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Fusion of hyperspectral imaging
(HSI) and RGB for identification
of soybean kernel damages
using ShuffleNet with
convolutional optimization and
cross stage partial architecture

Ling Zheng, Mingyue Zhao, Jinchen Zhu, Linsheng Huang*,
Jinling Zhao, Dong Liang and Dongyan Zhang

National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui
University, Hefei, China
Identification of soybean kernel damages is significant to prevent further

disoperation. Hyperspectral imaging (HSI) has shown great potential in cereal

kernel identification, but its low spatial resolution leads to external feature

infidelity and limits the analysis accuracy. In this study, the fusion of HSI and

RGB images and improved ShuffleNet were combined to develop an

identification method for soybean kernel damages. First, the HSI-RGB fusion

network (HRFN) was designed based on super-resolution and spectral

modification modules to process the registered HSI and RGB image pairs and

generate super-resolution HSI (SR-HSI) images. ShuffleNet improved with

convolut ion opt imizat ion and cross-stage part ia l archi tecture

(ShuffleNet_COCSP) was used to build classification models with the optimal

image set of effective wavelengths (OISEW) of SR-HSI images obtained by

support vector machine and ShuffleNet. High-quality fusion of HSI and RGB

with the obvious spatial promotion and satisfactory spectral conservation was

gained by HRFN. ShuffleNet_COCSP and OISEW obtained the optimal

recognition performance of ACCp=98.36%, Params=0.805 M, and

FLOPs=0.097 G, outperforming other classification methods and other types

of images. Overall, the proposed method provides an accurate and reliable

identification of soybean kernel damages and would be extended to analysis of

other quality indicators of various crop kernels.

KEYWORDS

soybean damages, hyperspectral imaging, super resolution, image fusion, lightweight
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1 Introduction

Soybean is one of the most important legume crops used as

human food and animal feed in the world; it has 18%–22% oil

and 38%–56% vegetable protein in its seeds (Arslan et al., 2018).

Soybean has a protective effect against many diseases, such as

high cholesterol, osteoporosis, cardiovascular, chronic diseases,

and cancers (Xiao, 2008). The shell of soybean kernels is easily

broken during transportation and storage because of its weak

protective morphological arrangement; as such, soybeans are

susceptible to mildew in the high-temperature and muggy

atmosphere due to the post-maturation effect (Rani et al.,

2013; Bessa et al., 2021). In broken and moldy soybean

kernels, proteins and lipids undergo degradation more readily

during storage, leading to quality deterioration (Yousif, 2014).

Identification of damaged soybean kernels is prerequisite and

conducive to reduce the infection of healthy kernels to ensure

the quality of subsequent product and avoid economic loss.

Commonly used methods for soybean damage detection

include morphological analysis, chemical analysis, and imaging

techniques (Zhao et al., 2011; Yang et al., 2015; Adão et al., 2017).

Morphological analysis requires the operator to be experienced

and is susceptible to subjective interference. Chemical analysis,

such as chromatography and enzyme-linked immunosorbent

assay, owns high accuracy and excellent reproducibility but is a

destructive, time-consuming, and labor-intensive process.

Imaging techniques, such as red–green–blue (RGB) imaging

with high spatial resolution and hyperspectral imaging (HSI)

with high spectral resolution, have been popularized in image

classification, object detection, and semantic segmentation.

However, subtle changes in the internal composition of the

kernels are difficult to be perceived by RGB due to insufficient

spectral information (Steinbrener et al., 2019).

HSI can simultaneously provide spectral responses and

spatial images of hundreds of continuous wavelengths to

obtain spectral and external features, thereby enriching the

description of soybean kernels (Lu et al., 2020). HSI hardware

typically sacrifices spatial resolution to ensure premium spectral

resolution due to limited incident energy (Dian et al., 2021). The

low spatial resolution leads to weak fidelity of appearance-based

features especially when discriminating small objects, such as

soybean kernels (Fabiyi et al., 2020). This problem can be solved

by multi-modal image fusion, which extracts and combines the

most meaningful information from images of different sources

to generate a single image that is more informative and beneficial

for subsequent applications (Zhang et al., 2021). Thus far, the

methods for fusing HSI and RGB images can be broadly divided

into multi-scale transformation based on coefficients (Wei et al.,

2021), saliency (Muddamsetty et al., 2013), sparse representation

(Wei et al., 2015), and deep learning (Wei et al., 2017). Fusion

rules in the first three categories are specifically designed in the

transform or spatial domain in virtue of transform bases.

However, applying the same transformation basis such as
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wavelet basis (Starck et al., 2001) and ridgelet basis (Chen

et al., 2005) to HSI and RGB images may lead to confined

fusion performance (Yang and Li, 2012).

In recent years, deep learning-based fusion methods can

extract diverse and multi-scale features to achieve adaptive

fusion. Notably, the absence of ground truth (GT) images in

real scenes leads to the inapplicability of widely used supervised

learning models (Zhang et al., 2021). Therefore, an unsupervised

method has practical significance (Wang et al., 2020). Proposed an

unsupervised and coupled autoencoder (AE) framework

implemented by CNNs for super-resolution HSI. However,

continuous convolution leads to the loss of information from

shallow layers containing low-level features at high spatial

resolution, which is unbeneficial for fusion. Dense connections

enhance feature propagation and improve information flow by

interconnect layers and bypass settings, thereby providing

continuous attention of features and preserving the detailed

information of HSI and RGB images (Dolz et al., 2018).

