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Plants are the primary source of food for world’s population. Diseases in plants

can cause yield loss, which can be mitigated by continual monitoring.

Monitoring plant diseases manually is difficult and prone to errors. Using

computer vision and artificial intelligence (AI) for the early identification of

plant illnesses can prevent the negative consequences of diseases at the very

beginning and overcome the limitations of continuous manual monitoring. The

research focuses on the development of an automatic system capable of

performing the segmentation of leaf lesions and the detection of disease

without requiring human intervention. To get lesion region segmentation, we

propose a context-aware 3D Convolutional Neural Network (CNN) model

based on CANet architecture that considers the ambiguity of plant lesion

placement in the plant leaf image subregions. A Deep CNN is employed to

recognize the subtype of leaf lesion using the segmented lesion area. Finally,

the plant’s survival is predicted using a hybrid method combining CNN and

Linear Regression. To evaluate the efficacy and effectiveness of our proposed

plant disease detection scheme and survival prediction, we utilized the Plant

Village Benchmark Dataset, which is composed of several photos of plant

leaves affected by a certain disease. Using the DICE and IoU matrices, the

segmentation model performance for plant leaf lesion segmentation is

evaluated. The proposed lesion segmentation model achieved an average

accuracy of 92% with an IoU of 90%. In comparison, the lesion subtype

recognition model achieves accuracies of 91.11%, 93.01 and 99.04 for
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pepper, potato and tomato plants. The higher accuracy of the proposed model

indicates that it can be utilized for real-time disease detection in unmanned

aerial vehicles and offline to offer crop health updates and reduce the risk of

low yield.
KEYWORDS

plant lesion, disease detection, CANet CNN, classification and DICE coefficient,
machine learning
1 Introduction

Crop development and yield are crucial factors that affect

agriculture and farmers in every conceivable way, including

economically, socially, and politically (Production et al., 2014).

Consequently, monitoring the development of crops to detect

various types of illness is a crucial step at specific times.

However, naked human eye may not be sufficient, and

occasionally deceptive scenarios may occur (Arsenovic et al.,

2019). Automatic recognition and classification of diverse

agricultural diseases are required for accurate identification.

This paper provides an overview of the methods proposed for

our research project. This paper contains the suggested

methodology’s context, problem definition, objectives, and

scope. Pakistani farmers’ illiteracy is one of the major

contributors to a rise in microbial infections (Government of

Pakistan, 2021). Once a disease has infected a crop, it is difficult

for farmers to determine its root cause. Pathogens and pests are

wreaking havoc on crops. This information comes from a study

report published by UC Agriculture and Natural Resources; the

crop increases the yield of five major food crops by 10 to 40%

(Ali et al., 2017). In the context of Pakistan, where agriculture

provides 16% of the GDP and employs over 60% of the people, it

is essential to adopt extensive steps to prevent plant diseases.

According to the Ministry of Food Processing Industries,

agricultural losses in 2016 totaled thirteen billion US dollars

(GoI, 2019). Image processing and neural networks can be used

to perform one of the beneficial steps in plant disease diagnosis

techniques (Tugrul et al., 2022). Recent research has

demonstrated that neural networks and deep learning perform

categorization tasks effectively.

Agriculture is a crucial sector in nations such as Pakistan,

whose economies depend directly or indirectly on agriculture. It

highlights the requirement of caring for plants from the seedling

stage to the harvest. To produce the desired yield, the crop plants

must endure sometimes unfavourable meteorological

conditions, survive various diseases, and attacks by animals.

The latter can be resolved if the crops are shielded from the

various animals. Weather circumstances are beyond human

control but there are technologies to mitigate abiotic stresses
02
(Kerchev et al., 2020; Talaviya et al., 2020). Lastly, it is vital to

safeguard the crop against various illnesses, as they can affect the

crop’s total growth and output. If these diseases can be identified

promptly, the crop can be safeguarded with the necessary

agrochemicals. Digitalizing this disease diagnosis and

classification procedure might be advantageous for farmers. It

will reduce the time and accuracy required to identify and

classify diseases.

