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Introduction: In grassland ecosystems dominated by asexual plants, the

maintenance, renewal, and resistance of plant populations to disturbance are

more dependent on the belowground bud bank (BBB). However, the response of

the BBB to environmental factors in the alpine grassland of the Qinghai-Tibet

Plateau (QTP) is still unknown.

Methods: Therefore, a transect survey was conducted to measure the size and

scale of BBB and 21 factors in the alpine grassland of the QTP. In addition, the

critical driving factors of BBB were screened by boost regression tree analysis, and

a structural equation model (SEM) was employed to express the path coefficients

of the key factors on the BBB size.

Results: The results showed that BBB size had no significant geographical pattern

in the QTP, and the BBB size was mainly accounted for by soil leucine

aminopeptidase (LAP, 17.32%), followed by Margalef and Shannon -Wiener

indices of plants (12.63% and 9.24%, respectively), and precipitation (9.23%). SEM

further indicated significant positive effects of plant diversity (scored at 0.296) and

precipitation (scored at 0.180) on BBB size, and a significant negative effect of LAP

(scored at 0.280) on BBB size.

Discussion: Generally, the findings allow for better understanding of the regulated

mechanisms of BBB size and the importance of the role of bud bank in the

restoration of the grassland ecosystem.

KEYWORDS

alpine grasslands, Qinghai-Tibet Plateau, bud bank, vegetation reproduction, ecological
restoration, clonal plants
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1 Introduction

Grasslands are one of the major terrestrial ecosystem types,

covering approximately 37% of global land area (O'Mara, 2012),

and they play a crucial role in energy and material cycles, global

climate change, and global carbon balance (Scurlock et al., 2002).

Alpine grasslands have the largest distribution area of plant types,

covering more than 50% of the Qinghai-Tibet Plateau (QTP) (Liu

et al., 2017). Since the ecological structure and function of alpine

grasslands are sensitive to global changes, they can serve as a warning

sign for the ecological environment (Sun et al., 2020). Furthermore,

the clonal nature of most herbaceous plants allows them to play an

important role in maintaining the stability of grassland ecosystems,

due to their ability to reproduce both sexually and asexually to

complete renewal iterations (Lee, 2004). The storage status of the

seed and bud bank is particularly important as they are two sources of

vegetation renewal. Some studies have shown that annual plants

mainly rely on seed production to produce offspring; however, in

grassland ecosystems dominated by perennial grasses, plant

population maintenance and regeneration, community composition

and dynamics, and responses to environmental changes and

anthropogenic disturbances are more dependent on the

belowground bud bank (BBB) (Deng et al., 2010; Teniwu et al., 2021).

Additionally, the BBB is highly resistant to various disturbances.

For example, previous studies found that in North American tallgrass

prairie, 99% of vegetation regeneration after fire treatment was

dependent on the bud bank (Hartnett et al., 2006). Similarly, in the

Hulunbuir meadow grassland of northeast Inner Mongolia, BBB plays

an important role in resisting extreme drought (Teniwu et al., 2021).

Generally, grasslands with large BBB sizes are likely to be more

responsive to future climate change or other phenomena (i.e.,

nutrient enrichment), and similarly, have greater resistance to

phenomena such as invasive alien species (Carter and Vanderweide,

2014). Other studies have also demonstrated that the potential

population productivity of grasslands is determined by the total

number of bud banks and the number of active buds (Ott and
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Hartnett, 2012). Environmental changes that deplete bud banks or

prevent their formationmay lead to the loss of vegetation resilience and

plant species diversity (Ott et al., 2019), and changes in these

environmental factors may affect the input and output of bud banks.

Although the maintenance, renewal, and resistance to disturbance of

plant populations in grassland ecosystems with asexual plants are more

dependent on the BBB, the response of the BBB to various

environmental factors in alpine grasslands of the QTP is still unknown.

