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Photosynthetic adaptive strategies vary with the growth irradiance. The

potential photosynthetic adaptive strategies of shade-tolerant species Panax

notoginseng (Burkill) F. H. Chen to long-term high light and low light remains

unclear. Photosynthetic performance, photosynthesis-related pigments, leaves

anatomical characteristics and antioxidant enzyme activities were

comparatively determined in P. notoginseng grown under different light

regimes. The thickness of the upper epidermis, palisade tissue, and lower

epidermis were declined with increasing growth irradiance. Low-light-grown

leaves were declined in transpiration rate (Tr) and stomatal conductance

(Cond), but intercellular CO2 concentration (Ci) and net photosynthesis rate

(Pn) had opposite trends. The maximum photo-oxidation P+
700 (Pm) was greatly

reduced in 29.8% full sunlight (FL) plants; The maximum quantum yield of

photosystem II (Fv/Fm) in 0.2% FL plants was significantly lowest. Electron

transport, thermal dissipation, and the effective quantum yield of PSI [Y(I)]

and PSII [Y(II)] were declined in low-light-grown plants compared with high-

light-grown P. notoginseng. The minimum value of non-regulated energy

dissipation of PSII [Y(NO)] was recorded in 0.2% FL P. notoginseng. OJIP

kinetic curve showed that relative variable fluorescence at J-phase (VJ) and

the ratio of variable fluorescent FK occupying the FJ-FO amplitude (Wk) were

significantly increased in 0.2% FL plants. However, the increase inWk was lower

than the increase in VJ. In conclusion, PSI photoinhibition is the underlying

sensitivity of the typically shade-tolerant species P. notoginseng to high light,

and the photodamage to PSII acceptor side might cause the typically shade-

tolerant plants to be unsuitable for long-term low light stress.
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Introduction

Light plays an indispensable role in the growth and

development of plants (de Wit et al., 2016). However, light

fluctuates over short (seconds) and long (hours, days, seasons)

timescales in natural condition, making it highly heterogeneous

(Townsend et al., 2018a; Townsend et al., 2018b; Townsend et al.,

2018c). Two species have emerged under long-term evolutionary

processes, markedly different in their light demands: the light-

demanding species and shade-tolerant species (Mathur et al.,

2018). The light-demanding species such as Spinacea oleracea

andOryza sativa, show high values of maximumCO2 assimilation

rate (Pmax), non-photochemical quenching (NPQ) and electron

transport rates (Osmond et al., 2021; Wei et al., 2021). The shade-

tolerant species such as Picea glauca, Abies balsamea and Abies

lasiocarpa exhibit low Pmax, light saturating/compensation points

(LSP/LCP) and dark respiration rates (Rd) (Valladares and

Niinemets, 2008). Several studies have shown that the shade-

tolerant species not only need to improve the efficiency of light

energy utilization under low light, but also to strengthen the

dissipation of excess light energy under high light condition (Kim

et al., 2020; Ware et al., 2020). The quantum yield of photosystem

II (PSII), photosynthetic electron transport and photochemical

quenching are increased in shade-tolerant species Bletilla striata

exposed to a sudden transition from low to high light (Yang et al.,

2019a). PSII activity is reduced in the shade-tolerant species

Anacardium excelsum and Virola surinamensis grown under

high light (Barth et al., 2001). Meanwhile, low photosystem I

(PSI) activity has been recorded in the shade-tolerant species

Psychotria henryi and Psychotria rubra exposed to high light

(Huang et al., 2015; Huang et al., 2017). Therefore, more

research is needed in the PSI of shade-tolerant plant to elucidate

its potential mechanism of PSI in response to light stress.

Long-term light stress induces photoinhibition and even

photodamage of plants when absorbed light energy would

temporarily exceed the need for photosynthesis (Niyogi and

Truong, 2013; Kono and Terashima, 2014). Light stress

protection mechanisms include chloroplastic reactive oxygen

species (ROS) scavenging, chloroplast and stomatal movement

(Shi et al., 2022). For example, high-light-grown Triticum

aestivum leaves reduced ROS-mediated side-effects by

increasing the activity of catalase (CAT) and superoxide

dismutase (SOD, Szyma´nska et al., 2017). Low light could

induce rapid stomatal opening to enhance photosynthesis and

photorespiration of Phaseolus vulgaris (Pastenes et al., 2005).

Meanwhile, photosynthetic apparatuses (PSI and PSII) have

evolved a variety of photoprotective strategies to dissipate

excess light energy (Bosch et al., 2015). NPQ is considered to

be the most efficient strategy for thermal dissipation of excess

light energy (Han et al., 2022). The increase in NPQ with the

enhancement of light intensity has been recorded in the shade-

tolerant species Coffea arabica and Tradescantia sillamontana

(Martins et al., 2014; Mishanin et al., 2016; Mishanin et al.,
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2017). Nevertheless, plants might improve the utilization of

excess light energy by enhancing electron transport

(Kalmatskaya et al., 2020), as has been recorded in the shade-

tolerant species Vanda sp. (Sma-Air and Ritchie, 2020).

Meanwhile, cycle electron flow (CEF) is an efficient pathway

for utilizing excess light energy (Tikhonov, 2013). The CEF-

dependent generation of the proton gradient (DpH) across the

thylakoid membrane not only stimulates ATP synthesis but also

protects PSII from photoinhibition through activating NPQ and

stabilizing oxygen-evolving complexes (Theune et al., 2021).

Moreover, activation of CEF-PSI can also prevent PSI from

photoinhibition and photooxidative damage through alleviating

the over-reduction of PSI acceptor side and reducing the

synthesis of superoxide anions in PSI (Sagun et al., 2019; Yang

et al., 2019a; Yang et al., 2019b). Photooxidative damage is

avoided in the shade-tolerant species such as Vanilla orchid,

Neobalanocarpus heimii and Lepisanthes senegalensis through

enhancing CEF around PSI when it is exposed to high light

(Kang et al., 2020; Ko et al., 2020). Nevertheless, it is still

unknown about a relationship between the photoprotective

strategies and the sensitivity of the shade-tolerant species to

high light.

Panax notoginseng (Burkill) F. H. Chen (Sanqi in Chinese) is a

perennial Chinese herb (the Panax genus, Araliaceae), which is a

typically shade-tolerant species (Zhang et al., 2020). Full light (FL)

of 9.6%-11.5% was found to be the most suitable growth light

environment for P. notoginseng (Zuo et al., 2014; Kuang et al.,

2014a; Kuang et al., 2014b; Kuang et al., 2015). Net photosynthesis

rate (Pn), stomatal conductance (Cond), and transpiration rate

(Tr) are significantly inhibited in excessive-shading-grown P.

notoginsen (Xu et al., 2018). Meanwhile, the thermal dissipation

and carboxylation efficiency are improved in high-light-grown P.

notoginseng ; correspondingly, the efficiency of PSII

photochemistry is decreased in low-light-grown counterpart

(Chen et al., 2014; Chen et al., 2016). In addition, Huang et al.

(2018a) have found that PSI photoinhibition did not occur in

high-light-grown P. notoginseng, but LEF (linear electron flow)

declined due to a decrease in PSII activity. The results are contrary

to the findings that high light might induce the irreversible

damage to PSII and the moderate photoinhibition to PSI in P.

notoginseng (Wu et al., 2021). However, it is still unclear whether

high-light induce irreversible damage to photosystem in shade-

tolerant species. Thus, photosynthetic adaptive strategies in shade-

tolerant species grown under light stress need to be further

understood. In the present study, photosynthetic performance,

photosynthesis-related pigments, leaves anatomical characteristics

and antioxidant enzyme activities were comparatively determined

in the shade-tolerant species P. notoginseng grown under a light

gradient. It has been hypothesized that: (1) PSI photoinhibition

might underlie the sensitivity of P. notoginseng to high light; (2)

Enhanced photosynthetic electron transport and moderate PSII

photoinhibition might be the photoprotective strategies under

high light; (3) The acceptor side of PSII were damaged in P.
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notoginseng were long-term exposed to low light; (4) The

photodamage of PSI could be avoided by activating cycle

electron transport around PSI in P. notoginseng grown under

long-term light stress.
Materials and methods

Plant materials and growth condition

The pot experiment was carried out from Januray in

Wenshan Miao Xiang P. notoginseng Technology Park (23°05′
N, 104°03′E), Yunnan, China. The healthy two-year-old rhizome

of P. notoginsengwere cultivated in plastic pots (30 cm × 25 cm ×

25 cm), with each containing 3 rootstocks. Total photon

exposure per day in screened growth house for seven

treatments was equivalent to 29.8%, 11.5%, 9.6%, 5.0%, 3.6%,

1.4% and 0.2% of that in the full sunlight (FL), respectively.

