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Phosphate deprivation compromises plant productivity and modulates

immunity. DAMP signalling by extracellular ATP (eATP) could be

compromised under phosphate deprivation by the lowered production of

cytosolic ATP and the need to salvage eATP as a nutritional phosphate

source. Phosphate-starved roots of Arabidopsis can still sense eATP,

indicating robustness in receptor function. However, the resultant cytosolic

free Ca2+ signature is impaired, indicating modulation of downstream

components. This perspective on DAMP signalling by extracellular ATP

(eATP) addresses the salvage of eATP under phosphate deprivation and its

promotion of immunity, how Ca2+ signals are generated and how the Ca2+

signalling pathway could be overcome to allow beneficial fungal root

colonization to fulfill phosphate demands. Safe passage for an endophytic

fungus allowing root colonization could be achieved by its down-regulation of

the Ca2+ channels that act downstream of the eATP receptors and by also

preventing ROS accumulation, thus further impairing DAMP signalling.

KEYWORDS

phosphate deprivation, ATP and damage signalling, calcium, DAMP, immunity,
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Introduction

Phosphate (Pi) deprivation is readily experienced in the field without fertilizer input

(Alewell et al., 2020) and leads to lower cellular and cytosolic Pi levels within minutes

(Duff et al., 1989; Pratt et al., 2009). Deficiency triggers a shift to alternative metabolic

pathways which consume less Pi (Duff et al., 1989; Plaxton and Tran, 2011; Pant et al.,

2015) and phosphorylated metabolites decrease (Pant et al., 2015). Phospholipids are

remodelled into sulpho- and glycolipids, restricted to the cytoplasmic leaflet of the

plasma membrane (Andersson et al., 2005; Tjellström et al., 2010; Nakamura, 2013;

Okazaki et al., 2013). This remodelling could be part of the restructuring of signalling
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systems. Indeed, Pi deprivation attenuates the cytosolic free Ca2+

([Ca2+]cyt) signalling response to mechanical stress, salinity, and

osmotic stress in Arabidopsis roots (Matthus et al., 2019a;

Matthus et al., 2022).

It is now increasingly recognized that Pi availability and

homeostasis are intricately linked with plant immunity

signalling (Castrillo et al., 2017; Dindas et al., 2022; Tang

et al., 2022; Val-Torregrosa et al., 2022). Under low Pi, plants

initiate the Phosphate Starvation Response (PSR) driven by the

MYB transcription factor Phosphate Starvation Response1

(PHR1) to modulate not only growth and metabolism but the

composition of the plant’s microbiota (well beyond the

interaction with mycorrhizal fungi) to favour those

mineralizing poorly accessible Pi sources to promote Pi

nutrition. Achieving this may involve modulating immunity,

indeed PHR1 negatively regulates transcription of genes

responding to the Pathogen Associated Molecular Pattern

(PAMP) bacterial peptide flg22 (Castrillo et al., 2017; Isidra-

Arellano et al., 2021). In roots of Arabidopsis thaliana (as a non-

host for mycorrhizal fungi), part of the PSR is the production of

a subset of anti-immunity RALF (Rapid Alkalinization Factor)

peptides that are perceived by the plasma membrane Feronia

receptor. This is then thought to disrupt perception of flg22 by

the FLS2/BAK1 (BRASSINOSTEROID INSENSITIVE 1-

ASSOCIATED RECEPTOR KINASE 1) receptor complex to

lower immunity (Tang et al., 2022). However in Pi-starved

Arabidopsis root hairs the abundance of the high affinity

PHT1.4 transporter is increased in the PSR but PAMPs

(including flg22) were found to act through BIK1 to inhibit

PHT1.4-mediated Pi uptake (Dindas et al., 2022). Nevertheless,

Pi-starved mutants lacking PHT1.4 were less susceptible than

wild type to infection by a bacterial pathogen (Ralstonia

solanacearum), placing this component as a negative regulator

of immunity and consistent with PSR’s modulating defence

(Dindas et al., 2022).

Wounding and the presence of microbes causes

accumulation of extracellular ATP (eATP) by plants.