Agriculture is the most ancient occupation that occurred even

before science. With the advancement of science, it became clear

that plants were living organisms capable of respiration,

reproduction, and susceptible to certain diseases. These

diseases, caused by many microorganisms, including bacteria,

viruses, and fungi, diseases can cause significant damage to crops

and can harm humans, as it is the case with pathogen-produced

mycotoxins and other toxicants (Nan et al., 2022). Furthermore,

destruction of crops by pathogens can cause human starvation. In

1840, a disease known as the Late blight destroyed a substantial

potato crop. It is also known as the Irish famine, and it was a sad

period in European history during which many people perished

from hunger (Goss et al., 2014). As plants are vital to human

survival, so we must safeguard them against deforestation and

numerous plant diseases. A significant portion of Pakistan’s

population is still engaged in agriculture. It ranks second in

agricultural production worldwide. However, two major issues

harm Pakistan’s crops: natural disasters and infectious diseases.

According to United Nations data, agriculture lost 96 billion

dollars in 2005-2015. We have no control over natural calamities,

but we can control plant illnesses caused by microorganisms. In

the context of Pakistan, where agriculture provides 16% of the

GDP and employs over 60% of the people, it is essential to adopt

extensive steps to prevent plant diseases. According to the

Ministry of Food Processing Industries, agricultural losses in

2016 totaled thirteen billion dollars. Image processing and

neural networks can be used to perform one of the beneficial

steps in plant disease diagnosis techniques. Recent research has

demonstrated that neural networks and deep learning perform

categorization tasks effectively.

The proposed research work focuses on three plant species:

potato, tomato, and pepper. In a poll, 61.33 percent of potato
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producers cited light as one of the primary causes of crop loss. In

2020, according to national statistics, almost 60 percent of

tomato crops in Punjab failed to owe to a virus. Pakistan

accounts for 40 percent of the world’s total pepper production.

Additionally, pepper has numerous natural benefits for throat

infections. China is the largest producer of tomatoes and

potatoes, whereas India is the second-highest producer of

these two crops. Enhancing fertilization and automating the

disease detection system can increase agricultural yield in

our country.

To our knowledge, plant leaf lesion segmentation, lesion

subtype categorization, and overall survival prediction have been

addressed individually without regard for their inherent

linkages. This research uses deep neural networks along with

some advanced machine learning techniques to provide a

complete strategy for plant leaf lesion segmentation, the

recognition of lesion subtypes, and the survival estimation of a

plant. Detailed contributions are listed below. First, a novel

context-aware Convolutional Neural Network (CNN)-based

technique for plant lesion segmentation is presented. In the

second phase, a hybrid model is utilized for plant survival

estimation using the segmented ROI information. A context-

encoded convolutional neural network (CANet) (Zhang et al.,

2019) is employed to extract high-dimensional features which

are classified by the linear regression machine learning methods

to make plant life survival predictions. In the final phase of the

proposed framework, all the distinct tasks, i.e., segmentation,

classification, and survival estimation, are merged into a single

interconnected deep learning strategy. In conclusion, whereas

the plant damage tests and classification criteria recommend

foliar and pathological images, the suggested method effectively

detects plant disease using only leaf RGB image data. On the

PlantVillage dataset, the proposed segmentation and

classification scheme was validated.

The rest of this paper is organized as follows. Section 2 shows

the literature review of Plant Lesion Segmentation using deep

learning methods. Section 3 presents the methodology of the

proposed models. Section 4 shows the experimental results.

Finally, Section 5 concluded the proposed work.
2 Related work

Using a mix of a Deep Learning classification model (CNN)

and a features selection method genetic algorithm (GA), a

model is presented for the diagnosis and recognition of tomato

plant disease using the leaf image data (Tugrul et al., 2022). The

proposed given framework was trained on 500 images

belonging to 4 types of diseases. The features learning block

of the CNN model is used to extract important visual

characteristics and for classification. In a research study, an

examination of the efficacy of CNN architecture for the

recognition of plant diseases using the leaf data was
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conducted to detect diseases in soybean plants (Yu et al.,

2022), the framework is implemented using LeNet which is

the smallest and simplest CNN architectures. The leaf photos

of 13,842 images of soybean plants are gathered from the

PlantVillage benchmark dataset. The above framework has

an accuracy of 98.44%, demonstrating CNN’s usefulness for

classifying plant diseases based on leaf images. The approach to

plant disease identification involves the construction of a

modern model for identifying 13 plant illnesses from

photographs of healthy plant leaves (Sladojevic et al., 2016).