Figure S1 shows the diurnal variation of photosynthetic photon

flux density (PPFD) under seven light treatments, respectively.

210 pots were used for each light intensity regimes, and a total of

1470 pots were arranged (n = 7). Polyoxin and agricultural

streptomycin were used to control pests and diseases. In

September, the youngest fully expanded functional leaf on

each treatment at the maximum nutritional period from pot

planting was used for the determination of photosynthetic

performance, photosynthesis-related pigments, leaves

anatomical characterist ics and antioxidant defense

system analysis.
Chlorophyll content measurements

Chlorophyll (Chl) was extracted as described by Pérez-

Patricio et al. (2018). A LI-3000 leaf-area meter (Li-Cor, USA)

was used to determine leaf area. 0.5 g of fresh leaves were

immersed in a 15 mL extraction mixture [99% acetone was

mixed with ethanol (2:1 v/v)]. 3 h of standing in the dark were

followed by a 10 min centrifugation at 3000 g. Absorbance

readings were performed at wavelengths of 665 nm and 649

nm. Chl a and b content were calculated based on the method of

Gu et al. (2016). Total Chl content was the sum of Chl a and b.
Measurement of gas exchange

Gas exchange measurements were performed between 09:00

and 11:00 on fully expanded function leaves using an LI-6400XT

portable photosynthesis system equipped with a 6400-40 leaf

chamber (LI-Cor, UAS). Leaf temperature was maintained at 25°

C in the chamber. PPFD was 500 mmol·m-2·s-1 and CO2

concentration was adjusted to 400 mmol·mol-1 with a mixture.

After equilibration to a steady state, net photosynthesis rate (Pn),
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stomatal conductance (Cond), transpiration rate (Tr), and

intercellular CO2 concentration (Ci) were recorded.
Chlorophyll fluorescence and
P700 measurements

Dual-PAM 100 chlorophyll (Chl) fluorometer (Walz,

Germany) was used to determine PSI and PSII Chl

fluorescence parameters at 25°C. Seven plants were dark-

adapted for 20 min, and both PSI and PSII parameter were

monitored to record Chl fluorescence and P700 state. Then

leaves were light-adapted at 172 mmol·m-2·s-1 for 20 min.

Subsequently, PSI and PSII parameters were determined after

120 s exposure to each light intensity (0, 36, 94, 132, 172, 272,

421, and 611 mmol·m-2·s-1; PPFD, photosynthetic photon flux

density). The chlorophyll fluorescence parameters were

calculated as follows (Genty et al., 1989; Oxborough and

Baker, 1997; Hendrickson et al., 2004): Fv/Fm = (Fm - Fo)/

Fm; Y(II) = (Fm`-Fs)/Fm`; Y(NO) = Fs/Fm; NPQ = (Fm - Fm`)/

Fm`; 1 – qP = (Fs - Fo`)/(Fm` - Fo`); Y(NPQ) = Fs/Fm` - Fs/Fm.

Fo and Fo` were the minimum fluorescence after dark- and

light- adaptation, respectively; Fm and Fm` were the

maximum fluorescence after dark- and light-adaptation,

respectively; and Fs was the dark-adapted steady-state

fluorescence. Fv/Fm was the maximum quantum yield of

photosystem II. Y(II) was the effective quantum yield of

PSII photochemistry. Y(NO) and Y(NPQ) were the yield of

non-regulated and regulated energy dissipation of PSII,

respectively. NPQ was the non-photochemical quenching in

PSII. 1-qP was the redox poise of the primary electron

acceptor of PSII.

P700 redox state was calculated by the saturation pulse (600

ms, 10000 mmol·m-2·s-1) method (Klughammer and Schreiber,

2008). The P+700 signals (P) may vary between a minimal (P700

fully reduced) and a maximal level (P700 fully oxidized); the

maximum photo-oxidation P+
700 (Pm) and Pm` were ascertained

the application of a saturation pulse after pre-illumination with

far-red light and actinic light, respectively (Huang et al., 2010;

Yamori et al., 2016; Takagi et al., 2017). The chlorophyll

fluorescence parameters were determined by Klughammer and

Schreiber (2008) method: Y(I) = (Pm` - P)/Pm; Y(ND) = P/Pm; Y

(NA) = (Pm - Pm`)/Pm. Y(I) was the effective quantum yield of

PSII; Y(ND) and Y(NA) were the donor side and acceptor side

limitation of PSI, respectively.

Photosynthetic electron flows through PSI and PSII were

analyzed according to the method described by Huang et al.

(2012a); Huang et al. (2017); Huang et al. (2019): ETRII = Y(II)

× PPFD × 0.84 × 0.5; ETRI = Y(I) × PPFD × 0.84 × 0.5. ETRI was

the electron transport rate of PSI; ETRII was the electron

transport rate of PSII. Furthermore, the electron transport rate

of cyclic electron flow around PSI was estimated as ETRI -

ETRII; the quantum yield of cyclic electron flow around PSI was
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estimated as Y(I) – Y(II), or expressed as Y(I)/Y(II) (Miyake

et al., 2005; Fan et al., 2016; Sagun et al., 2019).
Measurement of OJIP kinetic curve

Fast Chl fluorescence measurements were conducted by a

pulse-amplitude modulation (PAM) fluorometer (PAM-2500,

Walz, Germany). After a dark adaptation for 4 h, Chl

fluorescence transient curves (OJIP transients) were inducted

by a red light (652 nm) of 3000 mmol·m-2·s-1 by the PAM-2500

through an array of light-emitting diodes. Cha a fluorescence

emission inducted by the strong light pulses was measured and

digitized between 10 ms and 320 ms (Kanutsky curve; Kautsky

and Hirsch, 1931). Meanwhile, four characteristic levels of

fluorescence yield can be distinguished in a plot with

logarithmic time scale: Fo, I1, I2 and Fm (alternatively also

denoted O, J, I and P; Schreiber et al., 1986; Schreiber et al.,

1989),. The Fo - I1 (or O-J) phase of the transient directly reflects

the closure of PSII reaction centers by charge separation (QA-

reduction). The initial rate of increase of this phase is

proportional to the applied light intensity (photochemical

phase). At a given light intensity, the initial rate provides a

relative measure of the optical absorption cross-section of PSII.

The I1- I2 - Fm (or J-I-P) phases of the transient reflect the

reduction of the rest of the electron transport chain defined

mainly by the reduction of the plastoquinone pool and the

acceptor side of PSI; the rate of which is limited by dark reactions

(thermal phase) (Schreiber and Klughammer, 2021). The point

of time corresponding to 300 ms on the OJIP kinetic curves was

defined as the “K” characteristic points (Eggenberg et al., 1995;

Strasser et al., 2000; Strasser et al., 2004). The OJIP transients

were analyzed using JIP-test, and the JIP-test is a

multiparametric analysis of the OJIP transients, which is based

on the theory of energy fluxes in bio-membranes (Strasser, 1981;

Strasser and Strasser, 1995). From OJIP transient, the extracted

parameters (F20 µs, F300 µs, F2 ms, F30 ms etc.) led to the calculation

and derivation of a range of new parameters according to

previous authors (Table S1; Yusuf et al., 2010).
Leaf anatomical characteristics under
different light regimes

After photosynthetic parameters measurement, leaf sections

of 1.00 × 1.00 cm were also cut from the middle of fully expanded

function leaves (avoiding midribs). Leaves were cleaned by

sterilizing water and stored in the FAA fixative. Leaf tissues

were dyed by hematoxylin staining method and fixed with

paraffin before observed (Xiong et al., 2017; Chang et al.,

2023). The tissue sections were observed under electron

microscope and analyzed through separately quantifying

variables in the visible field using Case Viewer software.
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Determination of antioxidant
enzyme activities

Leaf was homogenized on ice with a mortar and pestle in a

0.1 M potassium phosphate buffer (pH 7.0). The homogenate

was centrifuged at 12000 g for 15 min at 4°C. The supernatant

was used immediately for enzyme assays (Wang et al., 2009).