Mechanical wounding of Arabidopsis roots (Weerasinghe

et al., 2009; Dark et al., 2011) and leaves (Song et al., 2006;

Myers Jr et al., 2022) increases eATP, consistent with breaches of

the plasma membrane’s permitting efflux of cytosolic ATP. The

effect is not limited to Arabidopsis; wounding cells of the

macroalga Dasycladus vermicularis, roots of carrot (Daucus

carota; Gastélum-Estrada et al., 2020) and leaves of kidney

bean (Phaseolus vulgaris L) also causes eATP accumulation

(Wang et al., 2019). eATP accumulation by Arabidopsis leaves

can occur in response to flg22 and Pseudomonas syringae (Chen

et al., 2017) but in those cases the mechanistic basis of eATP

accumulation is unknown. For roots, eATP increases in barley

(Hordeum vulgare) and Arabidopsis during colonization by the

fungal endophyte Serendipita indica (Nizam et al., 2019). The

significance of such eATP accumulation lies in eATP’s ability to

signal wounding or microbial presence as a constitutive DAMP
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(Damage Associated Molecular Pattern; Choi et al., 2014;

Tanaka and Heil, 2021). A constitutive DAMP is a molecule

that is present before damage and becomes a signal on moving

passively from its “normal” site as a consequence of damage

(Tanaka and Heil, 2021); for ATP, this is moving from the

cytosol to the extracellular face of the plasma membrane. eATP’s

acting as a DAMP is conserved across kingdoms, working in

animals and fungi as well as plants but signalling systems differ

markedly (Medina-Castellanos et al., 2014; Medina-Castellanos

et al., 2018; Verkhratsky, 2021). Studies on eATP signalling are

usually conducted on plants grown under optimal nutrient

conditions. Given the apparent need to conserve Pi, utilising a

Pi-rich signalling molecule such as eATP potentially places

plants suffering from Pi deprivation at risk of impaired

signalling outcomes. However, in light of immunity

modulation in the PSR, this could be a necessary and

beneficial risk. After outlining the eATP signalling pathway in

defence, this Perspective considers how Pi deprivation is

currently known to affect it, how eATP as a nutritional Pi

source may link with defence and argues that (although

modulated) eATP signalling will remain a key line of defence

for microbes to overcome under this abiotic stress.
eATP signalling intersects with
multiple pathways

The eATP-regulated Arabidopsis transcriptome is enriched

in immune- and wound-response genes (Jeter et al., 2004; Choi

et al., 2014; Tripathi et al., 2018; Jewell et al., 2019; Jewell et al.,

2022). The signalling pathway from eATP to wounding/

immunity transcription runs through the plasma membrane

legume-like lectin serine-threonine receptor kinase “DOes not

Respond to Nucleotides1” (DORN1/P2K1) and also its co-

receptor phosphorylation target P2K2, although whether all

cell types deploy this co-receptor is unknown (Choi et al.,

2014; Jewell et al., 2019; Pham et al., 2020). Wound-induced

inhibition of plant growth is mediated by P2K1 (Shi et al., 2022)

and this receptor is required for limiting infection by bacteria,

oomycetes and fungi (Gouget et al., 2006; Bouwmeester et al.,

2011; Bouwmeester et al., 2014; Balagué et al., 2017; Chen et al.,

2017; Tripathi et al., 2018; Nizam et al., 2019; Kumar et al.,

2020). Overexpression of P2K1 can confer resistance to insect

and nematode attack (Jewell et al., 2022). Potential eATP

receptors as P2K1 orthologues have been reported in Camelina

sativa (Li et al., 2016) and banana (Musa acuminata; Shan et al.,

2020) for example, but there are no reports on cereals. These

contain large families of legume-like lectin serine-threonine

receptor kinase genes for testing (72 in Oryza sativa (rice) and

84 in Triticum aestivum (bread wheat): Vaid et al., 2012;

Shumayla et al., 2016).

