Staehelin and Kang, 2008; Kang

et al., 2011). Finally, live-cell imaging by spinning disc confocal

microscopy and also 4D super-resolution imaging by SCLIM

revealed that the plant TGN shows apparently independent

movement from the trans-Golgi and not only dissociate but

also associate with the Golgi reversibly, indicating that the

existence of “the Golgi-independent TGN (GI-TGN)” reflects

more than the one-way maturation (Viotti et al., 2010; Uemura

and Nakano, 2013; Uemura et al., 2014). Together with the fact

that the plant TGN functions also as the early endosome

(Dettmer et al., 2006; Lam et al., 2007; Chow et al., 2008;

Viotti et al., 2010), the striking data of the TGN dynamics

made the idea of the compartment as an independent organelle

widely accepted in the plant research field.

In addition to this change of our view of the TGN, super-

resolution live imaging has contributed to the characterization of

TGN sub-domains or functional zones. Since the TGN is the
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intracellular trafficking hub where multiple transport routs

intersect, a complex cargo sorting is taking place within this

compartment. The idea that the plant TGN is not homogeneous

and can be divided into some sub-domains that produce specific

carriers for efficient cargo sorting emerged around the start of

this millennium. Beginning with an immunoelectron

microscopic research (Bassham et al., 2000), a number of

studies have reported that some trafficking-related TGN

proteins including coat proteins, SNAREs, and tethering

factors show segregated localizations (Chow et al., 2008;

Gendre et al., 2011; Boutté et al., 2013; Wattelet-Boyer et al.,

2016; Ravikumar et al., 2018; Heinze et al., 2020), and the

electron tomography revealed that there are at least two types

of vesicles budding from the TGN (Kang et al., 2011). The

SCLIM observation also added some distinctly localizing TGN

proteins, and moreover, taking advantage of the simultaneous

triple-color super-resolution system, they were clearly shown to

reside in different sub-regions within one TGN labeled by

another protein (Shimizu et al., 2021). This revealed that there

are at least two zones in the TGN, one with the proteins

mediating secretory traffic and the other with those mediating

vacuolar traffic. SCLIM also displayed its ability in the analysis of

the dynamics of those TGN zones. Portions of the secretory-

trafficking zone were observed to leave the TGN while this did

not happen with the vacuolar-trafficking zone, suggesting that

the GI-TGN is involved in the secretory trafficking pathway

(Shimizu et al., 2021; Shimizu and Uemura, 2022).
Microscopic approaches for the
remaining problems in plant early
secretory pathway

Albeit the development of the super-resolution microscopy

including SCLIM, there are still some biological questions that

cannot be covered either by the electron or by the light

microscopy. For example, one of the membrane traffic

problems of the early secretory pathway in plants that is left in

this technical valley is that whether there are COPII vesicles or

not. As it is widely known, the COPII coat and its regulatory

mechanism is very well conserved among the eukaryotes and

working at the ER-to-Golgi anterograde traffic, but whether

those vesicles budded from the ERES are really pinched off

and become free is still under debate. The controversy comes

from the fact that the number of electron microscopic studies

that captured the images of COPII vesicles in higher plants is

very limited (Hawes, 2012; Robinson et al., 2015; Robinson,

2020). Even the COPII budding profiles are difficult to be

observed in higher plants and have been reported only by

high-pressure frozen samples (Ritzenthaler et al., 2002;

Donohoe et al., 2006; Kang and Staehelin, 2008; Staehelin and

Kang, 2008), while the classical chemical fixation sufficiently
Frontiers in Plant Science 05
works for algae such as Chlamydomonas (Hummel et al., 2007).