The activity of superoxide dismutase (SOD) was measured

according to a method using xanthine, xanthine oxidase, and

cytochrome c (Giannopolitis and Ries, 1977). The activity of

peroxidase (POD) was assayed according to the method

described by Zhang et al. (2005), using pyrogallol as a

substrate. Catalase (CAT) activity was assayed according to the

method described by Aebi (1984), by measuring the decrease at

240 nm for 1 min, due to H2O2 consumption.
Statistical analyses

SPSS 20.0 software (Chicago, IL, USA) was used to statistical

analysis. The variables were means ± standard deviation (SD) (n

= 7). Significant differences are indicated by letters (One-way

ANOVA; P < 0.05). Graphing was made by SigmaPlot 10.0

(Systat Software Inc, San Jose) and GraphPad Prism 8.0

(GraphPad Inc, USA) software.
Results

Response of the Chl contents to
light regimes

Leaves were significantly smaller and yellowish in P.

notoginseng under high light; moderate-light-grown leaves

were dark-green (Figure 1A). The content of Chl a, Chl b,

total Chl increased first and then decreased with the

increase of growth irradiance (Figures 1B–D). The maximum

values of photosynthetic pigments were recorded in 5.0% FL-

grown P. notoginseng (Figure 1; as reflected by Chl a, Chl b, total

Chl content). Chl a, Chl b, total Chl contents were lowest in P.

notoginseng under 29.8% FL (Figures 1B–D).
The effect of grown irradiance
on gas exchange

Pn and Cond were significantly enhanced in 11.5% FL-grown

plants compared with other treatments (Figures 2A, B).

Compared with 11.5% FL-grown P. notoginseng, Pn were

decreased 36.55% and 65.17% in 29.8% FL- and 0.2% FL-

grown plants, respectively (Figure 2A). The maximum and

minimum values of Ci were recorded in 0.2% FL- and 9.6%

FL-grown plants, respectively (Figure 2C). The minimum values
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of Pn, Cond, and Tr were obtained in P. notoginseng under 0.2%

FL condition (Figures 2A, B, D).

The effect of growth irradiance on leaf
anatomical characteristics

The thickness of the upper epidermis, palisade tissue, and lower

epidermis were declined with increasing growth irradiance (Table 1,

Figure S2). 29.8% FL-grown leaves were dramatically increased in

the thickness of the upper epidermis, palisade tissue, and spongy

tissue (Table 1). The thickness of the lower epidermis was greatest

in P. notoginseng grown under 29.8% and 11.5% FL condition

(Table 1). These differences were not significant for the upper

epidermis thickness in the range 3.6% to 11.5% FL (Table 1). The

palisade/spongy increased first and then decreased with the increase

of growth irradiance, and the maximum values of palisade/spongy

were recorded in 5.0% FL-grown plants (Table 1).

Response of the photosystem activity to
light regimes

Growth irradiance significantly influenced PSI and PSII

activity in the leaf (Figure 3). The minimum values of Fv/Fm
were showed in P. notoginseng grown under long-term low light

(1.4% FL, 0.2% FL) (Figure 3B), and Pm in high-light-grown
Frontiers in Plant Science 05
plants were lower (29.8% FL, 11.5% FL) (Figure 3A). The

difference between moderate- and low-light-grown plants in

Pm was only marginal (Figure 3A), but Pm was highest in P.

notoginseng grown under 5.0% FL (Figure 3A).

Response of the photosynthetic electron
transport to light regimes

ETRI, ETRII and ETRI - ETRII were raised with increasing

PPFD (Figure 4). ETRI and ETRII were significantly greater in

29.8% FL- and 9.6% FL-grown plants compared with other

individuals (Figures 4A, B). ETRI and ETRII were significantly

reduced in low-light-grown plants (0.2% FL; Figures 4A, B).

When PPFD was lower than 200 mmol·m-2·s-1, the maximum

values of ETRI - ETRII were obtained in 0.2% FL and 29.8% FL

P. notoginseng (Figure 4C). When plants were exposed to higher

PPFD, the maximum values of ETRI - ETRII were recorded in

29.8% FL individuals, but the ETRI - ETRII were declined in

low-light-grown P. notoginseng (0.2% FL, Figure 4C).

Response of the light energy partitioning
to growth irradiance

The minimum values of Y(I) were shown in the 0.2% FL

individuals (Figure 5A), and Y(ND) in low-light-grown
A

B DC

FIGURE 1

The effect of light regimes on leaf phenotypes (A), cited from our research group (Zhang et al., 2021), chlorophyll a (Chl a) content (mg·cm-2, B),
chlorophyll b (Chl b) content (mg·cm-2, C) and total Chl content (mg·cm-2, D). Values for each point were means ± SD (n = 7). Letters indicate
significant differences at P < 0.05 according to Duncan’s multiple range tests.
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individuals was greatest (Figure 5B). The opposite of Y(ND), Y

(NA) was increased when PPFD is lower than 272 mmol·m-2·s-1

in plants grown under moderate shading environments

(Figure 5C). There was no significant difference in Y(NA)
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when PPFD is more than 272 mmol·m-2·s-1. Compared with

PSI, the lowest values of Y(II) were always observed in low-light-

grown P. notoginseng (Figure 5D), and Y(NPQ) was highest in

0.2% FL plants (Figure 5E). Y(NO) was rapidly increased when
A B

DC

FIGURE 2

Effects of long-term light treatments on gas exchange parameters in Panax notoginseng leaves. (A) Net photosynthesis rate (Pn, mmol·CO2·m
-

2·s-1). (B) Stomatal conductance (Cond, mol·H2O·m-2·s-1). (C) Intercellular CO2 concentration (Ci, mmol·CO2·mol-1). (D) Transpiration rate (Tr,
mmol·H2O·m-2·s-1). Values for each point were means ± SD (n = 7). Letters indicate significant differences at P < 0.05 according to Duncan’s
multiple range tests.
TABLE 1 Effects of light regimes on the leaf anatomy in a shade tolerant plant Panax notoginseng.

Variables Growth irradiance (% of full sunlight, % FL)

29.8% FL 11.5% FL 9.6% FL 5.0% FL 3.6% FL 1.4% FL 0.2% FL

Upper epidermis (mm) 16.09 ± 3.45 a 12.74 ± 2.27 b 12.36 ± 1.80 b 12.21 ± 2.33 b 12.16 ± 2.32 b 8.33 ± 1.65 c 8.13 ± 2.29 c

Palisade tissue (mm) 36.26 ± 5.55 a 28.37 ± 6.15 b 29.59 ± 4.47 b 29.06 ± 6.17 b 20.48 ± 3.26 c 16.71 ± 2.40 d 13.73 ± 3.08 e

Spongy tissue (mm) 58.59 ± 15.76 a 39.17 ± 10.32 b 35.59 ± 5.62 bc 30.52 ± 5.88 cd 37.32 ± 6.41 b 29.04 ± 5.49 d 28.4 ± 6.71 d

Lower epidermis (mm) 12.91 ± 2.38 a 13.53 ± 2.05 a 11.49 ± 2.36 b 11.28 ± 1.84 bc 9.96 ± 2.01 c 7.80 ± 2.23 d 7.37 ± 2.63 d

Palisade/Spongy 0.65 ± 0.16 cd 0.77 ± 0.25 bc 0.86 ± 0.21 bc 1.00 ± 0.38 a 0.56 ± 0.11 de 0.60 ± 0.15 de 0.50 ± 0.11 e

Values are means ± SD. (n = 7). Different letters among light regimes indicate significant difference (P < 0.05).
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PPFD is higher than 272 mmol·m-2·s-1 (Figure 5F), and the Y

(NO) were increased in low-light-grown plants (Figure 5F).

NPQ and 1-qP increased with increasing PPFD (Figure 6).

