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Synergistic effects of nitrogen
metabolites on auxin regulating
plant growth and development

Yu-Fan Fu, Xin-Yue Yang, Zhong-Wei Zhang and Shu Yuan*

College of Resources, Sichuan Agricultural University, Chengdu, China
Nitrogen is one of the important nutrients required for plant growth and

development. There is increasing evidences that almost all types of nitrogen

metabolites affect, at least to some extent, auxin content and/or signaling in

plants, which in turn affects seed germination, plant root elongation,

gravitropism, leaf expansion and floral transition. This opinion focuses on the

roles of nitrogen metabolites, NO−
3, NH+

4 , tryptophan and NO and their

synergistic effects with auxin on plant growth and development. Nitrate

reductase (NR) converts nitrate into nitrite, and was roughly positive-

correlated with the root auxin level, suggesting a crosstalk between nitrate

signaling and auxin signaling. Abscisic Acid Responsive Element Binding Factor

3 (AFB3) and Tryptophan Aminotransferase of Arabidopsis 1 (TAA1) are also the

key enzymes involved in nitrogen metabolite-regulated auxin biosynthesis.

Recent advances in the crosstalk among NO−
3, NH

+
4 , tryptophan and NO in

regulation to NR, AFB3 and TAA1 are also summarized.

KEYWORDS

nitrogen metabolites, ammonium, nitrate reductase, nitric oxide, tryptophan
aminotransferase, auxin signaling and transport
Introduction

Nitrogen is one of the important nutrients required by plant growth and

development. Plant roots can access nitrogen (N) in various forms which include

organic compounds. The primary N forms root absorbs are ammonium (NH+
4 ), nitrate

(NO−
3 ), and amino acids. Typically, the most plentiful source of N is nitrate (Miller et al.,

2007; Kant et al., 2011).

The cytosolic enzyme nitrate reductase (NR) first converts nitrate inside the cell to

nitrite, which is a rate-limiting step in the assimilation pathway. The nitrite is transported

into the chloroplast (Fernandez and Galvan, 2007). Plastid nitrite reductase (NiR)

catalyzes the conversion of nitrite to ammonium, which is then absorbed into carbon

skeletons by producing glutamate via the glutamine synthetase/glutamine oxoglutarate

aminotransferase (GS/GOGAT) cycle (Sanz-Luque et al., 2015). As a result, nitrate
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assimilation occurs via a rather straightforward linear process

that includes two transport phases (nitrate and nitrite transport)

and two reduction steps (involving NR and NiR) (Chamizo-

Ampudia et al., 2017).
Roles of NO3 on plant growth
and development

NO−
3 works as a signaling molecule to influence plant growth

and development, as well as serving as a main N source for

plants (Miller et al., 2007). This leads to a theory that plant cells

needed an availability sensor for NO−
3 . Local NO

−
3 availability

regulates the expression of nitrate assimilation genes (Krapp

et al., 2014), breaks seed dormancy (Alboresi et al., 2005; Liu

et al., 2021), controls leaf morphogenesis (Yang et al., 2022),

stimulates the formation and extension of lateral roots (Forde

and Walch-Liu, 2009; Chen et al., 2018; Contreras-López et al.,

2022) and postpones flowering (Yuan et al., 2016; Sanagi et al.,

2021; Ye et al., 2021; Zhang S. et al., 2021). Lack of nitrate also

affects tomato fruit yield and quality (Belfry et al., 2017) and

maize stem internodes development (Peng et al., 2013).

The nitrate transporter NRT1.1 is a dual-affinity nitrate

transceptor controlling the primary nitrate responses (nitrate

signaling), in which expressions of nitrate assimilation genes and

nitrate transporter genes are induced rapidly by nitrate

treatments (Ho et al., 2009). NRT1.1 facilitates not only nitrate

uptake but also auxin transport. Nitrate treatments repress

NRT1.1-mediated auxin uptake, indicating that the nitrate

signaling via NRT1.1 is correlated with a regulation of auxin

transport (Krouk et al., 2010). Another report found that

expression of Abscisic Acid Responsive Element Binding

Factor 3 (AFB3) depends on the nitrate-transport function of

NRT1.1 (Vidal et al., 2014).

Recently, the NIN-like protein (NLP) transcription factor

NLP7 has also been suggested as a nitrate sensor (Liu et al.,

2022). NLP7 is a crucial nitrate signaling regulator that binds

directly to the TAR2 (Tryptophan Aminotransferase Related 2)

promoter and activates its expression to sustain auxin signaling

in the root primordia (Liu et al., 2017; Zhang T. T, et al., 2021).