Caffe, an architecture for deep learning, was used to train the

data. The framework in question yielded outcomes with a 91 to

98 percent accuracy. The author of the research article (He

et al., 2020) developed a two-stage approach. In the beginning,

the architectures based on meta information of Regional

Convolutional Neural Network (R-CNN), Regional Fully

Connected Network (R-FCN), and Single Shot detector

(SSD) are combined to develop a single object detector. The

features learning blocks of VGG16 (Khattab, 2019), VGG-19

(Szymak et al., 2020), and inception-V3 (Szymak et al., 2020)

are utilized to extract high-dimension features from the

training data and evaluation of models performances.

Comparing the proposed model to other similar detection

models, the proposed model is found more time efficient. A

novel deep-learning architecture is developed for the detection

and recognition of mango plant diseases (Saleem et al., 2021).

The proposed CNN is trained on 754 unhealthy and 780

healthy mango leaf image data. The custom framework

achieves an average f1-score of 97.01%. The author (Durmus

et al., 2017) suggested a system based on the architecture of

convolutional neural networks to recognize and categorize

several potato plant diseases. The dataset utilized for this

framework contains 2,465 photos of potatoes. The author

(Geetharamani and J., 2019) researched and recognized the

benefits and cons of the model and the performance of deep

learning neural networks, which are used to recognize and

classify various plant diseases. The literature review and picture

database experiments comprise 50,000 photographs of many

plant diseases (Durmus et al., 2017). The author presented a

novel deep learning-based framework that is capable of

segmenting the affected region on the leaf and recognizing

the type of disease in tomato plants (Islam et al., 2022). This

framework’s dataset comprises 13,281 tomato leaf photos with

nine types of illnesses which are collected from the PlantVillage

dataset. The model achieved an average of 99.91% accuracy on

the training data while on the testing data the average accuracy

achieved is 98.96%. The author (Goss et al., 2014) concentrated

on identifying and categorizing diverse diseases in rice plants

using the CNN features and SVM classifier for decision-

making. of a framework utilizing CNN architecture and

SVM. The training data consists of 696 rice plant leaf images

which belong to four types of rice plant diseases. Maximum

accuracy of 91.37 percent is reached when evaluating the
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accuracies of diverse training and testing datasets. In the case of

sugar beet, an existing model is upgraded, utilizing the faster

region-based CNN architecture by modifying the parameters

for recognizing disease-affected regions (Nasirahmadi et al.,

2021). The dataset comprises 155 photos of sugar beets, and the

proposed framework attained an accuracy rate of 95.48

percent. In the case of Olive plant diseases, the author of the

research article (He et al., 2020) compared a transfer learning

scenario with CNN architectures such as VGG-16 and VGG-

19, as well as proposed CNN architectures (Alshammari et al.,

2022). The framework applied to the dataset includes around

3,400 photos of Olive plant leaves. In this framework, a data

augmentation technique was utilized to increase the size of the

dataset. Before data augmentation, the accuracy was

approximately 88%; after data augmentation, it was

approximately 95%. The study paper (Abdulridha et al.,

2020) proposes a CNN-based tailored model for tomato leaf

disease detection. In addition, I compared the proposed model

to models of machine learning and VGG-16. The proposed

model achieved 98.4% accuracy, the KNN model achieved

94.9% accuracy, and the VGG-16 model achieved 93.5%

accuracy. The dataset of tomato leaf pictures utilized by this

framework is derived from the Plant village dataset. Deep

learning’s transfer learning technique is used to detect and

categorize illnesses using leaf images of two crops, such as

cucumber and rice (Liu and Wang, 2021). The suggested

framework was applied to 2,430 photos of cucumbers and

rice afflicted with eight illnesses collected from the plant

village dataset.

The proposed framework achieved a precision of 90.84

percent (Liu and Wang, 2021). The influence of deep learning

on diagnosing plant illnesses using leaf photos was examined.