A transect survey was conducted to measure the bud bank size

and 21 environmental factors, and a structural equation model (SEM)

was then designed to investigate the key factors that affect the BBB on

the QTP. Specifically, the following questions were addressed: (i)

What are the size and geographical spatial distribution patterns of the

BBB in the QTP? (ii) What are the key factors affecting the BBB in the

QTP? This study was aimed to further understand and predict the

plant community dynamics of alpine grasslands, as well as the input

and output trends of BBB size in the alpine grasslands of the QTP.
2 Materials and methods

2.1 Study area and sampling

The QTP, which is the largest geomorphological unit on the

Eurasian continent, has an area of approximately 2.5 million km2,

with 60% of the land covered by alpine grassland (Hong et al., 2016;

Zhou et al., 2017). It is also one of the terrestrial ecosystems most

sensitive and vulnerable to climate change (Klein et al., 2007).

The study sites were located around the northeastern hinterlands

of the QTP. The bud library data had four replicates, while all the

other sampled data had three replicates. BBBs, plant communities,

and soil were sampled from 23 study sites (90-103°E, 30-39°N) in the

northeastern and central parts of the QTP, including the northwest

region of Sichuan Province, Qinghai Province, and the Tibetan

Autonomous Region, China (Figure 1), during the peak growing

season (July-August) of 2022.
FIGURE 1

Sample sites in the study area (Built-in frequency distribution histogram of belowground bud bank size).
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The grassland transects included alpine meadows and alpine

steppes at altitudes between 3023 m and 4743 m. The study site

annual temperatures ranged from −4.34 to 3.46°C, while annual mean

precipitation ranged between 209.89 mm and 861.59 mm,
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additionally, the precipitation and temperature on the QTP

decreased from the southeast to the northwest (Sun et al., 2020).

Details of the dominant species and the geographic information of the

sample sites are shown in Table 1.
TABLE 1 Spatial information of sample sites and dominant species of plots.

Sites Coordinates Altitude (m) Dominant species

1
99°57′57.60″ E
35°35′45.60″ N

3281.00 Carex tristachya, Carex myosuroides, Leymus chinensis

2
99°32′16.80″ E
38°27′32.40″ N

3239.42 Carex parvula, Carex myosuroides

3
95°51′32.40″ E
34°05′34.80″ N

4223.91 Stipa purpurea, Carex myosuroides

4
90°57′50.40″ E
30°46′22.80″ N

4742.97 Saussurea arenaria, Stipa purpurea

5
90°50′02.40″ E
31°24′07.20″ N

4545.23 Stipa purpurea

6
99°11′12.55″ E
35°21′39.17″ N

4158.00 Leontopodium pusillum

7
100°14′33.79″ E
36°00′37.41″ N

3118.00 Stipa purpurea, Poa tibetica Munro

8
100°45′23.49″ E
36°21′10.13″ N 3186.00 Stipa purpurea, Poa tibetica Munro

9
95°23′20.06″ E
34°32′56.05″ N

4219.00 Stipa purpurea, Artemisia hedinii

10
93°31′35.30″ E
35°23′46.45″ N

4459.00 Polygonum viviparum, Carex alatauensis, Oxytropis ochrocephala

11
102°32′13.20″ E
32°47′45.60″ N

3426.50 potentilla bifurca

12
101°52′12.00″ E
33°40′22.80″ N

3560.00 Carex alatauensis

13
101°32′06.76″ E
34°52′56.03″ N 3575.60 potentilla bifurca, Stipa purpurea, Oxytropis ochrocephala

14
100°12′10.80″ E
34°28′48.00″ N

3715.00 Stipa purpurea, Ligularia sibirica, Poa tibetica

15
100°56′16.80″ E
36°55′04.80″ N

3050.67 Stipa purpurea

16
100°09′46.80″ E
37°20′20.40″ N 3313.54 Carex tristachya, Carex myosuroides

17
97°53′27.24″ E
35°17′28.00″ N

4604.00 Poa tibetica Munro

18
92°05′42.00″ E
31°16′15.60″ N

4461.48 Stipa purpurea, Carex myosuroides

19
102°31′03.30″ E
33°23′58.68″ N

3475.00 Stipa purpurea, Poa tibetica

20
102°18′16.36″ E
34°22′03.68″ N

3480.00 Anaphalis xylorhiza, Poa tibetica

21
100°27′04.77″ E
37°32′21.43″ N 3559.00 Lancea tibetica, Artemisia hedinii, Elymus mutans