In Arabidopsis Pi-replete roots, eATP causes a biphasic

increase in [Ca2+]cyt as a second messenger with the first phase
frontiersin.org
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generated by the apex followed by a second, sub-apical phase

(Figure 1A: Matthus et al., 2019a; Matthus et al., 2019b;

Mohammad-Sidik et al., 2021; Matthus et al., 2022; Wang

et al., 2022a). This response appears to have an absolute

requirement for P2K1 but recently Matthus et al. (2022)

reported a small but significant eATP-induced [Ca2+]cyt
increase in roots that was independent of this receptor. In

Arabidopsis root epidermis (Pi-replete), P2K1 and P2K2 cause
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an initial Ca2+ influx mediated by the plasma membrane Cyclic

Nucleotide Gated Channel CNGC2 (Figure 1B: Wang et al.,

2022a). Another CNGC, CNGC6, may also be involved in the

root’s response (Duong et al., 2022). CNGC2 is also part of the

eATP pathway in cotyledons and pollen grain (Sun et al., 2021;

Wu et al., 2021), although its involvement in roots appears

restricted to the epidermis (Wang et al., 2022a). CNGC2 may

form a connection with PAMP-triggered immunity as it can also
A

B

FIGURE 1

Extracellular ATP causes elevation of [Ca2+]cyt. (A) Arabidopsis roots or root tips (expressing cytosolic aequorin as a [Ca2+]cyt reporter) grown in
full Pi medium respond to ATP addition with an initial [Ca2+]cyt increase caused by mechanical perturbation, followed by an ATP-induced
biphasic increase (Peak 1, Peak 2). In Pi-starved roots, the magnitude of the Peak responses is lessened. Schema based on results of Matthus
et al., 2019a; Matthus et al., 2019b; Mohammad-Sidik et al., 2021; Matthus et al., 2022; Wang et al., 2022a. (B) In Pi-replete Arabidopsis,
extracellular ATP (eATP) is recognized by the plasma membrane P2K1 and P2K2 receptors. This can lead to opening of CNGC channels by an
unknown mechanism to elevate [Ca2+]cyt (Sun et al., 2021; Wu et al., 2021; Duong et al., 2022; Wang et al., 2022a). In guard cells, P2K1 can
activate RBOHD by phosphorylation (Chen et al., 2017) whilst in roots its target may be RBOHC (Demidchik et al., 2009). The resultant
extracellular ROS could be sensed by the HPCA1 hydrogen peroxide receptor (Wu et al., 2020) although there is no evidence for this yet.
Peroxide could enter the cytosol through aquaporins (not shown) or be converted to hydroxyl radicals to activate Annexin1. H+-ATPases (AHA)
promote hyperpolarised membrane voltage (Haruta and Sussman, 2012) to facilitate Ca2+ channel opening whilst Ca2+-ATPase activity would
help terminate the [Ca2+]cyt signal (Costa et al., 2017). Under Pi deprivation, cytosolic ATP limitation may impair AHA/Ca2+-ATPase activity and
potentially the phosphorylation activity of the receptors. The involvement of P2K2 may be questioned (Matthus et al., 2022). The identities of the
Ca2+ channels may change and the involvement of RBOHs has yet to be determined.
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operate in flg22 signalling (Tian et al., 2019) and it also works in

Jasmonic Acid signalling (Lu et al., 2016). CNGC2 may also

form an intersect with abiotic stress signalling and development

as it is involved in heat stress signalling (Finka et al., 2012;

Katano et al., 2018), high light signalling (Fichman et al., 2021),

response to auxin (Chakraborty et al., 2021) and floral transition

(Chin et al., 2013). How the P2K1 and P2K2 eATP receptors

promote opening of CNGC2 remains unknown; possibilities

inc lude phosphory la t ion or product ion of cyc l i c

mononucleotides by cryptic cyclase domains (Sun et al., 2021).

The resultant elevation of [Ca2+]cyt by CNGC2 or other Ca2+

channels (Wilkins et al., 2016; Jarratt-Barnham et al., 2021) may

link to the transcriptional response through downstream

elevation of nuclear Ca2+ (Krebs et al., 2012; Loro et al., 2012)

and breakdown of the Calmodulin-binding Transcription

Activator3, CAMTA3 (Jewell et al., 2019; Jiang et al., 2020).
Pi deprivation influences the eATP-
induced [Ca2+]cyt signatures