CNN architecture functions as a black box model for plant

disease diagnosis. Also covered are the many hyperparameter

characteristics that affect classification accuracy. Numerous

models and research have used deep learning scenarios to

identify and classify illnesses in certain plant categories. Deep

learning can also be used to identify and categorize the

macronutrients present in a particular plant. The proposed

technique for monitoring plant health checks several stages

from the seedling stage through the yielding stage to increase

yield. The suggested system was implemented using a dataset of

571 photos, including images of tomato leaves and tomato fruit

at various stages of crop growth. The inception-ResNet v2 and

autoencoder performance was 87.27 percent and 79.09 percent,

respectively. This literature demonstrates the impact of transfer

learning on identifying and categorizing plant diseases using

photographs of leaf surfaces. According to the article’s author

(Siddiqua et al., 2022), picture segmentation with the aid of

colors, i.e., color image segmentation approaches, improves

comprehension and problem-solving. One can first determine

an image’s red, Green, and Blue color components. The red and

green components aid in identifying the yellow portions of the
Frontiers in Plant Science 04
image, typically indicated as infected. Fuzzy logic is an effective

method for solving disease classification issues (Sibiya and

Sumbwanyambe, 2021), the author proposes the minimum

distance approach, a genetic algorithm modification, to locate

a plant’s infected portion for picture segmentation (Ngugi et al.,

2021). After picture segmentation, the author examined the

accuracy of the technique using different classification

algorithms, such as k mean clustering and SVM (Bargelloni

et al., 2021). In this paper, the author uses a convolution neural

network technique to diagnose various plant illnesses

(Production et al., 2014; Saleem et al., 2021). The author has

conducted an exhaustive study. Photographs of diverse plant

leaves, including images of both sick and healthy leaves, are

captured. The author has grouped it into numerous categories,

and all CNN designs achieved an accuracy greater than 97%.

AlexNet (Yoo et al., 2021), AlexNetOWTBn, GoogLeNet (Wang

et al., 2015), Overfeat, and VGG are the CNN architectures. The

author has comprehensively analyzed several deep learning

algorithms, their benefits and drawbacks, and optimization

strategies (Sarker, 2021). In the linked work, these strategies

have also been compared. In this publication (Ngugi et al., 2021),

the author describes the proposed algorithm in depth, the image

acquisition was the initial step, followed by image enhancement

and segmentation. The HSV approach was utilized for the

segmentation of color images. Integrated into the instrument

for evaluating plant disease were sensors that could determine

the meteorological and climatic factors affecting the plant disease

in real-time.
3 Methods

This section includes a comprehensive overview of the

proposed DCNN model’s architecture and training method,

including the preparation of the dataset and experimental

procedures. The suggested model for detecting plant leaf

diseases begins with dataset preparation and concludes with

model prediction. Python 3.8, TensorFlow Library version

2.10.0, NumPy 1.23.4, matplotlib 3.6.1, and OpenCV 4.6.0

are used to prepare the training dataset and implement the

proposed DCNN model, respectively. The simulations, i.e.,

model development, training, validation, etc., are performed

on an HP Z440 workstation consisting of core i7 12 cores of

CPU and a DDR4 ram of 48 GB. The proposed scheme also

utilized NVidia RTX-3090 Graphical Processor Unit (GPU),

which uses the CUDA framework to allow the parallel

processing speeds up the proposed model training and

testing procedure. The workstation for implementing the

proposed DCNN is equipped with a dual Intel Xeon Silver

4310 (12 cores, 24 threads, and 2.10Ghz) processor and six

Nvidia Tesla P100 GPUs to expedite the training of deep neural

networks. The following sections will explain all the important

phases of the proposed plant disease detection framework in
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detail. The section that follows addresses the specifics of data

set preparation and preprocessing.
3.1 Setup and preprocessing of datasets

Images of damaged and Normal/Healthy plant leaves were

retrieved from a typical open data collection (Geetharamani & J.,

2019). Sixteen distinct plant species were used to compile a

dataset on plant leaf diseases. Each plant comprises the dataset’s

healthiest and most prevalent disease categories. There are 58

distinct plant leaves, with one category containing no specimens.

Initial data collection yielded 61,459 plant leaf and leafless

photos. Table 1 displays the list of plant types and their

corresponding classes consisting of the healthy and illness

categories in the recommended benchmark dataset.