NPQ was increased in P. notoginseng were exposed to high

light (29.8% FL, 11.5% FL; Figure 6A), and 1-qP in 0.2% FL

plants were highest (Figure 6B).
Response of the cycle electron flow
around PSI to light stress

The quantum yield of cyclic electron flow around PSI [Y(I)/

Y(II)] increased with increasing PPFD (Figure 7A). Y(I)/Y(II)

was activated earlier when PPFD was higher than 36 mmol·m-2·s-

1 in P. notoginseng under light stress (29.8% FL, 0.2% FL;

Figure 7A). Y(I)/Y(II) was inversely correlated with Y(II)

(Figures 5D, 7B), and the greatest values were shown in 0.2%

FL individuals (Figure 7B). As showed in Figure 8, Y(NPQ),

NPQ and Y(ND) were positively correlated with ETRI - ETRII

(Figure 8). Y(NPQ), NPQ and Y(ND) were greatest in the 0.2%

FL individuals when ETRI - ETRII is lower (Figure 8). Y(NPQ),

NPQ and Y(ND) were increased in the high-light-grown plants

when ETRI - ETRII was greater (Figure 8).
Changes in activities of
antioxidant enzymes

POD activity was greater in P. notoginseng grown under

29.8%, 11.5%, and 9.6% FL condition (Figure 9A, P < 0.05). The

POD activity was declined with decreasing growth irradiance

(Figure 9A), and the minimum values of POD activity was

obtained in 0.2% FL-grown P. notoginseng (Figure 9A). CAT

activity was significantly increased in high-light-grown plant
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(29.8% FL, 11.5% FL; Figure 9B). CAT activity was lowest in

5.0% FL-grown plants (Figure 9B). SOD activity was reduced

with decreasing grown irradiance in the range 29.8% to 9.6% FL

(Figure 9C). SOD activity was significantly decreased in 3.6%

FL-grown plants compared with 5.0%, 1.4% and 0.2% FL

treatments (Figure 9C, P < 0.05).
Response of the OJIP kinetic curve to
light regimes

The OJIP kinetic curve showed an “S”-shaped in all light

regimes (Figure 10A). The lower fluorescence values were shown

in high-light-grown individuals, Fo≌F20 ms (O phase) was greater in

the 9.6% FL individuals, and the maximum values of FM=FP=F300

ms (P phase) were recorded in the 5.0% FL individuals (Figure 10A).

Wk was lower in moderate-light-grown plants (9.6% FL, 5.0% FL,

3.6% FL; Figure 11B), and the maximum values of Wk were

recorded in 0.2% FL individuals (Figure 11B).

In the JIP-test parameters, change in Mo, VJ and yo can

reflect activity of PSII acceptor sides (Force et al., 2003). Changes

ofMo and VJ are similar (Figures 10B, 11A), andMo and VJ were

greater in low-light-grown plants (0.2% FL, Figures 10B, 11A).

yo was significantly lower in 0.2% FL plants than in other light

regimes plants (Figure 10B). Compared with Fv/Fm, PIABS could

more sensitively reflect the activity of PSII acceptor sides (Crafts-

Brandner and Salvucci, 2002). The minimum values of PIABS
were surveyed in 0.2% FL individuals (Figure 11C), and there

were not significantly different in other light regimes

(Figure 11C). DIo/RC and ABS/RC were highest in the 9.6% FL

plants (Figure 10B), and ETo/RC were higher in low-light-grown

individuals (0.2% FL; Figure 10B). ABS/RC and TRo/RC were

increased when the growth irradiance is lower than 5.0%

FL (Figure 10B).
A B

FIGURE 3

The effect of light regimes on PSI and PSII activity of Panax notoginseng. (A) Pm is the maximum photo-oxidation P+
700. (B) Fv/Fm is the

maximum efficiency of PSII photochemistry. Values for each point were means ± SD (n = 7). Letters indicate significant differences at P < 0.05
according to Duncan’s multiple range tests.
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A

B

C

FIGURE 4

Characteristics of electron transport between PSII and PSI in 1eaves of P. notoginseng grown under different light levels. (A) Response of
electron transport rate of PSI (ETRI, mmol·e-·m-2·s-1) to photosynthetic photon flux density (PPFD, mmol·m-2·s-1). (B) Response of electro
transport rate of PSII (ETRII, mmol·e-·m-2·s-1) to PPFD. (C) Response of cyclic electron flow around PSI (ETRI - ETRII, mmol·e-·m-2·s-1) to PPFD.
Values for each point were means ± SD (n = 7).
Frontiers in Plant Science frontiersin.org08

https://doi.org/10.3389/fpls.2022.1095726
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Cun et al. 10.3389/fpls.2022.1095726
Phenotypic plasticity index analysis for
Chl fluorescence-related parameters

The plasticity index of Pm was much greater than that of Fv/

Fm among the photosystem activity variables (Figure 12); The

higher plasticity index values of ETRI, ETRII, Y(II) and Y(I)

were shown among photosynthetic electron transport and light

energy distribution (Figure 12). The plasticity indices ofMo were

largest among PSII receptor side parameters (Figure 12).

Noteworthy, the plasticity indices of Pm, ETRII, ETRI, Y(II)

and Y(I) exceeded 0.5, and the lowest plasticity indices values of

Fv/Fm, Y(NPQ), ETo/RC and Wk (Figure 12).
Frontiers in Plant Science 09
Discussion

Light-driven changes in photosynthesis is
in part explained by leaf anatomy

Photosynthetic capacity is at least in part determined by leaf

anatomy and Pn is limited by the rate of CO2 diffusion from the

atmosphere to the chloroplast (Gratani and Bombelli, 2000). The

reduction of palisade tissue thickness increases the density of

chloroplast distribution and enchants light-receiving area and

light capture capability, thus improving photosynthetic capacity

in shade -tolerant species (e.g., Phoebe bournei, Cyclobalanopsis
A

B

D

E

FC

FIGURE 5

The effect of light regimes on light energy allocation in P. notoginseng. (A) Y(I) is the quantum yield of PSI. (B) Y(ND) is the donor side limitation
of PSI. (C) Y(NA) is the acceptor side limitation of PSI. (D) Y(II) is the efficient quantum yield of PSII. (E) Y(NPQ) is the yield of regulated energy
dissipation of PSII. (F) Y(NO) is the yield of non-regulated energy dissipation of PSII. Values for each point were means ± SD (n = 7).
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gilva, Zelkova serrata, Cinnamomum camphora; Xue, 2020).

Thicker upper epidermis protects mesophyll tissue from

damage in high-light-grown Acer rybrum (Goulet and Pierre,

1986). The thickness of palisade tissue was declined with

increasing growth irradiance, and 29.8% FL-grown leaves were

dramatically increased in the thickness of the upper epidermis

(Table 1, Figure S2). These results imply that P. notoginseng

leaves made favorable adaption to high and low light,

respectively. Correspondingly, the increase of upper epidermis,

palisade tissue, and lower epidermis would reduce liquid phase

diffusion of CO2 in mesophyll cells (Table 1), this might partly

explain the fact that a significant decline in Pn was observed in

the high-light-grown plants (Figure 2), as has also been observed

in Zhang et al. (2020). Meanwhile, low-light-grown leaves were

declined in Tr and Cond, and Ci and Pn had opposite trends

(Figure 2). These results imply that the decline of photosynthetic

rate in low-light-grown P. notoginseng was mainly caused by
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non-stomatal limitation factors, and this is consistent with the

results reported by Rylski and Spigelman (1986). Thus, light-

driven changes in Pn are in part explained by leaf anatomy.
Low light stress exacerbates
photoinhibition to PSII in the shade-
tolerant species

It has commonly accepted that the primary sites of

photoinhibition are PSI and PSII (Gerganova et al., 2016). The

PSI and PSII photoinhibition is characterized by a significant

decrease in Pm and Fv/Fm, respectively (Demmig-Adams and

Adams, 1992). PSII activity is inhibited under high light, but PSI

activity remains stable, and this has been confirmed in Solanum

lycopersicum and Arabidopsis thaliana (Gerganova et al., 2019;

Chen et al., 2020). Fv/Fm was greatly reduced in 1.4% FL- and
A B

FIGURE 6

Changes of fluorescence characteristics in the light response process in P. notoginseng under different levels of light. (A) NPQ is the non-
photochemical quenching of PSII. (B) 1-qP is the light response changes in the redox poise of the primary electron acceptor of PSII. Values for
each point were means ± SD (n = 7).
A B

FIGURE 7

The effect of light regimes on cyclic electro transport in P. notoginseng. (A) Light response changes in Y(I)/Y(II) for leaves of P. notoginseng grown
under different light regimes. Above the gray line represents the start of cyclic electron transport being excited. (B) Relation between Y(I)/Y(II) and Y
(II) (line electro transport) for leaves of P. notoginseng grown under different light regimes. Values for each point were means ± SD (n = 7).
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0.2% FL-grown plants (Figure 3B), but PSI activity was relatively

increased in low-light-grown plants (Figure 3A). This is

inconsistent with the results reported that inhibition of the

activity of PSII under strong light is referred to as
Frontiers in Plant Science 11
photoinhibition (Murata et al., 2007). This may be due to the

different light demands of the study species (as reflected by P.