Spectral preservation plays an crucial role in fusing HSI and

RGB images due to the skewed spectral information that affects

the quality of the fused image (Hu et al., 2021). Channel attention

is commonly used to assign feature importance by dynamically

adjusting the weight of each channel to assist the performance

improvement of various task; they can also be used to correct the

spectral information in image fusion (Hu et al., 2017).

Although a number of approaches are available for

constructing super-resolution hyperspectral image (SR-HSI),

few researchers focus on the identification effect of SR-HSI in

real environment. End-to-end neural networks use translation

invariance and rotation invariance to automatically extract key

features without manual feature engineering in image

recognition applications (Dhaka et al., 2021; Kundu et al.,

2021). However, the high computing and memory

requirements hinder the application of complex networks.

Lightweight networks, such as MobileNetV2 (Sandler et al.,

2018), GhostNet (Han et al., 2020), and ShuffleNet (Ma et al.,

2018), which have small parameter and low computation, can

achieve good accuracy on resource-constrained devices. In

particular, the efficient architecture of ShuffleNet solves the

boundary effect problem caused by depth-wise (DW) separable

convolution. Convolution optimization including pruning the

redundant convolution layer and enlarging the convolution

kernel can accelerate the network inference speed and extract

richer global features (Luo et al., 2016). The CSP architecture

with switching concatenation and transition steps as shortcut

operation allows the gradient flow to propagate through different

paths of network to enrich the gradient combination and

quicken the rate of reasoning (Wang et al., 2020). ShuffleNet

can be combined with convolution optimization (CO) and CSP

architecture to identify damages to soybean kernels.

Herein, fusion of HSI and RGB images and improved

ShuffleNet were proposed to identify soybean kernel damages

(Figure 1). First, a super-resolution module based on AE and
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dense connection and spectroscopy-modification module from the

idea of channel attention were designed and integrated to construct

a HSI-RGB fusion network (HRFN) and generate SR-HSI images.

SVM and ShuffleNet were used to select the SR-HSI

monochromatic images of effective wavelengths for rapid

identification of soybean kernel damages. Finally, a new

identification network architecture, namely, ShuffleNet _COCSP,

was developed by combining CO and CSP architectures with

ShuffleNet to identify soybean damages with SR-HSI. The main

contribution of this study can be summarized as follows.
Fron
1. To the best of our knowledge, this study is the first to

fuse the HSI and RGB images of small kernels and

develop the lightweight network ShuffleNet _COCSP for

practical identification of damages.

2. The proposed novel network for HSI and RGB image

fusion consists of parallel super-resolution module

(SRM) and spectral correction module (SMM).

3. An improved efficient ShuffleNet with convolution

optimization and cross-stage partial is proposed for

accurate identification of soybean kernel damages.
2 Materials and methods

2.1 Sample preparation

Samples of He13 soybean kernels (Figure S1 in

Supplementary Material) were obtained from Shu County
tiers in Plant Science 03
Agricultural Management Company. Soybeans with smooth

surface were selected and considered as healthy ones. Healthy

soybeans were soaked in warm water for 10 min and dried using

a drying oven at 100 °C for 2 h to obtain broken soybeans. Moldy

soybeans were prepared as follows. 1) Healthy soybeans were

soaked in warm water for 10 min and placed in a glass Petri dish.

2) The dish was placed in an incubator with constant

temperature of 34°C and humidity of 80% to obtain different

degrees of moldy soybeans. 3) Moldy soybeans were collected

daily. Mildly moldy soybeans have few spots on the epidermis,

whereas severely moldy soybeans have mycelia on the epidermis.

Aflatoxin B1 test strip was used to determine the toxin of

moldy soybeans. The lower limit of AFB1 toxin detection was 10

ppb, mildly moldy was in the range of 10–20 ppb, and severely

moldy was greater than 20 ppb. For HSI and RGB image

acquisition, 2,160 samples were collected, including 560

healthy kernels, 560 broken kernels, 560 mildly moldy kernels,

and 480 severely moldy kernels.
2.2 Acquisition and calibration of HSI and
RGB images

The image acquisition system of soybean kernels was

composed of high-resolution RGB camera and HSI (Figure S2

in Supplementary Material). The industrial camera HIKVISION

MV-CA060-11GM with a 12 mm/F2.0 lens was used to collect

RGB images at 3072×2048 pixels and save them in BMP format.