Nitrate inhibits Ferredoxin-NADP+-Oxidoreductase (FNR1)

expression, therefore causing declines in NADPH/NADP+ and

ATP/AMP ratios, which in-turn promotes adenosine

monophosphate-activated protein kinase (AMPK) activities

and modulates their nuclear abundance (Yuan et al., 2016).

KIN10 phosphorylates NLP7 to induce its cytoplasmic retention

and the subsequent degradation, therefore repressing nitrate-

regulated gene expression and inhibiting growth (Wang

et al., 2021).

The nia1/nia2 (nitrate reductase) double mutant showed

significantly low transcription levels of auxin biosynthesis/

signaling genes and was insensitive to nitrogen changes. NR
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activity was roughly positive-correlated with the root auxin

content, and there should be a crosstalk between nitrate

signaling and auxin accumulation (Fu et al., 2020).

Another interesting study indicated that in the nia1/nia2

double mutant, the auxin signaling gene AFB3 expression was

increased by the nitrate with the max level at 1 hour, as well as in

the wild-type seedlings. Nevertheless contrasting to the wild-

type seedlings, the AFB3 mRNA did not decrease in the nia1/

nia2 double mutant after 1 hour (Vidal et al., 2010). The authors

concluded that NR may regulate both auxin biosynthesis and

auxin signaling, and some nitrate metabolite downstream of NR

may control AFB3 expression indirectly (Vidal et al., 2010; Vidal

et al., 2013).

Besides auxin, nitrate also regulates plant growth and

development indirectly through interacting with cytokinin (Hu

et al., 2020), ethylene (Zhou et al., 2022), abscisic acid (ABA; Sun

et al., 2020), salicylic acid, gibberellins and brassinosteroids

(Vega et al., 2019) (Figure 1).
Roles of NH+
4 on plant growth

and development

Numerous studies have shown that the early genomic

responses of rice and Arabidopsis to exogenous NH+
4 result in

a variety of distinct alterations in gene expression, metabolism,

hormone signaling, redox state, and root system architecture

(Lima et al., 2010; Patterson et al., 2010; Fernández-Crespo et al.,

2015; Xuan et al., 2017; Xuan et al., 2019; Hachiya et al., 2021;

Sun et al., 2021). Since many of these responses are not

correlated with NH+
4 assimilation rate directly, NH+

4 has been

suggested also as a signaling molecule; while the ammonium

transporter AMT1 may serve as a sensor (Sonoda et al., 2003;

Gaur et al., 2012). For example, AMT1;3 is necessary for NH+
4

-dependent lateral root branching in Arabidopsis (Lima

et al., 2010).

The NH+
4 mediated suppression of root development is

compromised in the auxin-resistant mutants aux1, axr1, and

axr2 (Cao et al., 1993). And the auxin influx carrier AUX1

inhibits lateral root emergence when NH+
4 is applied to shoots

(Li et al., 2011). The suppression of lateral root growth by NH+
4 is

related with ethylene generation in shoots (Li et al., 2013). Zou

et al. (2013) interestingly found that, under NH4+ stress, arg1

(Altered Response to Gravity 1) mutant displayed increased loss

of root gravitropism. ARG1 is required for AUX1 protein

expression and basipetal auxin transport via PIN-Formed2

(PIN2) in root apices. And NH+
4 mediated stresses were

lessened when ABA signaling was activated (Li et al., 2012).

Recently, it was discovered that an important brassinosteroid

(BR) signaling transcription factor ABI3/VP1-Like 1 (RAVL1)

controls BR-mediated activation of AMT1;2 and NH+
4

absorption in rice (Xuan et al., 2017) (Figure 1).
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Roles of nitrogen metabolite
tryptophan on plant growth
and development

Nitrogen in plants first assimilates ammonia to glutamate,

which is then converted to various amino acids, among which

tryptophan is a key metabolite and the precursor of auxin. Given

that auxin plays a key role in plant growth and development, we

focused on tryptophan (Trp) and auxin metabolism and

signaling in this review. There are two auxin biosynthesis
Frontiers in Plant Science 03
pathways, the Trp-dependent and the Trp-independent