Arabidopsis roots deprived of Pi can still respond to eATP

with a distinct [Ca2+]cyt increase or “signature” (Matthus et al.,

2019a; Matthus et al., 2022). There is no substitution of P2K1 in

Pi-deprived roots, it is still absolutely required for the [Ca2+]cyt
response (Matthus et al., 2022), indicating a robust perception

system that withstands perturbation. Indeed, expression of P2K1

does not respond significantly to Pi starvation whilst P2K1

abundance in roots can even increase (Lin et al., 2011; Lan

et al., 2012; Zhang et al., 2020). However, the P2K1-independent

component of the [Ca2+]cyt signature was lost on Pi deprivation

(Matthus et al., 2022). It could be that this component was

generated by P2K2 or unknown receptors, for which evidence is

accumulating (Zhu et al., 2017; Matthus et al., 2019b; Zhu R.

et al., 2020; Pham et al., 2020; Smith et al., 2021). Although Pi-

deprived Arabidopsis roots can still respond to eATP, the spatio-

temporal pattern of the [Ca2+]cyt increase is altered with a

significantly lower first phase and the abolition of the second,

sub-apical response (Figure 1A: Matthus et al., 2019a; Matthus

et al., 2022). The downstream consequences of this change are

unknown. The position where the sub-apical [Ca2+]cyt increase

should occur corresponded with a region of increased cytosolic

Reactive Oxygen Species (ROS), most likely hydrogen peroxide

(Matthus et al., 2019a). This effect on the [Ca2+]cyt signal

increased over days of Pi starvation and was linked to Fe

availability (a normal response was restored by Fe deprivation;

Matthus et al., 2019a). In plant signalling systems, ROS are held

to amplify or propagate [Ca2+]cyt increase by modulating Ca2+

transporters (Demidchik and Shabala, 2018). In contrast, under

Pi deprivation ROS ostensibly limits the [Ca2+]cyt response to

eATP. Whether the impaired [Ca2+]cyt signal is the result of

different complements of Ca2+ transporters (Shukla et al., 2021)
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as a consequence of Pi deprivation (possibly affecting the links

with other pathways) and/or different regulatory mechanisms

now needs to be determined. For the latter, it may be relevant

that lowered cytosolic ATP (see section below) affects actin

dynamics (Dai et al., 2022; Wang et al., 2022b) that could

regulate plasma membrane Ca2+ channels (Qian and Xiang,

2019). It may also be relevant that lower cytosolic ATP could

impair the activity of plasma membrane H+-ATPases, possibly

impairing activity of voltage-dependent plasma membrane Ca2+

channels. This could explain why the Arabidopsis mutant

lacking a major H+-ATPase isoform (AHA2) has a lower [Ca2

+]cyt response to eATP (Haruta and Sussman, 2012).
eATP signalling under Pi deprivation
– malnourished defence

Cellular ATP level drops sharply in response to Pi

deprivation as shown in kidney bean roots, Catharanthus

roseus and sycamore cell culture (Gniazdowska et al., 1998;

Shimano and Ashihara, 2006; Gout et al., 2014). Although

gradients of cytosolic Mg-ATP can be resolved at cellular level

with imaging of the ATeam 1.03-nD/nA reporter (De Col et al.,

2017), the effect of Pi deprivation remains untested. The drop in

cellular ATP begs the questions of whether Pi-deprived tissues

continue to maintain their basal eATP levels (with the possibility

of too low a level triggering cell death; Chivasa et al., 2005) and

whether wound/pathogen-induced eATP increases would be

significantly lower. For Pi-replete Arabidopsis, wound-induced

eATP estimates range from 35 nM to 45 µM (Song et al., 2006;

Dark et al., 2011; Myers Jr et al., 2022). There appear to be no

reports on the effect of Pi-deprivation in the literature although

Tawaraya et al. (2014) reported that ADP was no longer present

in the root exudates of Pi-deprived soybean roots.

Conservation of cytosolic ATP could involve restricting non-

wounding ATP efflux pathways at the plasma membrane that are

thought to include ABC transporters and anion channels

(Thomas et al., 2000; Rieder and Neuhaus, 2011; Wu et al.,

2011; Witte and Herde, 2020: Figure 2). Restricted growth

caused by Pi deprivation could also limit cytosolic ATP release

by exocytosis (Kim et al., 2006). However, as growing root hairs

accumulate eATP at their apices (Kim et al., 2006), these levels

might still be retained as root hair elongation increases as a

potential mechanism to access soil Pi in the absence of

mutualistic microbial partners. Indeed, lowering eATP can

inhibit root hair elongation (Clark et al., 2010). Moreover,

eATP may have a role to play in legume root hair deformation

(curling) in response to nodulation factors. Curling is a re-

orientation of elongative polar growth towards the nodulation

factor (Esseling et al., 2003) and under Pi deprivation,

significantly fewer Phaseolus vulgaris root hairs can curl,

compromising the extent of the rhizobial symbiosis (Isidra-
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Arellano et al., 2018). The implication is that lowered Pi lowers

root hair eATP and re-orientation is compromised. One effect of

lowered eATP could be impaired ROS production at the root

hair apex, which helps drive polar growth (Foreman et al., 2003;