HSI images were obtained by a visible/NIR HSI system

consisting of a Headwall Nano-Hyperspec (Headwall
FIGURE 1

Flowchart of identification of soybean kernel damages; Class 0-3: healthy, broken, mildly moldy and severely moldy soybean kernels; SRM is
designed by Autoencoder and Dense block.
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Photonics Inc., Bolton, MA, USA) push-broom sensor that offers

272 spectral bands, two halogen neodymium lamps (75 W), and

a computing unit. For imaging, 70 soybean kernels were placed

on a black plate, and the distance between the kernels and lens of

the HSI sensor and RGB camera was adjusted to 40 cm. Two

halogen lamps were placed on both sides of the lens for

illumination. During data acquisition, the RGB industrial

camera was set to operate in manual mode with an ISO of 400

and a shutter speed of 16 ms. The parameters of the HSI system

were set as follows: exposure time, 70 ms; frame period, 70 ms;

and scanning speed, 0.45 deg/s. For calibrating the image, white

and dark reference images were acquired by scanning a standard

white board with 98% reflectance and covering the lens before

collecting HSI images. The correction formula is as follows:

Ic =
Ir − Id
Iw − Id

(1)

where Ic is the corrected image, Iris a measured raw image of

soybean kernels, and Iwand Id are the white and dark reference

images, respectively.
2.3 Image preprocessing

The spatial misalignment of source images was caused by the

difference between image sensors. In fusion tasks, operations

along the spatial pixel positions in deep learning methods are

unavailable for real source images due to spatial dislocation

(Jiang et al., 2021). As a result, high-precision registration is a

key issue in image fusion for constructing SR-HSI datasets.

Transformation, rotation, and translation parameters were

obtained by perspective deformation to align HSI and RGB

images (Arsigny et al., 2005). Specifically, three band images

were extracted from the HSI image to form a pseudo-RGB

image, which was used as the image to be aligned with the

RGB image as the reference image. The region of interest (ROI,

rectangle) is selected from the pseudo-RGB image for

perspective deformation. Transformation, rotation, and

translation parameters were accurately calculated from the

ROI vertices. The HSI image was transformed using these

parameters to align with the RGB image. The designed

registration visualization formula is as follows:

 h1 x, yð Þ =o
R

i=1
ai x, yð Þ (2)

h2 x, yð Þ =o
r

i=1
bi x, yð Þ (3)

f x, yð Þ = eh2 x,yð Þ

eh1 x,yð Þ + eh2 x,yð Þ (4)
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where f(x,y) is the registration visualization map, x and y are

pixel coordinates, is HSI image, is RGB image, and R and r are

the spectral band number of HSI and RGB images, respectively.

Canny operator detects the contour of kernels in RGB. The

Otsu’s algorithm was used in threshold segmentation to obtain a

binary image. The background noise of the RGB image was

removed, and the mask obtained from RGB segmentation was

transformed to HSI space to remove the background noise of the

HSI image. Using the samemask, the samples of HSI and RGB data

sets had one-to-one correspondence in the subsequent recognition,

and inconsistent phenomenon of sample division did not exist.
2.4 Fusion of HSI and RGB images

In this study, a HSI-RGB fusion network (HRFN) was

developed using parallel super-resolution module (SRM) and

spectroscopy-modification module (SMM) to solve the problem

of low spatial resolution of HSI images. In HRFN (Figure 2), the

RGB grayscale image and the monochromatic image of 272

bands of HSI were fused to generate the SR-HSI monochromatic

image of corresponding band.

SRM was designed based on AE, a widely-used super-

resolution deep learning architecture, and dense block. AE is an

unsupervised neural network composed of encoder and decoder

and has excellent generalization (Liu et al., 2022). The potential

representation of images obtained by encoder has valuable

attributes, and the concatenated potential representations of

multi-modal images can be reconstructed to a high-quality

image by the decoder. For super-resolution in our study, the

multi-modal images are the registered HSI and RGB image pair.

The encoder is composed of four convolutional layers with the

kernel size of 3 × 3 and channel of 16; the decoder contains four

convolutional layers with the kernel of 3 × 3. However, the

successive convolutions make AE suffer from gradient

disappearance and inability to maintain shallow and detailed

features, which are critical to obtain excellent super-resolution.

Dense connection is introduced to the encoder of AE. In the

encoder, the first convolution is a common convolution, and the

last three convolution layers are set as a dense block. Dense block

can preserve as much information as possible in encoding by the

multi re-utilization of features obtained in the former layers.

The super-resolution operation is performed on the registered

image pairs, but the registration may lose some important spectral

information. With the idea of attention mechanism, SMM, which

is in parallel with SRM, is designed to preserve spectral

information of the raw HSI. SMM consists of two global

average pooling (GAP) layers and two convolution layers of

1×1. The GAP results of the raw HSI and super-resolution

image are cascaded and input to the convolutional layers to

obtain the weights that describe the correlation between
frontiersin.org
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channels. The super-resolution image in SRM is multiplied by the

weights to obtain the final SR-HSI image.
2.5 SR-HSI images of effective
wavelengths

The direct use of SR-HSI images containing the images of 272

wavelengths to identify damages to soybean kernels would result

in low processing efficiency and high hardware and time costs.

The Images of EWs have been proved as a feasible approach to

alleviate the limitations in the previous works (Weng et al., 2021).

The selection of EWs from the reflectance spectra was based on

the performance of SVM models that describe the reflectance of

wavelengths and classes of soybean kernels. Specifically, the

reflectance of each wavelength and class for the soybean kernels

were employed to develop classification models by using SVM.