Each category now contains an even amount of photographs

utilizing data augmentation techniques. By adding upgraded

photos to the training dataset, data enhancement techniques can

also expand the size of the dataset and prevent overfitting during

model training. The images in the dataset are enhanced using the

Generative adversarial network (GAN) and advanced image

manipulation (AIM) and Neural style learning (NST) schemes

that increase the quality of the image by automatically adjusting

the contrast, removing noise, and sharpening the images. The

AIM-enhancing techniques include image scaling, mirroring,

Histogram based color improvement, and rotation. The

histogram color enhancement method adjusts the strength of

the three color channels R-G-B by adjusting the major pixel

components (Tang, 2020).

In addition, picture cropping, tilting, shearing, and scaling

make enhanced images through the modification of the input

images’ hue, saturation, and location. A total of 36,541 images

from the plant village dataset are enhanced using the AIM

scheme. DCGAN generates an image enhancement that

resembles the training image data. The DCGAN network is
Frontiers in Plant Science
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composed of a dual network i.e. a generator and a discriminator.

The generator module of the network creates random noise and

applies it to the training images.

In contrast, the discriminator section of the DCNN learns to

identify real and synthetic pictures (Lu et al., 2019). The

DCGAN network is trained with a training period of 10,000

and a short batch size of 64 on a graphics processing unit. The

DCGAN enhancement technology added 32 million enhanced

photos to the dataset. NST is an additional picture-generating

method that employs deep learning algorithms. Using a

modified VGG19 network, an NST enhancement model was

built in this study. The NST model was trained on a deep

learning server for 5,000 epochs. The NST model requires two

distinct images as input and produces an enhanced image as

output: the first image is a content image while the second image

is a style reference image. The first image comprises the

fundamental elements that should be integrated with the

output image. The second image also known as the reference

image applies a style pattern and integrates it into the final

output image. NST image enhancement scheme adds up some

common features from the style picture to the content image for

generating the output image. In the dataset, the NST

enhancement method produced 17,500 enhanced photos.

Finally, AIM, NST, and GAN algorithms were utilized to

improve the image and equalize the data counts for each

dataset category. The name PlantVillage denotes the proposed

dataset used in this research for proposed model validation. The

number of photos in the dataset rose from 61,459 to 147,500 due

to these enhancements.

Additionally, the number of photographs in each category

has been increased to 2500. In the PlantVillage dataset, the image

of a leaf was collected in the positive direction. Figure 1 displays

illustrative enhancement images produced by AIM, NST, and

GAN technologies.

Figure 1’s first two images are created and enhanced utilizing

the AIM approach. Figure 1’s third and fourth images were

created using DCGAN augmentation, while the final image was

created utilizing NST technology. Using the hold-out cross-

validation scheme, three sub-datasets of the plant village

dataset are created for model training, validation, and testing

purpose. Table 2 displays the three sub-datasets details such as

the number of images and the number of the image in a

single class.

In the following methodology section, the construction,

explanation, and fine-tuning of a proposed DCNN model for

disease identification in plant leafs utilizing hyperparameter

fitting techniques and the PlantVillage dataset.
3.2 Proposed model

Numerous strategies for plant disease segmentation are

described in the literature, including filtering-based, color-
TABLE 1 PlantVillage Benchmark dataset Descriptions.

S. No Plant Type Disease Name

1 Pepper Normal
Bacterial Spot

2 Potato Normal
Early and Late Blight

3 Tomato Normal
Bacterial spot
Early Blight
Late Blight
Leaf Mold
Leaf Spot
Spider Mite
Target Spot
Mosaic Virus
Yellow Leaf Curl Virus
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based, adaptive model-based, clustering, and regional

convolutional neural network methods. Recently, approaches

based on semantic segmentation have improved the

segmentation of plant lesions. For plant lesion classification,

structural and pathological pictures that are non-invasive are

employed to classify plant leaf lesions. Predictions of overall

survival assess the remaining lifespan of plants afflicted by

prevalent illnesses. The majority of existing work relies on

conventional regression models in machine learning such as

Support Vector Machine and K-Nearest Neighbor. Our

proposed framework can be summarized in Figure 2 below. In

the first stage, the training image and its essential facts are fed

into the proposed training neural network; then, z-score

normalization is performed exclusively on the lesion regions

and differencing it from the min-max normalized image. CANet

semantic segmentation model is used to detect the lesion area in

a leaf image which is also depicted in Figure 2. Using segmented

aberrant tissue, 3D CNN is utilized to classify leaf lesions. In

conclusion, we employ the CANet front-end to extract high-

dimensional data and then apply linear regression to make

predictions about overall survival. Moreover, we assume that

the model with the best performance in lesion segmentation

would also attain higher accuracy in lesion subtype

categorization and plant survival estimation, as the fact that

CANet is utilized as a feature extractor in the segmentation and
Frontiers in Plant Science 06
classification tasks, therefore we continue to use the same

features with linear regression plant survival prediction.
3.3 Context-aware deep neural network