22
100°28′39.67″ E
38°03′38.45″ N

3023.00 Carex tristachya, Stipa purpurea

23
98°17′03.84″ E
34°51′23.44″ N

4221.00 Carex tristachya
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2.2 Climate data measurement

It is clear that these climate data were predictive. For each

meteorological station, the annual mean temperature (AMT) and

annual mean precipitation (AMP) from the Meteorological

Information Center of the Chinese National Bureau of Meteorology

(http://data.cma.cn/) were compiled using Excel (Microsoft Excel

2016). Data were then interpolated by Anusplin 4.2 (Centre for

Resource and Environmental Studies, Australian National

University, Canberra) to obtain the grid data of climate for the

study area, and these sample site data were extracted with ArcGIS

10.2 (ESRI, Inc., Redlands, CA, USA).
2.3 Soil data measurement

Soil samples were measured between 0 and 30 cm for the

following soil physiochemical data: soil available phosphorus

content (SAP) measured by the Olsen method (Zhou et al., 2020),

soil ammonium nitrogen (NH4
+-N) and soil nitrate nitrogen (NO3

−-

N) by Elementar TOC analyzer (Liqui TOCC II, Germany) (Hu et al.,

2020), soil total carbon content (TC) and soil total nitrogen content

(TN) by MACRO cube elemental analyzer (Elementar

Analysensysteme GmbH, Germany) (Zhou et al., 2020), soil pH

(pH) and soil temperature (ST) by portable time domain

reflectometer (TDR 100, Spectrum Technologies Inc., Chicago, IL,

USA), and soil moisture content (SMC) by drying (Jiang, 2019).

Soil enzyme activity, a microplate fluorometric assay, and a soil

enzyme assay kit were used to determine the activity of soil b-
glucosidase (bG, EC:3.2.1.21), soil leucine aminopeptidase (LAP,

EC:3.4.11.1), soil polyphenol oxidase (PPO; EC:1.14.18.1), soil

alkaline phosphatase (AKP, EC:3.1.3.1), and soil acid phosphatase

(ACP, EC:3.1.3.2). Their enzymatic activity was determined by the

degree to which the enzyme catalysed the reaction of the

corresponding substrate. AKP and ACP were analyzed using phenyl

disodium phosphate as a substrate (bG with p-nitrophenyl b-D-
glucopyranoside, LAP with L-leucine-p-nitroanilide, and PPO with

pyrogallol). For bG, the production of 1 mmol of p-nitrophenol per g

of soil sample per day was defined as one unit of enzyme activity. For

PPO, the production of 1 mg of purple gallic substance per g of soil

sample per day was defined as one unit of enzyme activity. For soil

LAP enzyme, the production of 1 nmol of p-nitroaniline per g of soil

sample per minute was defined as one unit of enzyme activity.

For AKP and ACP at 37 °C, 1 nmol of phenol per g of soil released

per day was one unit of enzyme activity; notably, AKP was measured

in an alkaline environment and ACP in an acidic environment.
2.4 Plant data measurement

Three replicate plots (50 cm×50 cm) were randomly selected from

each study site (10 m×10 m) to obtain plant samples for the

measurement of each plant indicator.

The number of species of above-ground plants in the plot were

counted and the relative abundance of each calculated. Based on this,

the following plant community species diversity indicators were

obtained: Margalef richness index (R, Eq.1), Shannon-Wiener index
Frontiers in Plant Science 04
(H’, Eq.2), Pielou’s evenness index (J’, Eq.3), and Simpson index (D,

Eq.4).