The higher the classification accuracy is, the more important the

wavelength will be. The first six wavelengths were selected as EWs,

and the SR-HSI images of EWs were sequentially overlaid on

ShuffleNet to select the most suitable wavelength combination for

determination of damages to soybean kernels.

Before the above operations, spectra were acquired by the

following steps. The SR-HSI image with removed background

noise was converted into a binary image by graying and

converting to color space HSV. The ROI of the sample was

extracted, and the reflectance values of all pixels within the ROI

were averaged as the reflectance spectra of the soybean samples.
2.6 Recognition model

A deep network with deep architectures possesses powerful

feature extraction capability and generally perform well in image
Frontiers in Plant Science 05
tasks. Nevertheless, the high computing and memory

requirements of the network hinder its wide application. One

approach to solve the problem is the use of a lightweight

network. ShuffleNet, which is a powerful lightweight network,

can reduce parameters and computation costs by the operation

as channels shuffle in the stage layer (Ma et al., 2018).

Specifically, ShuffleNet is composed of convolutional layers,

pooling layers, stage layers, and fully connected layers, where the

stage is consists of a downsampling unit and a basic unit. These

units include DW convolutional layers and 1×1 convolutional

layers. However, ShuffleNet replaces a large number of 1×1

point-wise convolutions with channel shuffle to induce the

lack of representation ability and slight loss of accuracy. In the

stage architecture, convolutional optimization (CO) and cross-

stage partial (CSP) architecture were adopted to alleviate the

above challenges in this study. The removal of the last

convolutional layer and the substitution of the DW

convolution kernel size of 3×3 with 7×7 reduce the model

parameters, expand the perceptual field, and obtain rich global

features (Ding et al., 2022). By replacing all DW convolution 3×3

with 7×7, the padding needs to be changed from 1 to 3, so the

resolution of the output feature map remains the same as the

original. The CSP architecture firstly divides the feature maps of

the downsampling unit into two parts, make them pass through

different paths, and concatenate them together in the end of the

stage layer. One part passes through the original path, and the

other shortcuts directly to the end of the stage. Through the

operation, CSP enables richer gradient sets and reduces

computation by splitting gradient streams to propagate

through different network paths (Wang et al., 2020).

In this study, ShuffleNet_CO was first constructed by

removing convolution and expanding the DW kernel in stage

layers based on the ShuffleNet framework. ShuffleNet_COCSP

(Figure 3) was then developed by introducing the CSP
FIGURE 2

Architecture of HRFN.
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architecture in ShuffleNet_CO. The detailed parameter settings

o f ShuffleNet_COCSP are shown in Table S1 in

Supplementary Material.
2.7 Performance evaluation

Mutual information(MI) (Wells et al., 1996), structural

similarity (SSIM) (Wang et al., 2004), peak signal to noise

ratio (PSNR) (Feng et al., 2012), and mean absolute differences

(MAD) (Cheng et al., 2016)are used in registration. The

registration performance increases with increasing values of

MI, SSIM, and PSNR and decreasing values of MAD, where

the ideal values for MI and SSIM are 1. Higher PSNR and lower

MAD indicate better quality of registration. Pixel feature mutual

information (FMIpixel) (Haghighat and Razian, 2014), multi-

scale structural similarity (MS-SSIM) (Ma et al., 2015), and Nabf

(Xydeas and Petrovic, 2000) are used in fusion. The fusion

performance increases with increasing values of FMIpixel and

MS-SSIM and decreasing values of Nabf.

Healthy, broken, mildly moldy, and severely moldy soybean

kernels were divided into a calibration set, a validation set, and a

prediction set according to the ratio of 3:1:1. The calibration and

validation sets were used for parameter adjustment and

preliminary evaluation of the recognition model. Model

performance was quantitatively evaluated using accuracy of

calibration set (ACCC), validation set (ACCV), and prediction set

(ACCP) as well as precision, recall, and F1-score of the prediction
Frontiers in Plant Science 06
set. The evaluation index of the network was the number of

floating point operations (FLOPs) and the number of model

parameters (Params). Deep networks were constructed based on

the PyTorch framework in Python. All the methods were

conducted on a computer with an NVIDIA GeForce RTX

3090 GPU.
3 Results and discussion

3.1 Image registration

The registration of HSI and RGB image pairs was

performed by perspective deformation, and the performance

for healthy soybean kernels is shown in Figure 4. From

(Figures 4A, B), the MI and SSIM of the registered image

pairs were higher than 0.46 and 0.71 while those of the

unregistered image pairs were lower 0.15 and 0.2. The

registration operation greatly improves the structural

similarity between HSI and RGB images. The PSNR trend of

the registered image pairs increased first and then decreased,

while the MAD trend was opposite. From the registration

visualization (Figures 4E, F), the raw image pairs of HSI and

RGB are almost not spatially aligned, but the image pairs are

almost perfectly aligned with only minor misalignment at the

edge after the registration. Hence, the proposed registration

operation satisfactorily solves the spatial dislocation of

image pairs.
FIGURE 3

Architecture of ShuffleNet_COCSP.
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3.2 Fusion of HSI and RGB