This research provides an architecture for a context-aware

convolutional neural network (CANet) that incorporates

numerous image-processing tasks. Informed by contextual

coding networks, the suggested architecture significantly

improves plant lesion segmentation, subtype classification, and

plant life survival prediction. Figure 3 depicts the state-of-the-art

CANet CNN with pertinent design parameters. The context

coding module, which calculates the scale factor associated with

representing all classes, is a crucial component of the proposed

CANet. During training, these factors are simultaneously

learned via the Lse-defined false regularisation loss. The scale

factor captures global information for all classes and effectively

learns to counteract potential training biases caused by unequal

class representation in the image data.

Consequently, the ultimate features learning loss function

module consist of two components:

L =   Ldise + Lse (1)

Where Ldise is the DICE generated from the difference

between the forecast and the underlying facts, and Lse
represents the semantic loss. CANet is shared over the three

pipelines, including plant leaf lesion segmentation, classification

of plant lesion into healthy or ill, and lifespan estimation of

plant, because of the intrinsic resemblance of each task and the

likely overlay of valuable information. Consequently, the coding

segment of the CANet CNN is utilized as a feature descriptor for

plant survival estimation, whilst the plot holding the

probabilities of plant lesion subregion created by the decoding

segment is fed to the lesion subtype recognition model. The

classification of lesion subtypes and the survival prediction

pipelines use the CANet model with the best lesion

segmentation performance.
TABLE 2 Number of Images in the training, Validation, and Testing
Set.

Dataset Name Number of
Images

Number of Images in
Each Class

No. of Training
Images

116,206 110250

No. of Validation
Images

23241 1549

No. of Testing
Images

22817 1521
FIGURE 1

Some enhanced images using the AIM, NST, and GAN methods.
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3.4 CNN-based leaf lesion segmentation

Figure 4 depicts the context-aware deep learning algorithm

proposed for leaf lesion segmentation. The suggested CANet

captures global texture information and normalizes training

failures with semantic loss. 19,36 The architecture comprises

modules for encoding, contextual encoding, and decoding. From

the input, the encoding module extracts high-dimensional

characteristics. To standardize the paradigm, the context

encoding module generates updated features and semantic

losses. The decoding module reconstructs the entity map as a

predicted output such that the difference between the predicted

output and the input image can be computed as regularization.

The proposed CANet offers an average DSC of 0.91 for ET, 0.90

for WT, and 0.95 for TC. Table 3 show the plant leaf lesion

semantic segmentation model.
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3.5 CNN-based leaf lesion classification

Figure 4 depicts the foliar lesion classification procedure.

Consequently, the CANet output is sent directly to a CNN-based

classifier to classify lesion subtypes. Two fully connected layers

follow five convolutional and clustering layers, and a

classification layer with three outputs makes up the

classification model. Except for the classification layer, which

utilizes the softmax activation function, other layers employ

ReLu activation. This study investigated several subtypes of foliar

lesions, including bacterial plaque, early blight, leaf mold, target

plaque, etc. During the testing phase, the suggested approach

uses a DSC of 0.74. Using the recommended methodology, our

test results placed second in the PlantVillage competition.

Table 4 show the CANet CNN model for plant leaf disease

subtype classification.
FIGURE 2

Overview of the methodology and overall workflow.
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FIGURE 4

Overview of Semantic Segmentation for plant leaf lesion classification. In the first phase, the images are segmented by the CANet model which
are then fed into the CNN classifier for disease subtype classification.
FIGURE 3

Proposed Leaf Lesion Segmentation model utilizing the CANet architecture.
TABLE 3 List of hyper parameters used for training plant leaf lesion
semantic segmentation model.