notoginseng is a typically shade-tolerant species). These results

imply that the degree of PSII photoinhibition is significantly

affected by long-term low light stress, as confirmed in the shade-

tolerant species P. henryi treated by short-term low light (Huang

et al., 2016b). Meanwhile, the degree of inhibition of Pn under

0.2% FL was greater than that of 29.8% FL (Figure 2A), it implied

that P. notoginseng are more sensitive to long-term low light

compared to high light. Furthermore, compared with Fv/Fm,

PIABS could more sensitively reflect the activity of PSII (Crafts-

Brandner and Salvucci, 2002; Li et al., 2009b). PIABS in 0.2% FL

plants was significantly lowest than other counterparts

(Figure 11C). Obviously, PSII was more sensitive to low light

stress compared with PSI. Therefore, long-term low light stress

exacerbates the photoinhibition to PSII in the shade-

tolerant species.
PSI photoinhibition is a fundamental
reason for the sensitivity of the shade-
tolerant plants to high light

PSI activity is slow to recover from photoinhibition

compared with the recovery of PSII activity (Zhang and

Scheller, 2001; Zhou et al., 2019). PSI photoinhibition

mainly occurs in plants grown under high light and chilling

temperatures condition (Zhang and Scheller, 2001), as has

been recorded in the shade-tolerant plants P. rubra, P. henryi

and Nephrolepis falciformis (Huang et al., 2015; Huang et al.,

2017; Huang et al., 2018b). Pm in 29.8% FL plants was greatly

reduced by 51.57% in relative to 0.2% FL counterparts

(Figure 3A), and PSI activity is significantly reduced in

high-light-grown plants. The excess electrons on PSI

acceptor side induce the formation of superoxide anion

radicals and the reduction of the iron-sulfur center in PSI,

which leads to photoinhibition to PSI (Sonoike, 2011). Y(NA)

in 29.8% FL individuals was significantly higher than 0.2% FL

individuals (Figure 5C), implying that the occurrence of PSI

photoinhibition in high-light-grown P. notoginseng might is

due to the excess accumulation of superoxide anion radicals

on the PSI acceptor side as has been proposed by Kim et al.

(2005). PSI is sensitive in high-light-grown P. notoginseng.

On the other hand, the degree of PSI photoinhibition is

greater than that of PSII photoinhibition in high-light-

grown individuals (Figure 3), and the plasticity index of Pm
was larger than that of Fv/Fm (Figure 12). PSI photoinhibition

is the basis for the sensitivity of shade-tolerant plants P. rubra

to high light condition (Huang et al., 2015). Thus, PSI

photoinhibition might be a vital reason for explaining why

the shade-tolerant plants P. notoginseng cannot grow under

high light.
A

B

C

FIGURE 8

Relation between ETRI - ETRII and Y(NPQ) (A), NPQ (B), Y(ND)
(C) for leaves of P. notoginseng grown under different light
regimes. Values for each point were means ± SD (n = 7).
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Enhanced photosynthetic electron
transport and moderate PSII
photoinhibition in high-light-
grown plants

On the condition of excess light, the utilization and

dissipation of light are increased to protect PSII and PSI

against photoinhibition (Zhang et al., 2015; Bascuñán-Godoy

et al., 2018). Higher NPQ dissipates excess energy as heat in

order to prevent damage to PSII of high-light-grown A. thaliana

and Chromera velia (Belgio et al., 2018; Howard et al., 2019).

29.8% FL-grown plants possessed a high NPQ (Figure 6). These

results imply that excess light energy could be effectively

dissipated in the form of heat photochemistry in high-light-

grown plants. Thus, high-light-grown plants show greater

photochemical efficiency and photoprotective capacity,

contributed by higher Y(II) and NPQ (Figures 5D, 6A, 8),

while the NPQ of shade plants is more sensitive to changes in

high light. This is consistent with the results reported by Ishida

et al. (2014) that a larger proportion of Y(II) and Y(NPQ) has

been observed in high-light-grown O. sativa. Moreover, the

utilization of excess light is increased by increasing electron

transport and photochemistry in high-light-grown (Genty and

Harbinson, 1996). Y(I), Y(II), ETRI, ETRII and NPQ were

increased in the 29.80% FL individuals (Figures 4, 5, 6A); and

the plasticity indices of ETRII, ETRI, Y(II) and Y(I) all exceeded

0.5 (Figure 12). These results imply that excess light energy could

be effectively dissipated in the form of heat or photochemistry in

high-light-grown plants. However, excess light energy could not

be effectively dissipated in time, which accumulates ROS (Zhou

et al., 2019). Plants up-regulate the antioxidant enzyme system

to scavengethe ROS under stress (Li et al., 2009). The activities of

SOD, POD and CAT showed different degrees of changes in

high-light-grown P. notoginseng (Figure 9). This is consistent

with the results reported by Zhang et al. (2022) that the

activation of SOD and POD could avoid photooxidative

damage in Pyropia haitanensis grown under high light

condition. Overall, high-light-grown P. notoginseng had

stronger capability of scavenging ROS and non-photochemical

quenching. Moreover, light capture capability was decreased by

inhabiting Chl content (as reflected by Chl a, Chl b, and total Chl

content) in 29.80% FL-grown P. notoginseng (Figures 1B-D), as

has been confirmed by Sato et al. (2015) in A. thaliana grown

under high light stress. The degree of PSI photoinhibition is

higher than that of PSII photoinhibition in high-light-grown P.

notoginseng (Figure 3). PSI photoinhibition in P. notoginseng

grown under high light condition was primarily caused by the

excess electron transport from PSII to PSI (Huang et al., 2015).

PSI activity is protected against photodamage in pgr5 mutants

of A. thaliana upon moderate PSII photoinhibition, due

to the depression of electron flow from PSII to PSI
A

B

C

FIGURE 9

The effects of light stress on the antioxidant activities
ofperoxidase (POD), catalase (CAT) and superoxide dismutase
(SOD) in the leaves of P. notoginseng. (A) POD activity (U g-
1·min-1). (B) CAT activity (U g-1·min-1). (C) SOD activity (U g-1·min-
1). Values for each point were means ± SD (n = 7). Letters
indicate significant differences at P < 0.05 according to Duncan’s
multiple range tests.
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(Tikkanen et al., 2014). Moderate photoinhibition of PSII is a

protective response (Huang et al., 2016a; Huang et al., 2018a).

Fv/Fm,Yo,WK and VJ were relatively stable when P. notoginseng

were exposed to high light (Figures 3B, 10B, 11A, B), as has been

confirmed by Thachle et al. (2007) in Graptophyllum

reticulatum. These results imply that moderate photoinhibition

of PSII occurs in high-light-grown P. notoginseng. Therefore, the

enhanced photosynthetic electron transport and moderate PSII

photoinhibition of P. notoginseng under high light condition

were presented as photoprotection strategies.
Low light stress damages the acceptor
side of PSII

The enhanced absorption and utilization of light energy is a

predominated strategy for plants to adapt to low light (Lei et al.,

1996; Ruberti et al., 2012), and this has been confirmed in the

shade-tolerant species Paeonia veitchii, Paeonia intermedia and

Paeonia anomala grown under low light (Wan et al., 2020). ABS/

RC, TRo/RC, 1-qP, and Mo were enhanced in 0.2% FL-grown P.

notoginseng (Figures 6B, 10B). The capture and absorption of

light energy were improved by the increased active reaction

centers per unit area in P. notoginseng grown under low light.