R =
S − 1
lnN

(1)

H0 = −o
s

i=1
Pi ln Pi (2)

J 0 =
H
ln S

(3)

D =o
s

i=1
P2
i (4)

where S is the number of species in the sample, N is the total

number of each plant in the sample, and Pi is the relative abundance

of the i th species in the community (Smith and Wilson, 1996).

Additionally, above- and below-ground samples were oven-dried

at 65°C to constant mass, then get aboveground biomass (AGB) and

belowground biomass (BGB) by weighing.
2.5 Belowground bud bank data

BBB is a collection of dormant meristems below the ground and

on some surfaces that are available for vegetative reproduction. BBB

size was calculated using soil cores (Qian et al., 2017). To maintain the

natural connection between plants above and below ground, all

individuals from each plot were excavated to identify the category

of BBBs. The soil core was then completely removed by shaking out

the soil block out or soaking the corer in water, and from which then

had buds counted. The most visible buds were directly selected and

counted, while other indistinguishable buds were dissected before

being counted. Only soil-borne buds were considered in this study,

and not those at the surface.
2.6 Statistical analysis

Excel and Origin 2022 (Origin Lab Corporation, Northampton,

MA, USA) were used to process the experimental data and make

simple charts. To determine the important driving factors of BBB size,

a boost regression tree (BRT) analysis was then used with the “gbm”

package of R (version 4.2.1; R Development Core Team) (Figure 2).

Then, according to the above BRT analysis, factors with >5% relative

importance were screened to explore the relationship between greater

importance factors (LAP, Margalef, Shannon -Wiener, AMP, ST,

NH4
+-N, NO3

−-N, SAP) and BBB size. To divide the factors with the

same category into a group (containing two or more factors),

principal component analysis (PCA) was conducted with the

packages “FactoMineR”, “factoextra”, and “corrplot” in R, and PCA

was used to transform multiple factor variables into a set of variables

(Zhou et al., 2021) (Supplementary Figure 1). Ultimately, to reveal the

mechanisms by which environmental factors influence BBB size, an

analysis using path coefficients was undertaken in Amos software

(17.0.2, IBM SPSS Inc.), which includes a synthesis of factor analysis,

path analysis, and maximum likelihood analysis (Grace, 2002;
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Doncaster, 2007). Notably, 39.9% and 75.6% of the total variance for

the groups were explained by the first component (PC1), which was

then introduced as a new variable in the SEM.
3 Results

3.1 Geography pattern of BBB on the QTP

Through linear fitting of the scatterplot, no significant difference

was found between BBB size and geographical pattern (Figure 3).

However, in terms of fit line trend, the BBB size tends to increase with

increasing latitude and longitude (Figures 3A, B) and tends to

decrease with increasing altitude (Figure 3C).
3.2 The relative importance of the
environmental factors to BBB size

The results of BRT analysis demonstrated the relative importance

of all 21 predictors of BBB size (Figure 2). The highest factor
Frontiers in Plant Science 05
influencing BBB size was enzyme LAP (17.32%), followed by, in

descending order of relative importance, plant diversity indices

Margalef (12.63%), Shannon -Wiener (9.24%), climate AMP

(9.23%), soil ST (7.81%), NH4
+-N (7.78%), NO3

−-N (6.81%), and

SAP (5.29%). The other factors were less than 5% and not included in

the discussion.
3.3 Driving mechanism of key factors on
BBB size

SEM indicated that AMP, soil LAP enzymes, and “Plant

Diversity” play a key driving role in BBB size (Figure 4). In this

model, both AMP (standardized effect = 0.18) and plant diversity

(0.296) had significant direct positive effects on BBB size, and LAP

(−0.28) had a significant negative effect on BBB size.