HRFN was adopted to fuse the registered HSI and RGB pair

to generate SR-HSI (Figure 5). The texture and color of soybean

kernels can be clearly observed in the RGB image (Figure 5A),
Frontiers in Plant Science 07
but their details are very blurred in the registered HSI image

(Figure 5B). SR-HSI has better spatial resolution than HSI

(Figure 5C) and more spectral bands (272) than RGB (3). In

simple terms, SR-HSI can be regarded as the spectral resolution

improvement of RGB or the spatial resolution enhancement of
A B

C D

E

F

FIGURE 4

Evaluation results of HSI and RGB registration. (A) MI; (B) SSIM; (C) PSNR; (D) MAD; (E, F) visualization of image pairs before and after registration.
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HSI. From the quantitative results of soybean kernels in Table 1,

HRFN was highly effective in the fusion for the four classes of

soybean kernels, with the FMI_pixel of 0.9415–0.9614,

MS_SSIM of 0.9678–0.9880, and Qabf below 0.0508. The

FMI_pixel and MS_SSIM of healthy soybean kernels were

0.9488 and 0.9842 higher than those of the three other classes

because of the low values of statistical contrast characteristics of

structural information for broken or moldy areas of soybean.

The reflectance spectra of SR-HSI almost perfectly

overlapped with those of raw HSI, indicating that the SMM

module learned the mapping relationship between the HSI and

super-resolution image (Figure 5). Thus, HRFN achieves good

fusion of HSI and RGB, and the SMM module retains the

spectral information from HSI to improve the quality of SR-HSI.
3.3 Selection of image set of EWs

Selecting the key variables of HSI data cube can avoid

dimensional disasters and improve the interpretability and
Frontiers in Plant Science 08
generalization ability. Here, the SR-HSI monochromatic images

of EWs were extracted, and the optimal image set of EWs

(OISEW) was selected according to the classification results of

soybean kernel damages. The six EWs selected by SVM are 771,

491, 700, 927, 635, and 973 nm. The SR-HSI monochromatic

images of the six EWs were stacked in the above order, and the

most remarkable image set was screened based on the

performance of ShuffleNet (Table 2). The ShuffleNet parameters

are presented in Table S1 in Supplementary Material. For the SR-

HSI image of 771 nm, poor results were obtained with ACCT=

99.12%, ACCV= 88.94%, and ACCP= 86.97% mainly because of

insufficient information of the image of one wavelength. With the

addition of images of other wavelengths, the accuracy first

increased and then decreased. The best results of ACCT=

99.89%, ACCV= 95.65%, and ACCP=92.27% were obtained

using the SR-HSI image sets of 771, 491, 700, 927, and 635 nm,

named as OISEW. The classification performance for severely

moldy kernels was improved significantly with precision of

86.14%–97.75%, recall of 91.43%–92.55%, and F1-score of

89.23%–95.08%. The results on mildly moldy kernels were
A B C

FIGURE 5

Fused results for HSI and RGB images with HRFN. (A) The registered HSI image of the 618 nm, (B) SR-HSI image of the 618 nm, (C) RGB Gray image.
TABLE 1 Fusion performance of HSI and RGB using HRFN.

Method Classes FMI_pixel MS_SSIM Nabf

HRFN

Healthy 0.9614 0.9880 0.0422

Broken 0.9437 0.9678 0.0349

Mildly moldy 0.9494 0.9781 0.0375

Severely moldy 0.9415 0.9778 0.0508
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similar to those on severely moldy kernels. The classification

results of healthy and broken classes were superior to the other

image set of EWs, with F1-scores of 90.30% and 90.17%,

respectively. Thus, OISEW was adopted to classify the various

damages of soybean kernels in subsequent analysis.
3.4 Identification of soybean kernel
damages using ShuffleNet_COCSP

The ACCP=92.27% is insufficient for identification of kernel

damages. Thus, ShuffleNet needs to be further optimized

considering its efficiency and accuracy. Taking ShuffleNet as

backbone, CO and CSP were combined to construct

ShuffleNet_COCSP, which was also compared with two

widespread lightweight networks, namely, MobileNetV2 and

GhostNet. The parameters of each model are shown in Table

S1 in Supplementary Material. The identification results of each

model are shown in Table 3. MobileNetV2 achieved ACCP of

95.95%, Params of 2.231 M, and FLOPs of 0.326 G, and

GhostNet achieved ACCP of 95.17%, Params of 4.207 M, and

FLOPs of 0.197 G. The identification was satisfactory; however,

the point-wise convolutions consume vast and expensive

computing resources. ShuffleNet_COCSP obtained the best

result with ACCP of 98.36%, Params of 0.805 M, and FLOP of
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0.097 G. The ACCP of ShuffleNet_COCSP increased by 5.58%,

and the params and FLOPs decreased by 36.01% and 37.42%,

respectively, compared with those of ShuffleNet. The F1-scores

of ShuffleNet_COCSP for mildly and severely moldy kernels

were both 100.00%, and all samples of the two classes were

accurately classified. The precision levels of healthy and broken

classes were 93.81% and 99.03%, and the recall rates were 98.91%

and 94.44%, respectively. Most samples of the 2 classes were

identified correctly, with only a small part of broken kernels

classified mistakenly as healthy.