Cárdenas et al., 2008).

Scavenging of eATP so that it can be utilised as a nutritional

Pi source is evident in a wide range of plants including beech and

poplar trees (Scheerer et al., 2019). Some extracellular Purple

Acid Phosphatase (PAP) isoforms can scavenge eATP as a Pi

source in Arabidopsis, Phaseolus vulgaris, poplar, rice and
Frontiers in Plant Science 05
soybean, with production of some isoforms increasing upon Pi

deprivation (Liang et al., 2010; Tran et al., 2010; Tian et al., 2012;

Wang et al., 2014; Mehra et al., 2017; Kavka et al., 2021; Zhu S.

et al., 2020; Figure 2). Apyrases hydrolyse ATP and are found in

Golgi/ER, plasma membrane and apoplast (Summers et al.,

2017; Clark et al., 2021). Apyrases could also scavenge eATP

as a Pi source or limit its export, indeed there is an inverse

relationship between their expression and eATP concentration

around roots (Thomas et al., 1999; Lim et al., 2014; Deng et al.,

2015). Studies suggest that regulation of ecto-apyrase may be
A

B

FIGURE 2

Production and scavenging of eATP. (A) In Pi-replete conditions, cytosolic ATP may be released to the extracellular space by wounding,
exocytosis or specific transporters such as ANT1 (Thomas et al., 2000; Kim et al., 2006; Rieder and Neuhaus, 2011; Wu et al., 2011). Hydrolysis of
eATP to terminate signalling may be by apyrases (APY), purple acid phosphatases (PAP), with subsequent breakdown by 5´nucleotidases and
nucleoside hydrolases (Liang et al., 2010; Tran et al., 2010; Tian et al., 2012; Wang et al., 2014; Mehra et al., 2017; Kavka et al., 2021; Zhu S. et al.,
2020; Clark et al., 2021). Retrieval of adenosine would be by equilibrative nucleoside transporters and for adenine by purine permeases (PUP),
azaguanine resistant proteins (AZG) and nucleobase-ascorbate transporter family members (NAT) (Gillissen et al., 2000; Bernard et al., 2011;
Witte and Herde, 2020). (B) Under Pi deprivation, there may be less cytosolic ATP to export and export systems could be limited, with wounding
being the predominant route. P2K1 still appears competent but the involvement of P2K2 may be questioned (Matthus et al., 2022). Enzymes
involved in eATP breakdown would become part of a Pi salvage system, with Pi uptake by PHT1 high affinity transporters that are induced by the
PSR. Given the negative role of PHT1.4 in immunity (Dindas et al., 2022), the identities of the PHT1s may be an important control point in
determining the resultant balance between nutrition and immunity.
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critical to infection by Rhizobia and mycorrhizal fungi, such that

their lowering of eATP promotes infection (Kalsi and Etzler,

2000; Govindarajulu et al., 2009; Roberts et al., 2013). It is held

that the AMP produced by ecto-apyrase could be converted to

adenosine then adenine by 5´nucleotidases and nucleoside

hydrolases with uptake of those end products possibly by

equilibrative nucleoside transporters (ENT) for adenosine and

for adenine by the purine permeases, azaguanine resistant

proteins and nucleobase-ascorbate transporter family members

(Gillissen et al., 2000; Bernard et al., 2011; Witte and Herde,

2020; Figure 2). Efficient salvage of adenosine appears critical

given that its accumulation compromises the resistance to

Botrytis cinerea that is afforded by P2K1 (Daumann et al.,

2015; Tripathi et al., 2018). Salvage of adenine should promote

cytosolic ATP content (Dai et al., 2022).