Although soil N-P had no direct effect on BBB size (p>0.05), it had

a significant indirect effect through the positive effects of plant

diversity on BBB size (standardized effect = 0.193). Although ST

had no direct effect on BBB size (p>0.05), it had an indirect effect on

BBB size through LAP (−0.103) and also on BBB size through soil N-P
FIGURE 2

Results of boost regression tree analysis, screening factors by the dashed vertical red line (i.e., greater than 5%), the darker the color, the greater the
relative importance. The environmental factors from top to bottom are LAP (soil leucine aminopeptidase, EC:3.4.11.1), Margalef (Margalef index),
Shannon_Wiener (Shannon-Wiener index), AMP (annual mean precipitation), ST (soil temperature), NH4

+-N (soil ammonium nitrogen), NO3
−-N (soil

nitrate nitrogen), SAP (soil available phosphorus content), AGB (aboveground biomass), Pielou (Pielou’s species evenness index), TN (soil total nitrogen
content), Soil_pH, ACP (soil acid phosphatase, EC:3.1.3.2), AKP (soil alkaline phosphatase, EC:3.1.3.1), SMC (soil moisture content), bG (soil b-glucosidase,
EC:3.2.1.21), PPO (soil polyphenol oxidase, EC:1.14.18.1), BGB (belowground biomass), AMT (annual mean temperature), TC (soil total carbon content),
Simpson (Simpson’s diversity index).
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and plant diversity (−0.04). In addition, ST had a significant positive

effect on LAP (0.367) and a significant negative effect on soil N-P

(−0.209), AMP had a significant positive effect on LAP (0.246), and

LAP had a significant negative effect on plant diversity (−0.216).
4 Discussion

In this study, the BBBs size in the alpine grasslands on the QTP

was approximately within the range of 312 - 6120 buds per m2

(Figure 1; Supplementary Table 1), with a mean value ranging from

1690.43 buds per m2 to 6000 buds per m2 which is slightly larger than

that of the loess hilly -gully region in a soil erosion environment,

which was reported by Du et al. (2013) as 600-1300 buds per m2.

Similarly, the BBB size range in tallgrass prairie in the Flint Hill region

of the United States was similar to that of the QTP, ranging from 600-

1800 buds per m2 (Benson et al., 2004). In south-central Nebraska, the

BBB size in restored grassland was higher than that in the QTP, which

is approximately 300-3500 buds per m2 (Carter et al., 2012). However,

BBB size also varied considerably among grassland types within the

same North American prairies, with a desert grassland values much

smaller than those in this study (146 buds per m2) and tallgrass prairie

value slightly higher (2450 buds per m2) (Dalgleish and Hartnett,

2006). It is common to use the number of buds per unit area to

determine BBB size; however, some studies have used “per tiller” or

“per volume” (Peterson, 1979; Baret et al., 2004; Ithurrart et al., 2019;

Russell et al., 2019). There are certain differences in BBB size in

different ecosystems, and the size varies depending, to a limited

extent, on the researchers’ methods and the time of the

investigation (Zhao et al., 2015).

This study shows that BBB has no significant relationship with

latitude, longitude, and altitude on the QTP (p>0.05) (Figure 3).

However, in the European Alps, the BBB size of plant communities

tends to increase with altitude (Evette et al., 2009). The adaptation of

the alpine plants on the QTP to survive in both high and low altitude

climatic conditions has possibly resulted in little size difference. In

comparison, other studies have shown that all bud bank traits did not

significantly correlate with geographical location (longitude, latitude,

and elevation) (Wang et al., 2021), which is consistent with this study.

Each factor and the process of BBB size are a result of multiple

interactions, and variations exist between ecosystems and populations

(Zhao et al., 2015). In this study, AMP had a significant positive effect

on BBB size, which is consistent with results found elsewhere

(Dalgleish and Hartnett, 2006; Qian et al., 2017; Teniwu et al.,
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2021). Rainfall directly affects the inputs and outputs of the BBB.