ShuffleNet_COCSP improved the identification accuracy

and vastly reduced the computational effort by enlarging the

receptive field and removing the redundant convolution layer

and CSP shunting techniques. The curves of accuracy and loss

(Figures 6A, B) showed that ShuffleNet_COCSP was better than

MobileNetV2, GhostNet, and ShuffleNet, and the fluctuations of

the learning curves gradually decreased. In summary,

ShuffleNet_COCSP performed well in the identification of

soybean kernel damages with excellent accuracy and efficiency.
4 Ablation experiment

In previous studies in the field of fusion of HSI and RGB, the

spectral reflectance of a fused super-resolution image was rarely
TABLE 2 Classification results of soybean kernels using ShuffleNet with SR-HSI images of different combinations of EWs.

SR-HSI image set Classes Accuracy
(%)

Prediction dataset

Precision
(%)

Recall
(%)

F1-score
(%)

771nm

Healthy
Broken
Mildly moldy
Severely moldy

ACCT=99.12
ACCV=88.94
ACCP=86.97

80.81
91.58
89.47
88.14

88.89
87.00
80.19
91.43

84.66
89.23
84.58
89.23

771 and 491 nm

Healthy
Broken
Mildly moldy
Severely moldy

ACCT=99.38
ACCV=91.54
ACCP=90.31

85.57
94.70
90.00
95.56

92.22
89.00
93.40
91.49

88.77
91.53
91.67
93.48

771, 491 and 700 nm

Healthy
Broken
Mildly moldy
Severely moldy

ACCT=99.67
ACCV=90.84
ACCP=90.44

86.46
91.78
96.70
85.85

92.22
89.51
83.02
96.81

89.25
90.37
89.34
91.00

771, 491, 700 and 927nm

Healthy
Broken
Mildly moldy
Severely moldy

ACCT=99.86
ACCV=94.12
ACCP=91.35

86.81
90.82
95.10
91.92

87.78
89.00
91.51
96.81

87.29
89.90
93.27
94.30

771, 491, 700, 927 and 635 nm

Healthy
Broken
Mildly moldy
Severely moldy

ACCT=99.89
ACCV=95.65
ACCP=92.27

87.69
94.44
92.04
97.75

92.22
86.00
98.11
92.55

90.30
90.17
94.98
95.08

771, 491, 700, 927, 635 and 973
nm

Healthy
Broken
Mildly moldy
Severely moldy

ACCT=99.82
ACCV=94.65
ACCP=91.04

80.30
98.85
94.64
94.06

94.64
76.79
94.64
98.96

86.89
86.43
94.64
96.45
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concerned and generally different from that of a raw HSI image.

SMM in HRFN was constructed to correct the spectral

information and realize good fusion.

HRFN without the SMM module (HRFNSMM-) was adopted

to fuse the HSI and RGB image pairs and investigate the effect of

SMM. The spectral reflectance data of the raw HSI, HRFN, and

HRFNSMM- are shown in Figure 5. Compared with those of

HRFN, the spectra of HRFNSMM- is nonoverlapping with the

raw HSI. Thus, SMM can preserve the spectral information of

raw HSI because it can learn the mapping relationship between

HSI and hyperspectral super-resolution images to obtain the

missing spectral information of each band. Based on the fusion

results of HRFNSMM- in Table 4, its FMI_pixel, MS_SSIM, and

Nabf are worse than those of HRFN. As a result, SMM does help

HRFN focus on missing spectral details to improve the quality of

the SR-HSI image (Hu et al., 2021).

ShuffleNet_COCSP combined with CO and CSP achieved the

ideal identification and was ultra-lightweight. To further

corroborate its effectiveness, we employed ShuffleNet with CO

(ShuffleNet_CO) and ShuffleNet with CSP (ShuffleNet_CSP) for

developing identification models of soybean kernel damages in SR-

HSI images (Table 5). The ACCP of ShuffleNet_CO and

ShuffleNet_CSP increased by 2.79% and 3.46%, the Params

decreased by 23.93% and 27.03%, and the FLOPs decreased by

23.26% and 29.68%, respectively, compared with those of

ShuffleNet. The results of ShuffleNet_CSP and ShuffleNet_CO

were better than that of ShuffleNet and worse than

ShuffleNet_COCSP, confirming that CO and CSP played a

positive role in recognition. The performance of ShuffleNet_CO is

mainly because CO has a large effective receptive field to increase

the sensing area of feature maps and extract richer global features.
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Meanwhile, the redundant 1×1 convolution layer is removed to

improve the network efficiency. The Params and FLOPs of

ShuffleNet_CSP were greatly reduced because the strategy of

truncating the gradient flow was adopted in the CSP architecture;

as such, the gradient information will not be reused. Surprisingly,

ShuffleNet_CSP has a good accuracy in identifying soybean kernel

damages. The reason may be that CSP architecture enhance the

variability of the learned features within different layers, thereby

greatly improving the learning ability of the network. The

advantages of CO and CSP are perfectly combined to make

ShuffleNet more efficient and ensure the accuracy of recognition.
5 Discussion

In the application of recognizing agricultural product

damages, HSI has been widely used as a mainstream, rapid,

and non-destructive measurement method that can provide

morphological and compositional information. However, as

for the crop kernel of small sizes, the low spatial resolution of

HSI leads to weak recognition accuracy (Fabiyi et al., 2020). High

spatial resolution is easily obtained from RGB images. In this

study, SR-HSI images were generated by fusion of HSI and RGB

images to identify soybean kernel damages.