Additionally, antenna sizes are increased by enhancing Chl b

and LHCII levels in low-light-grown A. thaliana, resulting in

higher light capture capability (Sato et al., 2015). The previous

observation is consistent with present results that the maximum

values of Chl b content were recorded in 5.0% FL-grown P.

notoginseng (Figure 1C). These results imply that light capture

capability is enhanced by increasing antenna size in P.

notoginseng grown under low-light stress.
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It has commonly accepted that the state transition is a

photoprotective mechanism that improves the utilization of

plant light energy by balancing the excitation energy of PSI

and PSII (Bailey and Grossman, 2008; Khuong et al., 2019). In

the present study, the maximum values of 1-qP were recorded in

0.2% FL plants (Figure 6B). The maintenance of state 1 of P.

notoginseng at 0.2% FL may be due to the strong PSII excitation,

resulting in high excitation pressure on PSII (Tikkanen et al.,

2006). These results imply that PSII reaction centers are

inactivated in plants grown under low light, as has been

confirmed by Chen and Xu (2006). However, the imbalance

between the absorption and utilization of light energy could

cause a damage to photosynthetic apparatus (Zavafer et al., 2019;

Kodru et al., 2020). Y(II), Y(I), NPQ, jDo and Fv/Fm were

decreased in the 0.2% FL individuals, but Y(NO) was increased

(Figures 3B, 5A,D,F, 6A, 10B), suggesting that excess light energy

could not be effectively dissipated in the form of thermal in low-

light-grown individuals, and it probably lead to the reduction in

PSII activity and the damage to PSII. On the other hand, plants

would use light energy through photosynthetic electron

transport to protect photosynthetic apparatus, and this has

been confirmed in the light-demanding species Shorea

leprosula and Cerasus cerasoides grown under light stress

(Scholes et al., 1996; Yang et al., 2019b). ETRI, ETRII, ETRI -

ETRII, ETo/RC and Fv/Fm were reduced in low-light-grown P.

notoginseng (0.2% FL or 1.4% FL; Figures 3B, 4, 10B). Low-light-

grown P. notoginseng cannot increase the utilization of light

energy by enhancing electron transport. The decline in PSII

activity result in the inhibition to electron transport in low-light-

grown P. notoginseng (Figures 3B, 4). This is consistent with the

results reported by Huang et al. (2018a) that the decline in

electron transport under low light is induced by a decline in PSII
A B

FIGURE 10

Effects of light regimes on chlorophyll fluorescence transients of P. notoginseng. (A) O, J, I and P phase represent the fluorescence at T=20 ms,
2 ms, 30 ms and 300 ms, respectively. (B) A radar plot of JIP parameters in P. notoginseng leaves grown under different light regimes. ABS/RC is
the absorption flux per reaction center of PSII; TRo/RC is the captured light energy used to restore qA; ETo/RC is the captured light energy used
for electron transfer per unit area; DIo/RC is the energy dissipated per unit reaction;Yo is the probability that a trapped exciton moves an
electron into the electron transport chain beyond Q�

A (at t=0); Mois the approximated initial slope of the fluorescence transient; VJ is the relative
variable fluorescence intensity at the J-step; Wk is the K phase in O-J-I-P chlorophyll fluorescence induction curves; jDo is the quantum yield
for thermal dissipation; jEo is the quantum yield for electron transport (t = 0); jPo is the maximum quantum yield for primary photochemistry (t
= 0). Values for each point were means (n = 7).
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activity in P. notoginseng. The imbalance between PSI and PSII

leads to reduced electron transport (Wen et al., 2005; Sonoike,

2011; Oguchi et al., 2021). The previous observation is consistent

with present results that the lower value of ETRI, ETRII and yo

was observed in the 0.2% FL individuals (Figures 4A, B, 10B).

The OJIP kinetic curve reflects the degree of damage to PSII

under light stress (Kumar et al., 2020; Lysenko et al., 2021). The

appearance of the K-phase in OJIP is related to the injury of PSII

donor side, particularly the OEC (Oxygen-evolving complex)

(Zhang et al., 2016; Kumar et al., 2020). However, evidence is

accumulating that K-phase is observed when plants are exposed to

environmental stress, and K-phase are more pronounced in short-

term stressed plants compared with long-term stressed individuals

(Pagliano et al., 2006; Tóth et al., 2007). The appearance of the K-

phase and the high value of Wk was obtained in P. notoginseng

grown under long-term 0.2% FL condition (Figures 10, 11B; P <

0.05), and this has been confirmed in Rosa hybrida grown under

long-term drought stress (Pinior et al., 2005). These results indicate

that electron transport is inhibited from electron donor of PSII to

the reaction center in low-light-grown individuals, which in turn

lead to the OEC injury of PSII donor side. Mo, Yo, VJ and jEo
mainly reflects changes in PSII acceptor side (Ayyaz et al., 2020;

Kumar et al., 2020; Khan et al., 2021). VJ and Mo were increased,

andYo was decreased in 0.2% FL-grown P. notoginseng compared

with other counterparts (Figures 10B, 11A), implying that PSII

reaction center is closed, a large amount of oxidized QA is

accumulated and the electron transport after QA is inhibited,

consequently resulting in a damage to the acceptor side of the

PSII. Nevertheless, the increase in VJ and Wk reflects the degree of

damage to the acceptor side and the donor side of PSII, respectively

(Lu and Zhang, 2000). A similar effect has been observed in Glycine

max and Zea mays grown under environmental stress (Li et al.,

2009a; Li et al., 2009b). VJ and Wk were significantly increased in

0.2% FL compared with other counterparts, but the increase of VJ

was larger than that ofWk (Figures 11A, B). Anyways, PSII acceptor

side is more readily damaged than the donor side in P. notoginseng

grown under low light condition.
Cyclic electron flow around PSI protects
PSI from damage under long-term
light stress

Y(I)/Y(II) was activated earlier when PPFD was higher than

36 mmol·m-2·s-1 in when P. notoginseng were exposed to high

light and low light condition (29.8% FL, 0.2% FL; Figure 7A), but

ETRI - ETRII in 29.8% FL plants was consistently higher than in

0.2% FL plants (Figure 4C). These results imply that DpH and

ATP might be enhanced in high-light-grown P. notoginseng

compared with the counterparts as has been suggested by Miller
A

B

C

FIGURE 11

Effect of light regimes on the VJ,Wk and PIABS of P. notoginseng
leaves. (A) VJ is the relative variable fluorescence intensity at the
J-step; (B) Wk is the K phase in O-J-I-P chlorophyll fluorescence
induction curves. (C) PIABS is the performance index on
absorption basis. Values for each point were means ± SD (n = 7).
Letters indicate significant differences at P < 0.05 according to
Duncan’s multiple range tests.
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FIGURE 12

Phenotypic plasticity index of the twenty-two chlorophyll fluorescence variables of photosystem activity, photosynthetic electron transport, light
energy distribution, PSII reaction center, the acceptor sides and donor sides of PSII. Means were calculated for seven individuals for each light
treatment.
FIGURE 13

Photosynthetic adaptive strategies of the shade-tolerant species P. notoginseng grown under long-term light stress. Energy dissipation through
NPQ predominates in response to high light, electron transport plays an important role in utilizing excess light energy, and the moderate
photoinhibition of PSII and higher cyclic electron flow around PSI might avoid the damage of the PSI under high light. The absorbed light
energy cannot be effectively dissipated and utilized through NPQ and electron transport under low light. Cyclic electron flow around PSI also
cannot completely protect PSII from damage under low light. Blue arrows represent linear electron transport, magenta arrow represents cycle
electron transport, red arrows represent absorbed light energy, green arrows represent the capability to dissipate heat, craquelure represent the
damage of photosystem. The thickness of the lines represents the strength of electron transport, light energy absorption, and heat dissipation.
The black dotted line indicates the transport pathway of H+. The black solid line indicates the synthetic path of ATP.
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et al. (2020). In addition, high DpH not only decelerates the

damage to PSII by protecting the OEC, but also protect PSI by

regulating electron transport from PSII to PSI (Takahashi et al.,

2009; Tikkanen et al., 2015). Similarly, cyclic electron flow

around PSI plays an essential role in photoprotection for P.

henryi, C. cerasoides and Phaeodactylum tricornutum under

high-light (Huang et al., 2017; Yang et al., 2019b; Zhou et al.,

2020; Sun et al., 2021). ETRI - ETRII, NPQ, ETRI and ETRII

were increased, Pm was substantially reduced in the 29.8% FL

plants (Figures 3A, 4C, 6A), and Y(NPQ), NPQ and Y(ND) have

a positive correlation with ETRI - ETRII (Figure 8), suggesting

that cyclic electron flow around PSI protects PSI and PII from

damage by enhancing thermal dissipation capacity and

regulating P700+ redox state and electron transport in high-

light-grown individuals.