pathways; while the tryptophan-dependent pathway is the

main one (Korasick et al., 2013; Ljung, 2013). Auxin is a

potential mediator of N signaling that auxin content is

inversely associated with N status in various plants (Tian et al.,

2008; Kiba et al., 2011; Ma et al., 2014). Furthermore, jasmonic

acid (JA) locally produced in response to mechanical wounding

triggers the de novo formation of auxin through the induction of

Trp-dependent pathways (Zhang G. et al., 2019; Pérez-Alonso

et al., 2021).
FIGURE 1

Metabolic pathways and signaling pathways that NO−
3 , NH

+
4 , tryptophan and NO regulate auxin biosynthesis/signaling and plant growth/

development. Nitrate reductase (NR) converts nitrate to nitrite. Then nitrite reductase (NiR) catalyzes the conversion of nitrite to ammonium,
which is then converted to glutamate (Glu) via the glutamine (Gln) synthetase/glutamine oxoglutarate aminotransferase (GS/GOGAT) cycle and
various amino acids, among which tryptophan is a key metabolite and the precursor of auxin. The nitrate transporter NRT1.1 is a nitrate
transceptor controlling Abscisic Acid Responsive Element Binding Factor 3 (AFB3) expression. Nitrate inhibits Ferredoxin-NADP+-Oxidoreductase
(FNR1) expression, therefore causing declines in NADPH/NADP+ and ATP/AMP ratios, which in-turn promotes adenosine monophosphate-
activated protein kinase (AMPK; KIN10 and KIN11) activities and phosphorylates the NIN-like protein (NLP) transcription factor NLP7. NLP7 binds
directly to the TAR2 (Tryptophan Aminotransferase Related 2) promoter and activates auxin signaling. Some nitrate metabolite downstream of
NR might affect AFB3 transcription indirectly. NO is a by-product during NR functioning, however NO may deactivate NR by S-nitrosylation.
When NH+

4 is applied to shoots, ARG1 (Altered Response to Gravity 1) induces the auxin influx carrier AUX1 expression and basipetal auxin
transport via PIN-Formed2 (PIN2) in root apices. And NH+

4 mediated stresses were lessened when ABA signaling was activated (Li et al., 2012).
And the brassinosteroid (BR) signaling transcription factor ABI3/VP1-Like 1 (RAVL1) controls BR-mediated activation of the ammonium
transporter AMT1;2 and NH+

4 absorption. The Tryptophan Aminotransferase of Arabidopsis 1 (TAA1; SAV3) catalyzes the synthesis of indole-3-
pyruvic acid (IPA) from Trp and controls hypocotyl elongation and leaf expansion responsive to N changes. NO inhibits WD40-REPEAT 5a
(WDR5a), which induces TAA1 (SAV3) expression. NO also increases the auxin receptor Transport Inhibitor Response 1 (TIR1) - the transcriptional
repressor Auxin/Indole-3-Acetic Acid (Aux/IAA) protein interaction, which facilities the E3-ubiquitin ligase complex SFC-mediated AUX/IAA
degradation and enhances the expression of auxin-regulated genes. The mitogen-activated protein kinase (MAPK) signaling cascade is activated
during the adventitious root formation induced by auxin in a NO-mediated pathway. NO also inhibites acropetal auxin transport by lowering the
abundance of PIN1.
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A research revealed that tryptophan’s role as an auxin

precursor on root elongation is rather straightforward (Jing

et al., 2009). Besides the promotion on auxin biosynthesis,

exogenous tryptophan increased root length and plant height

and improved plant resistance to stresses by enhancing C/N

metabolism and related enzyme activities (Mustafa et al., 2018).

After N treatments, plant leaves become thicker and narrower,

and the chlorophyll level increases. Our previous study found that

the changes in leaf thickness and width were largely compromised

in the shade avoidance 3 (sav3) mutant (Yang et al., 2022). The

SAV3 protein catalyzes the synthesis of indole-3-pyruvic acid (IPA)

from Trp, and is also named as Tryptophan Aminotransferase of

Arabidopsis 1 (TAA1). SAV3 also controls hypocotyl elongation

and leaf expansion under the shade condition (Tao et al., 2008), and

regulates chlorophyll accumulation and nitrogen assimilation.

Therefore SAV3 works as a master switch responsive to multiple

environmental stimuli (Yang et al., 2022) (Figure 1).
NO and auxin synergistically
regulate plant growth
and development

Although direct nitric oxide synthase (NOS) has not been

found in higher plants, it has been suggested that NR’s main role

is to provide nitrite, which in turn can be further reduced to NO.

In other words, NO is a by-product during nitrate assimilation

(Chamizo-Ampudia et al., 2017).