Under high rainfall, the input to the bud bank will increase, and under

drought conditions, the bud bank will reflect the Bet-Hedging strategy

(Philippi, 1993), i.e., some buds participate in sprouting, while others

remain dormant in response to unknown disturbances. Of note, there

was a lag in the response of BBB size to AMP at sites with less AMP

(200-300 mm), and it has been found that BBB size could only be

maintained at a similar level to the previous year’s BBB size, even with

higher rainfall in the current year (Zhang, 2009). In addition, in North

American tallgrass prairie there are certain thresholds for the

responses of BBB size to environmental changes, with the size

remaining largely stable, while aboveground community richness

reduces when precipitation is reduced by 80% (Vanderweide and
FIGURE 3

Spatial pattern of belowground bud bank. The relationships between BBB and (A) longitude, (B) latitude, and (C) altitude.
FIGURE 4

Structural Equation Modeling of belowground bud bank and
environmental factors. Direct and indirect impacts of key factors on
belowground bud bank size. The colored arrows and gray arrows
represent significant and non-significant relationships, respectively (*
p<0.05, ** p<0.01 and *** p<0.001, only the values of path coefficients
with significance were presented in SEM); Positive correlations are
displayed in dark blue arrows, and negative correlations are displayed
in red arrows; The arrows thickness represent the values of path
coefficients. The thicker the path, the bigger the value. Of note, the
variables in the double-layer rectangles represent the screened factors
(results of BRT analysis in Figure 2) that were used in PCA, and arrows
pointing up or down in double-layer rectangles represent the positive
or negative relationships between the observed variables and potential
variables. The environmental factors from top to bottom are AMP
(annual mean precipitation), Plant Diversity (Margalef [Margalef index],
Shannon_Wiener [Shannon-Wiener index]), BBB (belowground bud
bank), Soil N-P (NH4

+-N [soil ammonium nitrogen], NO3
−-N [soil

nitrate nitrogen], SAP [soil available phosphorus content]), LAP (soil
leucine aminopeptidase, EC:3.4.11.1), ST (soil temperature).
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Hartnett, 2015). In addition, drought causes a 30-40% reduction in

aboveground net primary productivity in North American tallgrass

prairie, but has no significant effect on BBB size (Hoover et al., 2014).

This also implies that the BBB plays an important role in resisting and

recovering from extreme environments. At the regional scale, the

response of BBB size to drought is inconclusive (Teniwu et al., 2021),

increasing (Chen et al., 2015), decreasing (Dalgleish and Hartnett,

2006), or stable (Carter et al., 2012). In this study, the data showed

that BBB size increased linearly with soil moisture content, which may

be caused by differences in grassland vegetation types and plant

communities. Additionally, previous studies have shown that water

controls the distribution and composition of the BBB in plant

communities, which can provide important information for

predicting the dynamics of plant communities in alpine meadows

(Ding et al., 2019). Overall, on the QTP, the BBB size followed a

rainfall gradient with a decreasing trend toward drier and

warmer areas.

Precipitation not only affects BBB but also influences the

development of alpine grassland vegetation to a large extent (Sun

et al., 2020). Other studies have shown that the response of vegetation

to environmental change may be mediated through bud bank

dynamics (Ott et al., 2019). The size and composition of BBB are

greatly dependent on the aboveground vegetation organs to which

buds are attached, in contrast to the soil seed bank (Klimesǒvá and

Klimes,̌ 2007). In general, the existence of belowground buds is

dependent on the bearing organs of the plant ontology, surviving

with the parent plant, with some variation introduced by habitat

inconsistency. However, habitat inconsistencies often lead to

differences and similarities in biodiversity (Kreft and Jetz, 2007).