Cyclic electron flow around PSI also shows photoprotection in

plants exposed to low light (Laisk et al., 2005; Huang et al., 2011;

Huang et al., 2012a; Huang et al., 2012b; Huang et al., 2019; Flannery

et al., 2021). The maximum values of Y(NPQ), NPQ and Y(ND)

were recorded in 0.2% FL-grown plants when ETRI - ETRII is lower

(Figure 8). High Y(NPQ), NPQ andY(ND) depend on cyclic electron

flow around PSI to produce DpH in low-light-grown plants

(Munekage et al., 2004). ETRI - ETRII was reduced in the 0.2% FL

plants when PPFD is above the value of 272 mmol·m-2·s-1 (Figure 4C),

indicating that cyclic electron flow around PSI could not build up a

sufficient DpH to protect PSII from photodamage in low-light-grown

P. notoginseng. Severe photoinhibition to PSII would limit the

transport of electrons from PSII to PSI, which in turn prevents

damage to PSI (Huang et al., 2015). PSII activity and ETRII were

drastically decreased when plants were exposed to low light (1.4% FL

& 0.2% FL; Figures 3B, 4B), but Pm was relatively stable (Figure 3A).

The results obtained herein suggest that severe photoinhibition to

PSII protects PSI from photodamage in low-light grown P.

notoginseng. Overall, cyclic electron flow around PSI cannot

completely protect PSII from damage under low light stress, but

can prevent PSI photodamage.
Conclusions

A model of photosynthetic adaptive strategies was proposed

in the typically shade-tolerant species, such as P. notoginseng,

grown under long-term light stress (Figure 13). The energy

dissipation through NPQ predominates in high-light-grown

shade-tolerant species. Meanwhile, moderate photoinhibition

to PSII and high cyclic electron flow around PSI might avoid

the damage to PSI in high-light-grown shade-tolerant species.

However, absorbed light energy cannot be effectively dissipated

and utilized through NPQ and electron transport in low-light-

grown shade-tolerant species. Additionally, cyclic electron flow

around PSI also cannot completely protect PSII from damage in

low-light-grown shade-tolerant species. PSI photoinhibition is

the underlying sensitivity of the shade-tolerant species to high
Frontiers in Plant Science 16
light, and the photodamage to PSII acceptor side might cause the

shade-tolerant species to be unsuitable for long-term low light.
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Tóth, S. Z., Schansker, G., Garab, G., and Strasser, R. J. (2007). Photosynthetic
electron transport activity in heat-treated barley leaves: The role of internal
alternative electron donors to photosystem II. Biochim. Biophys. Acta 1767 (4),
295–305. doi: 10.1016/j.bbabio.2007.02.019

Townsend, A. J., Retkute, R., Chinnathambi, K., Randall, J. W. P., Foulkes,
J., Carmo-Silva, E., et al. (2018a). Suboptimal acclimation of photosynthesis to
light in wheat canopies. Plant Physiol. 176 (2), 1233–1246. doi: 10.1104/
pp.17.01213

Townsend, A. J., Saccon, F., Giovagnetti, V., Wilson, S., Ungerer, P., and Ruban,
A. V. (2018b). The causes of altered chlorophyll fluorescence quenching induction
in the Arabidopsis mutant lacking all minor antenna complexes. Biochim. Biophys.
Acta Bioenerg. 1859 (9), 666–675. doi: 10.1016/j.bbabio.2018.03.005

Townsend, A. J., Ware, M. A., and Ruban, A. V. (2018c). Dynamic interplay
between photodamage and photoprotection in photosystem II. Plant Cell Environ.
41 (5), 1098–1112. doi: 10.1111/pce.13107

Valladares, F., and Niinemets, Ü. (2008). Shade tolerance, a key plant feature of
complex nature and consequences. Annu. Rev. Ecol. Evol. S. 39, 237–257.
doi: 10.1146/annurev.ecolsys.39.110707.173506

Wang, W. B., Kim, Y. H., Lee, H. S., Kim, K. Y., Deng, X. P., and Kwak, S. S.
(2009). Analysis of antioxidant enzyme activity during germination of alfalfa under
salt and drought stresses. Plant Physiol. Biochem. 47 (7), 570–577. doi: 10.1016/
j.plaphy.2009.02.009

Wan, Y. L., Zhang, Y. X., Zhang, M., Hong, A. Y., Yang, H. Y., and Liu, Y. (2020).
Shade effects on growth, photosynthesis and chlorophyll fluorescence parameters
of three Paeonia species. PeerJ 8, e9316. doi: 10.7717/peerj.9316

Ware, M. A., Hunstiger, D., Cantrell, M., and Peers, G. (2020). A chlorophyte
alga utilizes alternative electron transport for primary photoprotection. Plant
Physiol. 183 (4), 1735–1748. doi: 10.1104/pp.20.00373

Wei, Z., Duan, F., Sun, X., Song, X., and Zhou, W. (2021). Leaf photosynthetic
and anatomical insights into mechanisms of acclimation in rice in response to
long-term fluctuating light. Plant Cell Environ. 44 (3), 747–761. doi: 10.1111/
pce.13954

Wen, X., Qiu, N., Lu, Q., and Lu, C. (2005). Enhanced thermo tolerance of
photosystem II in salt-adapted plants of the halophyte Artemisia anethifolia. Planta
220 (3), 486–497. doi: 10.1007/s00425-004-1382-7

Wu, H. M., Shuang, S. P., Zhang, J. Y., Cun, Z., Meng, Z. G., Li, L. G., et al.
(2021). Photodamage to photosystem in a typically shade-tolerant species Panax
notoginseng exposed to a sudden increase in growth light intensity. Chin. J. Plant
Ecol. 45, 404–419. doi: 10.17521/cjpe.2021.0013

Xiong, D., Flexas, J., Yu, T., Peng, S., and Huang, J. (2017). Leaf anatomy
mediates coordination of leaf hydraulic conductance and mesophyll conductance
to CO2 in oryza. New Phytol. 213 (2), 572–583. doi: 10.1111/nph.14186

Xue, L. (2020). Photosynthetic characteristics and leaf anatomical structure of five
precious tree species under shading condition (Hunan, China: Central South
University of Forestry and Technology).

Xu, X. Z., Zhang, J. Y., Zhang, G. H., Long, G. Q., Yang, S. C., Chen, Z. J., et al.
(2018). Effects of light intensity on photosynthetic capacity an light energy
allocation in Panax notoginseng. Chin. J. Appl. Ecol. 29, 193–204. doi: 10.13287/
j.1001-9332.201801.008

Yamori, W., Makino, A., and Shikanai, T. (2016). A physiological role of cyclic
electron transport around photosystem I in sustaining photosynthesis under
fluctuating light in rice. Sci. Rep. 6, 20147. doi: 10.1038/srep20147

Yang, Y. J., Ding, X. X., and Huang, W. (2019a). Stimulation of cyclic electron
flow around photosystem I upon a sudden transition from low to high light in two
angiosperms Arabidopsis thaliana and Bletilla striata. Plant Sci. 287, 110166.
doi: 10.1016/j.plantsci.2019.110166

Yang, Y. J., Zhang, S. B., Wang, J. H., and Huang, W. (2019b). Photosynthetic
regulation under fluctuating light in field-grown Cerasus cerasoides: A comparison
of young and mature leaves. Biochim. Biophys. Acta Bioenerg. 1860 (11), 148073.
doi: 10.1016/j.bbabio.2019.148073

Yusuf, M. A., Kumar, D., Rajwanshi, R., Strasser, R. J., Tsimilli-Michael, M.,
Govindjee,, et al. (2010). Overexpression of gamma-tocopherol methyl transferase
gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and
chlorophyll a fluorescence measurements. Biochim. Biophys. Acta 1797 (8), 1428–
1438. doi: 10.1016/j.bbabio.2010.02.002