As a non-mycorrhizal host, Arabidopsis roots allow

colonization by fungal endophytes such as Colletotrichum

tofieldiae and Serendipita indica to enhance Pi nutrition

(Hiruma et al., 2016; Nizam et al., 2019; Frerigmann et al.,

2021). Colonization by C. tofieldiae is controlled by the PSR

response and the host’s production of tryptophan-derived indole

glucosinolates (IG) as defence compounds keeps the extent of

colonization in check (Hiruma et al., 2016; Frerigmann et al.,

2021). Inability to synthesize IG (through loss of cyp79b2

cyp79b3 function) enables C. tofieldiae to behave as a

pathogen (Hiruma et al., 2016). Pi-starvation can lower levels

of IG in roots (but not shoots) consistent simplistically with the

model of a lowering of plant defences (Frerigmann et al., 2021).

Colonization increases levels of 4-methoxy-indole-3-methyl-

glucosinolate which would require the activity of the P450

monooxygenases CYP83B1, CYP81F2, CYP81F3 and the

Indole Glucos inolate O-Methyl t ransferase IGMT2

(Frerigmann et al., 2021). Recently eATP has been found to

act through P2K1 (albeit in Pi-replete seedlings) to upregulate

expression of the genes encoding those key enzymes (Jewell

et al., 2022). This leads to the speculation that damage incurred

by colonization could signal to effect the IG response, with the

further possibility that ATP secreted by the fungus in this and

other invasive scenarios could contribute to signalling. A first

step would be to see if eATP modulates IG synthesis under Pi

deprivation. The early phase of S. indica infection (albeit in Pi-

replete roots) increases eATP and P2K1 helps limit colonization

(Nizam et al., 2019). Over time the fungus secretes an eATP

hydrolysing ecto-5´-nucleotidase (E5´NT) that can reduce eATP

levels and promotes colonization, indicating that eATP

signalling may ultimately need to be impaired (Nizam et al.,

2019). Indeed, expressing the S. indica nucleotidase in

Arabidopsis roots rendered them more susceptible to
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colonization by the pathogenic fungus C. incanum (Nizam

et al., 2019). Modelling of Pi and sugar fluxes between

Arabidopsis and S. indica suggests that if host ATP release

were low, the fungal E5´NT could contribute to host Pi

nutrition with no Pi cost to the fungus, only sucrose benefit.

With high ATP release, E5´NT could contribute to Pi uptake of

both host and fungus (Nizam et al., 2019). It seems in the fungus’

survival benefit to hydrolyze the eATP signal but as P2K1 is a

high affinity receptor (dissociation constant 46 nM; Choi et al.,

2014), eATP levels would have to be negligible to avoid

triggering the pathway and there is evidence that P2K1 could

still operate in [Ca2+]cyt signalling of Pi-starved roots (Matthus

et al., 2022). Perhaps it is the loss of the P2K1-independent [Ca2

+]cyt signal in Pi-starved roots that is critical to dampening the

eATP defence pathway. The fungal endophyte could also

modulate the eATP pathway and it is notable that although

P2K1 acts to limit S. indica colonization (Nizam et al., 2019) this

fungus does not cause the peroxide accumulation typical of

eATP signalling (Camehl et al., 2011). Moreover, its cell wall

extracts suppress expression of CNGC2 (Vadassery et al., 2009),

a key component of eATP signalling (Wang et al., 2022a). Eat the

signal and perturb the pathway.
Conclusions and prospects

Even under Pi-replete conditions plants must regulate eATP

to render it an effective signal and avoid cell death. Under Pi

deprivation, the balancing act may have to include the

diminution of the endogenous cytosolic ATP supply and the

salvage of eATP to bolster Pi nutrition. That eATP can still

trigger a modified P2K1-dependent [Ca2+]cyt response in Pi-

starved roots argues for a robust signalling system that is

modulated to allow perhaps for beneficial colonisation. If “net”

eATP were lower under Pi deprivation, even after wounding,

then much depends on the receptors involved and their affinities,

the eATP that could be produced by microbes and the ability of

the microbes to degrade host or their own eATP. Whilst

Arabidopsis remains the most well defined and tractable

system, there is a clear need to resolve eATP signalling

systems in crops and the impact of Pi deprivation.
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