Plant diversity has a significant positive effect on BBB size. It has been

shown that at the population level, total BBB size increases

significantly with increasing population density, but for a certain

species, only moderate population density significantly increases the

BBB size of populations and individuals dominated by that species

(Zhang et al., 2019). Furthermore, other work has shown that several

sampled plots in alpine meadows with the highest plant diversity have

the largest BBB (Ding et al., 2019). Most studies on plant diversity and

bud banks have imposed anthropogenic disturbances to determine

the critical role of BBB restoration in grassland ecosystems

(Vanderweide and Hartnett, 2015; Hiiesalu et al., 2021). Overall,

aboveground plant diversity will decline or possibly be lost with

interference, but after disturbance, the BBB plays an important role in

the recovery and renewal of vegetation. The increase in BBB size is

believed to be related to interspecific competition; in general, the

richer the diversity, the more intense the competition, and individual

plants will clone themselves quickly (via asexual reproduction and

bud bank) to enable utilization of resources, which in turn leads to an

increase in BBB.

Finally, soil acts as a substrate for grass plants to survive, and the

soil nutrients and contents have critical impacts on BBB size. Among

them, soil nutrition is an important factor influencing the completion

of the bud bank, and in general, BBB size increases with an increase in

the nutrient substrate (Mcintyre and Raju, 1967; Klimes ̌ and Klimesǒvá,

1999). Therefore, soil nutrients are beneficial for the establishment and

input of BBB. In this study it was found that soil N-P and soil LAP

enzymes had indirect and direct significant negative effects on BBB size,

respectively (Figure 4). It has been found that soil nitrogen (N) may be
Frontiers in Plant Science 07
an inducing factor for bud dormancy or germination (Tomlinson and

O'Connor, 2004). Under a low N level, the competition between the

bud and leaf system for N also leads to the limitation of bud growth

(Peterson, 1979), thus reducing bud input.However, Williamson et al.

(2012) found a low N level may stimulate bud sprouting, resulting in

the output of young buds, thus increasing BBB size. In other studies,

BBB size was positively correlated with soil available nitrogen (SAN, the

sum of NH4
+-N and NO3

−-N) (Wilson et al., 2016; Wang et al., 2021)

and negatively correlated with SAP, while an increased soil N/P ratio

had negative effects on plant diversity (Wilson et al., 2016). There are

some differences between such a conclusion and this study’s results

(Figure 4), the reseaon being that soil LAP enzyme mediates the process

of available nitrogen conversion, and that other studies have shown soil

LAP enzyme activity reflects the supply capacity of SAN (Burns et al.,

2013). That is, the higher the enzyme activity, the greater the

conversion of TN to SAN, which indirectly affects the BBB. However,

this study’s results showed that the LAP enzyme was not correlated

with SAN and was significantly negatively correlated with BBB size

(Figure 4). The mechanisms involved are unclear and little research on

this has been conducted. Some studies have found that N application

has adverse effects on sexual reproduction (mainly the seed bank) and

favorable effects on clonal reproduction (mainly the bud bank) (Li et al.,

2021). These results indicated that N addition had a positive effect on

the clonal propagation of perennial grass and could also improve the

dominance of bud banks in the growth and reproduction of grassland,

whereas there was uncertainty with phosphorus addition. In summary,

under the conditions of nitrogen and phosphorus dominance, the joint

effect of the two on the bud bank will be nitrogen-dominated and have a

positive effect. It may be possible to undertake research on the effect of

phosphorus addition on the BBB in the future, in order to fill the gap in

the understanding of this.
5 Conclusion

In conclusion, by linking BBB size to influencing factors, such as

geography, climate, soil, and plants at the community level of the

QTP, this study comprehensively described the interaction process of

different factors affecting BBB size. First, it was found that BBB size in

the alpine grasslands of the QTP has no geographical pattern. Second,

BBB size shows a higher sensitivity response to plant diversity, soil N-

P, and soil LAP enzyme factors. Finally, BBB size was positively and

significantly correlated with AMP and plant diversity, and

significantly correlated negatively with the soil LAP enzyme. The

results provide some background support for subsequent studies of

BBB on the QTP and indicate that bud bank dynamics could predict

future plant community dynamics to a certain extent. Consequently,

the process of belowground asexual reproduction in grassland

ecosystems deserves extensive attention, as ecological restoration

and renewal of grasslands mainly depend on the bud bank.
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