This have been tried to be explained by multiple possibilities; the

COPII buds might be highly unstable and the vesicles could be

also very rapidly consumed (Staehelin and Kang, 2008), or ER-

Golgi transport might be achieved not mainly by vesicles but by

direct tubular connections as it has been suggested in

mammalian cells for the transport of large cargos such as

procollagen (Raote and Malhotra, 2019). Another possibility is

that the Golgi cisternae temporarily approach to the COPII

budding sites and directly capture the cargos from them before

the vesicles float away from the ER. SCLIM observations of the

dynamics of the Golgi cisternae and the COPII coat plus cargo

transport in yeast cells have demonstrated that the cis-cisternae

come close toward the ERES, remain associated for a few

seconds and then move away, thus this movement was given

the name “hug-and-kiss”. During this “kissing” period, the

intensity of the COPII coat at the contact area often decreases

and the cargo is loaded to the cis-Golgi, indicating the COPII

uncoating and the membrane connection for cargo transfer

(Kurokawa et al., 2014). For the fluorescence live imaging in

plant cells, COPII coat proteins are often used to label the ERES,

but actually it is not currently possible to tell whether the

structures labeled by COPII coat are the budding sites on the

ER or the clusters of coated free vesicles. Because the size of the

COPII vesicles is typically about 60 nm and would be mobile,

any of the current light microcopy do not have sufficient

spatiotemporal resolution yet. Also, as most of the COPII buds

are shown to be within only 300 nm from the Golgi in

Arabidopsis cells, it is still difficult to see the dynamic change

of ER-Golgi relation like hug-and-kiss if it is taking place in

plants as well (Kang and Staehelin, 2008; Staehelin and

Kang, 2008).

Another problem of current organelle live-imaging based on

fluorescent proteins is that what we can see is just the proteins

and not the membranous structures themselves. As it is apparent

from the findings about TGN zones, one kind of protein does

not necessarily label the whole structure uniformly even if the

membrane is connected. This is also the case for the ER-Golgi

interface. Although it was believed that Sar1, the COPII coat

assembly regulator, presented all over the COPII buds to keep

the coat on the membrane before, recent studies in yeast cells or

in vitro reconstitution assay using yeast proteins showed that

Sar1 localizes only to the rim of the budding region (Kurokawa

et al., 2016; Iwasaki et al., 2017). This indicates the possibility of

partial uncoating during the COPII budding. Also in

mammalian cells, it is suggested that the COPII coat remains

only at the neck of the ERES and functions as the gatekeeper for

cargo sorting into ERES, therefore the region labeled by COPII

coat might not be the ERES per se (Shomron et al., 2021). One

solution would be the correlative light and electron microscopy

(CLEM), the combination of electron and fluorescent

microscopies. A recent study of HeLa cells using focused ion

beam scanning electron microscopy (FIB-SEM) combined with
frontiersin.org
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super-resolution cryogenic-SIM has shown the 3D ultrastructure

of ERES with the distribution of COPI, COPII, and cargo

proteins, which was totally different from the classical image

of ERES (Hoffman et al., 2020; Weigel et al., 2021). CLEM is

beginning to be applied to the endomembrane structures in

plant cells as well, and is under improvement thanks to the

development of related methods such as recovering of more

fluorescent signal after fixation or automatic system to support

correlation (Toyooka and Shinozaki-Narikawa, 2019; Wang

et al., 2019). Although there are still some difficulties in

sample preparation for applying the same 3D electron

microscopy methods like FIB-SEM to vascular plants because

of the plant-specific reasons such as the large cell size and the

presence of huge vacuoles (Liu et al., 2020; Weiner et al., 2021),

technical advancement would overcome them. Nevertheless, as

the dynamics information is lost in CLEM, the improvement in

light microscopy is yet required. Imperfect though it is,

visualization of more kinds of proteins at the same time would

bring more information.
Future perspectives

The co-evolution of microscopic techniques and cell biology

continues running. Regarding SCLIM, since the first-generation

system (SCLIM-1) was originally designed for the observation of

small yeast cells, the field of view is sometimes too small for

other cell types including plants. Therefore, the advanced

version called SCLIM-2K (K for the developer Yasuhito

Kosugi) with sCMOS cameras for a wider field of view has

been developed and already in actual use for mammalian cells
Frontiers in Plant Science 06
(Tojima et al., 2023). Its 150 nm XY resolution is better than

SCLIM-1 and the operation software became user-friendly, so it

will be a good tool for plant cell observation. In addition, SCLIM

is evolving into another way as well, to achieve much higher

spatiotemporal resolution. This system, called SCLIM-2M (M

for the developer Daisuke Miyashiro), is equipped with ultrafast

cameras (1000 frames/s) and enables single-photon localization.

With the originally built deconvolution algorithm, our

preliminary data of the fluorescent Golgi markers in BY-2 cells

already shows many tiny vesicles less than 100 nm diameter

moving around the Golgi stacks (Figure 2).

Not only the microscopy system but also recent progresses in

fluorescent protein and the cargo transport visualizing methods

are already showing their power in the animal research field

(Boncompain et al., 2012; Chen et al., 2013; Hirano et al., 2022).

It would be in the close future that we can open the next door of

plant membrane trafficking research with the advanced

imaging technology.
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