In most image fusion studies based on public datasets, the

images from different sources are pre-registered; however, the

HSI and RGB image pairs of kernels have the obvious nonlinear

appearance differences in our experiments (Zhang et al., 2021).

Perspective deformation was used to register image pairs and

eliminate spatial dislocation. Thus far, the image fusion

methods based on deep learning networks are advantageous
TABLE 3 Classification results of soybean kernels using MobileNetV2, GhostNet, ShuffleNet and ShuffleNet_COCSP.

Model Classes Accuracy
(%)

Prediction dataset
Params
(M)

FLOPs
(G)Precision

(%)
Recall
(%)

F1-score
(%)

MobileNetV2

Healthy
Broken
Mildly moldy
Severely moldy

ACCT=100.00
ACCV=97.42
ACCP=96.82

93.68
97.17
99.08
96.94

96.74
95.37
96.43
98.96

95.19
96.26
97.74
97.94

2.231 0.326

GhostNet

Healthy
Broken
Mildly moldy
Severely moldy

ACCT=99.78
ACCV=96.46
ACCP=95.37

88.35
100.00
96.46
96.88

98.91
88.89
97.32
96.88

93.33
94.12
96.89
96.88

4.207 0.197

ShuffleNet

Healthy
Broken
Mildly moldy
Severely moldy

ACCT=99.88
ACCV=94.74
ACCP=93.16

86.96
94.06
92.50
98.95

86.96
87.96
99.11
97.92

86.96
90.91
95.69
98.43

1.258 0.155

ShuffleNet_COCSP

Healthy
Broken
Mildly moldy
Severely moldy

ACCT= 99.87
ACCV= 98.64
ACCP= 98.36

95.70
97.20
100.00
100.00

96.74
96.30
100.00
100.00

96.22
96.74
100.00
100.00

0.805 0.097
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FIGURE 6

(A, B) Learning curves and (C–F) confusion matrix of MobileNetV2, GhostNet, ShuffleNet, and ShuffleNet_COCSP in the prediction dataset.
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because the networks can extract the targeted features and

achieve adaptive feature fusion. The source image set has no

real GT image, so the networks of supervised learning are

unapplicable. A network based on unsupervised AE
Frontiers in Plant Science 11
architecture and dense blocks, called as SRM, was constructed

to fuse image pairs from HSI and RGB. The above fusion can

ensure the spatial quality of images well, but the spectral

information of raw HSI is difficult to guarantee. Based on the
TABLE 4 Quantitative results of fusion HSI and RGB using HRFNSMM-..

Method Classes FMI_pixel MS_SSIM Nabf

HRFNSMM-

Healthy 0.9614 0.9865 0.0424

Broken 0.9435 0.9537 0.0353

Mildly moldy 0.9491 0.9777 0.0378

Severely moldy 0.9410 0.9770 0.0509
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experiment, the spectral trend of the super-resolution images

obtained by SRM was distorted (Figure 7). Referring to the

channel attention mechanism, the new branch network was

developed and called SMM to extract spectral details by learning

the mapping relationship between the HSI and super-resolution

images and accomplish spectral correction. By integrating SRM
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and SMM, HRFN achieved a good fusion of HSI and RGB

images, that is, the FMI_pixel, MS_SSIM, and Qabf of the four

classes of soybean kernels were 0.9415–0.9614, 0.9678–0.9880,

and below 0.0508. The SR-HSI image with high spatial and

excellent spectral resolution are expected to provide more

accurate results for analysis of soybean damages.
TABLE 6 Classification results of ShuffleNet_COCSP based on HSI and RGB images.

Data Classes Accuracy
(%)

Prediction dataset

Precision
(%)

Recall
(%)

F1-score
(%)

HSI

Healthy
Broken
Mildly moldy
Severely
moldy

ACCT= 99.99
ACCV= 96.71
ACCP= 95.82

90.43
93.40
100.00
98.97

92.39
91.67
99.11
100.00

0.91.40
0.92.52
0.99.55
0.99.48

RGB

Healthy
Broken
Mildly moldy
Severely
moldy

ACCT=100.00
ACCV= 97.64
ACCP= 96.12

100.00
98.18
92.24
94.90

91.30
100.00
95.54
96.88

95.45
99.08
93.86
95.88
TABLE 5 Recognition results based on SHUFFLENET adding CO and CSP .