Zavafer, A., Iermak, I., Cheah, M. H., and Chow, W. S. (2019). Two quenchers
formed during photodamage of phostosystem II and the role of one quencher in
preemptive photoprotection. Sci. Rep. 9 (1), 17275. doi: 10.1038/s41598-019-
53030-7
frontiersin.org

https://doi.org/10.1016/0304-4238(86)90028-2
https://doi.org/10.1016/0304-4238(86)90028-2
https://doi.org/10.1007/s11120-019-00666-1
https://doi.org/10.1007/s11120-015-0145-6
https://doi.org/10.1007/s004420050056
https://doi.org/10.1007/BF00024185
https://doi.org/10.1007/BF00024185
https://doi.org/10.1007/s11120-020-00814-y
https://doi.org/10.1098/rstb.1989.0007
https://doi.org/10.1016/j.jgg.2022.04.017
https://doi.org/10.1016/j.jplph.2020.153187
https://doi.org/10.1111/j.1399-3054.2010.01437.x
https://doi.org/10.3390/plants10030606
https://doi.org/10.1016/j.envexpbot.2017.05.002
https://doi.org/10.1111/tpj.13566
https://doi.org/10.1104/pp.108.134122
https://doi.org/10.1007/s11120-007-9207-8
https://doi.org/10.1016/j.bbabio.2020.148353
https://doi.org/10.1007/s11120-013-9845-y
https://doi.org/10.1007/s11120-013-9845-y
https://doi.org/10.1016/j.bbabio.2013.10.001
https://doi.org/10.1007/s11103-006-9044-8
https://doi.org/10.1007/s11103-006-9044-8
https://doi.org/10.3389/fpls.2015.00521
https://doi.org/10.1016/j.bbabio.2007.02.019
https://doi.org/10.1104/pp.17.01213
https://doi.org/10.1104/pp.17.01213
https://doi.org/10.1016/j.bbabio.2018.03.005
https://doi.org/10.1111/pce.13107
https://doi.org/10.1146/annurev.ecolsys.39.110707.173506
https://doi.org/10.1016/j.plaphy.2009.02.009
https://doi.org/10.1016/j.plaphy.2009.02.009
https://doi.org/10.7717/peerj.9316
https://doi.org/10.1104/pp.20.00373
https://doi.org/10.1111/pce.13954
https://doi.org/10.1111/pce.13954
https://doi.org/10.1007/s00425-004-1382-7
https://doi.org/10.17521/cjpe.2021.0013
https://doi.org/10.1111/nph.14186
https://doi.org/10.13287/j.1001-9332.201801.008
https://doi.org/10.13287/j.1001-9332.201801.008
https://doi.org/10.1038/srep20147
https://doi.org/10.1016/j.plantsci.2019.110166
https://doi.org/10.1016/j.bbabio.2019.148073
https://doi.org/10.1016/j.bbabio.2010.02.002
https://doi.org/10.1038/s41598-019-53030-7
https://doi.org/10.1038/s41598-019-53030-7
https://doi.org/10.3389/fpls.2022.1095726
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Cun et al. 10.3389/fpls.2022.1095726
Zhang, J. Y., Cun, Z., and Chen, J. W. (2020). Photosynthetic performance and
photosynthesis-related gene expression coordinated in a shade-tolerant species
Panax notoginseng under nitrogen regimes. BMC Plant Biol. 20 (1), 273.
doi: 10.1186/s12870-020-02434-z

Zhang, H., Jiang, Y., He, Z., and Ma, M. (2005). Cadmium accumulation and
oxidative burst in garlic (Allium sativum). J. Plant Physiol. 162 (9), 977–984.
doi: 10.1016/j.jplph.2004.10.001

Zhang, S., and Scheller, H. V. (2001). Photoinhibition of photosystem I at
chilling temperature and subsequent recovery in Arabidopsis thaliana. Plant Cell
Physiol. 45 (11), 1595–1602. doi: 10.1093/pcp/pch180

Zhang, J. Y., Xu, X. Z., Kuang, S. B., Cun, Z., and Chen, J. W. (2021). Constitutive
activation of genes involved in triterpene saponins enhances the accumulation of
saponins in three-year-old Panax notoginseng growing under moderate light
intensity . Ind. Crops and Prod. 171 (36) , 113938. doi : 10.1016/
j.indcrop.2021.113938

Zhang, B., Xu, Y., Xu, K., Ji, D., Chen, C., Wang, W., et al. (2022). Molecular
mechanism of Pyropia haitanensis in response to high light stress. J. Fisheries China
46 (11), 2066–2075. doi: 10.11964/jfc.20211013091
Frontiers in Plant Science 20
Zhang, Q., Zhang, T. J., Chow, W. S., Xie, X., Chen, Y. J., and Peng, C. L. (2015).
Photosynthetic characteristics and light energy conversions under different light
environments in five tree species occupying dominant status at different stages of
subtropical forest succession. Funct. Plant Biol. 42 (7), 609–619. doi: 10.1071/
FP14355

Zhang, H., Zhong, H., Wang, J., Sui, X., and Xu, N. (2016). Adaptive changes in
chlorophyll content and photosynthetic features to low light in Physocarpus amurensis
maxim and Physocarpus opulifolius “Diabolo”. PeerJ 4, e2125. doi: 10.7717/peerj.2125

Zhou, N. N., Feng, S. P., Gao, X. S., Luo, X., and Wu, Y. Y. (2019).
Photoinhibition of plants photosynthesis: Research progress. Chin. Agric. Sci.
Bull. 35, 116–123.

Zhou, L., Gao, S., Wu, S., Han, D., Wang, H., Gu, W., et al. (2020). PGRL1
overexpression in Phaeodactylum tricornutum inhibits growth and reduces
apparent PSII activity. Plant J. 103 (5), 1850–1857. doi: 10.1111/tpj.14872

Zuo, D. Y., Kuang, S. B., Zhang, G. H., Long, G. Q., Meng, Z. G., Chen, Z. J., et al.
(2014). Eco-physiological adaptation of Panax notoginseng to different light
intensity. J. Yunnan Agric. Univ. 29, 521–527. doi: 10.3969/j.issn.1004-390X
(n).2014.04.010
frontiersin.org

https://doi.org/10.1186/s12870-020-02434-z
https://doi.org/10.1016/j.jplph.2004.10.001
https://doi.org/10.1093/pcp/pch180
https://doi.org/10.1016/j.indcrop.2021.113938
https://doi.org/10.1016/j.indcrop.2021.113938
https://doi.org/10.11964/jfc.20211013091
https://doi.org/10.1071/FP14355
https://doi.org/10.1071/FP14355
https://doi.org/10.7717/peerj.2125
https://doi.org/10.1111/tpj.14872
https://doi.org/10.3969/j.issn.1004-390X(n).2014.04.010
https://doi.org/10.3969/j.issn.1004-390X(n).2014.04.010
https://doi.org/10.3389/fpls.2022.1095726
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Cun et al. 10.3389/fpls.2022.1095726
Glossary

ABS/
RC

Absorption flux per RC

CAT Catalase

CEF Cycle electron flow

Ci Intercellular CO2 concentration

Cond Stomatal conductance

DIo/
RC

Energy dissipation per RC

ETRI Electron transport rate of PSI

ETRII Electron transport rate of PSII

ETo/
RC

Trapping energy used for electron transport per RC

Fo The minimum fluorescence after darkadaptation;

Fm The maximum fluorescence after dark-adaptation

Fo` The minimum fluorescence after light-adaptation

Fm` The maximum fluorescence after light-adaptation

Fs Dark-adapted steady-state fluorescence

Ft Relative fluorescence intensity at different points of time;

Fv/Fm The maximum quantum yield of photosystem II

LCP Light compensation points

LSP Light saturating points

Mo Approximated initial slope of fluorescent transient

NPQ Non-photochemical quenching in PSII

1-qP Redox poise of the primary electron acceptor of PSII

PIABS Performance index for energy conservation from photons
absorbed by PSII antenna to the reduction of QB

Pm The maximum photo-oxidation

P+700

Pmax The maximum CO2 assimilation rate

Pn Net photosynthesis rate

POD Peroxidase

PPFD Photosynthetic photon flux density

PSI Photosystem I

PSII Photosystem II

Rd Dark respiration rates

SOD Superoxide dismutase

Tr transpiration rate

TRo/
RC

Trapping flux leading to QA reduction per RC;

(Continued)
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VJ Relative variable fluorescence at J-step (2 ms)

WK Ratio of the variable fluorescent FK occupying the FJ-FO amplitude

Y(I) Effective quantum yield of PSI

Y
(ND)

Donor side limitation of PSI

Y
(NA)

Acceptor side limitation of PSI

Y(II) Effective quantum yield of PSII photochemistry

Y
(NPQ)

Yield of regulated energy dissipation of PSII

Y
(NO)

Yield of non-regulated energy dissipation of PSII

jDo Quantum yield for thermal dissipation

jEo Quantum yield for electron transport (t = 0)

jPo The maximum quantum yield for primary photochemistry (t = 0)

yo Probability that a trapped exciton moves an electron into the
electron transport chain beyond
Q�

A (t = 0).
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