Our previous study indicated that the NR protein can be

S-nitrosated by NO. The S-nitrosylation status of NR is

negatively correlated with its enzymatic activity. Thus NO

generated through NR catalysis may deactivate the enzyme

itself by this S-nitrosylation-dependent negative-feedback

regulation (Fu et al., 2018).

Nitric oxide (NO) is a multi-purpose gaseous signaling

molecule (Domingos et al., 2015; Simontacchi et al., 2015).

NO and auxin interact with each other in controlling root

development (Correa-Aragunde et al., 2004; Fernández-Marcos

et al., 2011; Jin et al., 2011; Chen and Kao, 2012; Sun et al., 2017;

Basu et al., 2021) and root hairs formation (Lombardo et al.,

2006). The mitogen-activated protein kinase (MAPK) signaling

cascade is activated during the adventitious root formation

induced by auxin in a NO-mediated but cGMP-independent

pathway. The stimulation of MAPK has been proposed in

modulating mitotic processes in root cells (Pagnussat et al.,

2004; Hu et al., 2005).

Some other studies suggested that NO may also function in

signaling pathways upstream of auxin (Terrile et al., 2012; Liu

et al., 2018). NO lowers the level of auxin in the root apex by

inhibiting WD40-REPEAT 5a (WDR5a), which induces TAA1

(SAV3) and auxin accumulation (Liu et al., 2018). But NO

increases the auxin receptor Transport Inhibitor Response 1
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(TIR1) and the transcriptional repressor Auxin/Indole-3-Acetic

Acid (Aux/IAA) protein interaction via S-nitrosylation on TIR1,

which enhances the expression of auxin-regulated genes in the

whole root (Terrile et al., 2012).

Additionally, NO-overproducing mutants and pharmacological

treatments showed that, at high concentrations, NO inhibited

acropetal auxin transport in Arabidopsis roots by lowering the

abundance of the auxin efflux protein PIN1 through a proteasome-

independent post-transcriptional mechanism (Fernández-Marcos

et al., 2011).

Our previous study demonstrated that NO dramatically

decreased monosaccharide catabolism by inhibiting sugar

metabolic enzymes via S-nitrosylation. As a result, NO

treatments reduced starch granule formation in root tips and

compromised root gravitropism indirectly (Zhang et al., 2017).

Besides these putativemechanisms ofNOon auxin transport and

signaling, NO also regulates plant growth and development indirectly

through interacting with ethylene (Du et al., 2014), cytokinin (Feng

et al., 2013; Liu et al., 2013), ABA (Sang et al., 2008; Wang et al.,

2015), gibberellin and light signaling (Bai et al., 2014).

Both nitrogen and NO treatments postpone plant flowering

(He et al., 2004; Yuan et al., 2016). However, the high nitrogen

condition reduced the amplitudes of transcripts of all circadian

clock genes (Yuan et al., 2016). While NO enhanced the

amplitudes of central oscillators, but reduced the amplitudes of

circadian-clock output genes, GI (GIGANTEA) and CO

(CONSTANS). NO induced S-nitrosation modification on GI

and CO proteins, but not on the other circadian clock proteins

(Zhang Z. W. et al., 2019). Thus nitrogen and NO rely on

overlapping but different signaling pathways to regulate plant

flowering (Figure 1).
Conclusions and perspectives

Nitrogen and its metabolites regulate plant growth and

development through multiple and complex mechanisms.

Nitrate assimilation metabolites, NO−
3 , NH

+
4 , tryptophan and

the by-product NO, as well as the key enzymes NR and TAA1

are all involved, with interacting with phytohormone signals.

Interestingly, NO may deactivate NR by S-nitrosylation (Fu

et al., 2018). Whether NO also generates a feedback regulation

on TAA1 requires further studies.

It is interesting to note that the AFB3 transcript did not

decrease in the NR-deficient mutant after 1 hour of nitrate

treatment. Thus some nitrate metabolite downstream of NR

might affect AFB3 transcription indirectly (Vidal et al., 2010;

Vidal et al., 2013). Which metabolite plays the key role needs

further investigations. Both nitrate and NO repress auxin

accumulation by decreasing TAA1 expression (Liu et al., 2018;

Yang et al., 2022). Whether TAA1 works upstream of AFB3

requires further explorations. And we also don’t know whether

TAA1 activity is associated with the cellular tryptophan level.
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Both ammonium poisoning and NO accumulation increase

loss of root gravitropism and inhibit root elongation (Zou et al.,

2013; Zhang et al., 2017). The crosstalk between NH+
4 signaling

and NO metabolism in root morphogenesis would also be an

interesting research direction.
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