Model Classes Accuracy
(%)

Prediction dataset
Params
(M)

FLOPs
(G)Precision

(%)
Recall
(%)

F1-score
(%)

ShuffleNet_CO

Healthy
Broken
Mildly moldy
Severely
moldy

ACCT=99.93
ACCV=96.47
ACCP=95.95

88.89
97.80
98.13
98.92

97.78
89.00
99.06
97.87

93.12
93.19
98.59
98.40

0.957 0.119

ShuffleNet_CSP

Healthy
Broken
Mildly moldy
Severely
moldy

ACCT=99.74
ACCV=96.47
ACCP=96.62

87.50
98.96
100.00
100.00

98.91
87.96
100.00
100.00

92.86
93.14
100.00
100.00

0.918 0.109
fron
FIGURE 7

Spectral reflectance for the broken class of soybean as obtainedby the raw HSI, registered HSI, and the fused results of HRFN and HRFNSMM-.
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An SR-HSI image of soybean kernels contains images of 272

wavelengths with redundant information, resulting in low

processing efficiency and huge modeling cost. Thus, selecting the

SR-HSI image of many significant wavelengths is essential to

damage identification (Weng et al., 2021). Here, candidate EWs

were first selected by SVM models developed with spectral

reflectance of each wavelength, and OISEW was finalized by

ShuffleNet and the successive superposition of monochromatic

images of each EW. The ACCP=92.27%, Params=1.258 M, and

FLOPs=0.155 G of ShuffleNet with OISEW are insufficient to

identify damaged kernels in the real world within the limited

computational budget. ShuffleNet_COCSP was constructed by

adding the CO operation and the CSP architecture into

ShuffleNet and obtained ACCp=98.36%, Params=0.805 M, and

FLOPs=0.097 G, outperforming ShuffleNet, MobileNetV2, and

GhostNet. The increase in the depth and kernel size of

convolution extended the effective receptive field and led to

enhanced promotion of the networks (Luo et al., 2016). However,

the former brings optimization problems. Thus, the CO operation

increased the kernel size from 3 × 3 to 7 × 7 and removed the last

convolution of 1 × 1 to increase the perceived area of the feature

map and extract rich global features. Meanwhile, shortcut is

especially vital for networks with large convolution kernels (Ding

et al., 2022). CSP with ingenious shortcut operation was induced to

reduce the possibility of duplication in information integration and

alleviate oversmoothing (Wang et al., 2020), thereby improving the

learning ability of the network.

Based on the ablation experiments, the combination of the CO

operation and the CSP architecture is better than the single

optimization. That is, ShuffleNet_COCSP had ACCp that

increased by 2.41% and 1.74%, parameters that decreased by

15.88% and 12.31%, and FLOP that decreased by 18.49% and

11.01% compared with ShuffleNet_CO and ShuffleNet_CSP,

respectively. Further, ShuffleNet_COCSP and HSI and RGB

images were used to identify soybean kernel damages (Table 6).

The ACCp=95.82% of HSI and the ACCp=96.12% of RGB were

worse than those of SR-HSI. The SR-HSI images are more

discriminative than the HSI images in the subtle information of

external features, such as texture and edge, and have wider

wavelength perception and stronger diffraction ability than RGB to

better identify the internal tissue characteristics of soybean kernels

(Sharma et al., 2016).

The damaged soybean kernels identified were accurately

analyzed by fusion of HSI and RGB and ShuffleNet_COCSP.

However, some aspects need further optimization to obtain better

application prospects. The acquisition method was unpractical

owning to source images from HSI and RGB cameras in our

work. In the future, customized and simplified imaging equipment

should be developed to easily obtain EW and RGB images.

ShuffleNet_COCSP with small network size and fast recognition

speed will be embedded in mobile devices to provide a wide range of

application scenarios for intelligent soybean sorting. In contrast to
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the orderly arrangement of soybeans in this experiment, soybeans in

actual sorting equipment have overlapping and adhesion

phenomenon. Therefore, image segmentation and image

correction in complex background should be considered.
6 Conclusion

In this work, damages to soybean kernels were identified using

the improved ShuffleNet and fusion of HSI and RGB. The HSI and

RGB image pairs of healthy, broken, and moldy soybean kernels

were collected and registered by perspective deformation to

eliminate spatial misalignment. HRFN, an unsupervised fusion

network, was designed using SRM and SMM in parallel to

generate SR-HSI with high spatial resolution and excellent

spectral resolution. HRFN achieves a good fusion of HSI and

RGB images for the four classes of soybean kernels, with

FMI_pixel of 0.9415–0.9614, MS_SSIM of 0.9678–0.9880, Qabf

below 0.0508, and perfectly preserved spectral information. Six

EWs were selected by SVM, and the OISEW composed of the

monochromatic images in 771, 491, 700, 927, and 635 nm was

further screened by ShuffleNet. ShuffleNet_COCSP was constructed

by adding the CO operation and the CSP architecture into

ShuffleNet, and the best result was obtained with ACCp=98.36%,

Params=0.805 M, and FLOPs=0.097 G, outperforming

MobileNetV2, GhostNet, and the cases of HSI and RGB images.

The high-quality SR-HSI images obtained by fusing HSI and RGB

images can quickly and accurately identify small kernels, and a

customized simplified imaging device can be designed to acquire

SR-HSI images with scattered wavelength to meet the practical

requirement of damaged kernel identification in the future. The

lightweight ShuffleNet_COCSP will be deployed in mobile devices

for large-scale detection of damaged kernels and real-time

management in the future. In addition, advanced image

correction is indispensable due to environmental factors, such as

position of imaging devices and motion of samples, causing kernels

to overlap one another in the sorting equipment.
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