Parameter Value/Type

Optimizer Adam

Initial Learning Rate 0.0001

Validation Data Yes

Epochs 20

BatchSize 64

Shuffle Samples Every Epoch
F
rontiers in Plant Science
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TABLE 4 List of hyper parameters used for training CANet CNN
model for plant leaf disease subtype classification.

Parameter Value/Type

Optimizer SGDM

Momentum 0.5

Initial Learning Rate 0.0001

Validation Data Yes

Epochs 50

BatchSize 128

Shuffle Samples True
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3.6 A hybrid method for survival
prediction

Instead of using typical machine learning approaches to

extract features, we employ the suggested CANet to extract high-

dimensional features. We believe that lesion segmentation

characteristics correlate with overall survival. In addition to

the CANet extraction feature, we leverage plant age as an

additional feature. The LASSO approach is used to determine

the number of days the plant will live by selecting more pertinent

characteristics, it uses the features selection approach to select

the most suitable features from the CNN features. The LASSO

approach reduces the dimensions to features vector from 1x1000

to 1x241, which are fed in a regression model for training.

Finally, we used linear regression to estimate overall survival

based on the selected features, as shown in Figure 5. During the

testing phase, the proposed technique demonstrated

encouraging results with a Root Mean Square Error of 0.89.

Table 5: shown the parameters linear regression model.
4 Experimental results

This section gives a comprehensive summary of the

experiments’ outcomes to determine the proposed technique’s

evaluation capabilities. This section also describes the dataset

used to evaluate performance. The proposed framework is

implemented in Python and runs on systems with Nvidia RTX

3090. CenterNet configuration on the PlantVillage dataset for

classifying and scoring plant leaf diseases.
4.1 Evaluation metrics

When evaluating the effectiveness of the approaches we

provide, we use a variety of evaluation metrics, including the
Frontiers in Plant Science 09
Intersection Over Union (IoU), precision, accuracy, recall, and

mean average precision (mAP). The accuracy of our proposed

model is calculated as follows:

Accuracy =  
TP + TN

TP + FP + TN + FN
(2)

Equation 7 is the mathematical equation for calculating the

mAP score; the AP represents the average precision obtained by

each class, whereas the s represents the test image and S is the

number of total test images.

mAP =  o
T

i=1
AP Tið Þ=T (3)

The equation below represents the Inter over Union ratio.

Precision =  
TP

TP + FP
(4)

Recall =  
TP

TP + FN
(5)

IoU = 2*
TP

FN + FP + TP
(6)
4.2 Performance evaluation of plant
disease localization

Establishing an efficient model for the automatic

identification of agricultural illnesses depends heavily on

accurately detecting different plant diseases. For this purpose,

we experimented to determine the suggested technology’s

placement capacity. All samples from the PlantVillage dataset

were evaluated, and the samples are displayed in Figure 6. The

given results demonstrate that Custom CenterNet can accurately

detect and identify many types of plant illnesses as shown in

Figure 7. In addition, the suggested method is resistant to

numerous post-processing attacks, including blur, noise, light

and color shifts, and image distortion. CenterNet’s positioning

capabilities enable accurate identification and localization of

various plant diseases. We employ mAP and IOU indicators to

quantify the positioning capabilities of the proposed technology:
FIGURE 5

The overview of the proposed plant survival estimation mode is
visualized. The CANet model extracts non-invariant features, also
called 3D feature points. The plant age is added as additional
information; the LASSO features selection method is used to
select the optimal list of features from the feature vector. The
final step is performed by a linear regression model that
estimates the number of days for which the plant survives.
TABLE 5 List of parameters used for the training of linear regression
model.

Parameter Value

Attribute Selection Method LASSO

Eliminate Colinear Attributes Yes

BatchSize 50

Number Decimal Places 2

Ridge 1.0e-3
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mAP and IOU. These indicators aid in analyzing the system’s

performance in diagnosing various plant diseases. Specifically,

we acquire mAP and IOUs of 0.99 and 0.993%, respectively. The

visual and numerical results indicate that the technique can

reliably detect and classify plant illnesses. The performance

analysis of the proposed leaf lesion segmentation is shown

in Table 6.
4.3 Plant disease classification results

To detect pepper plant disease, a binary classification CNN

model is trained. Due to the small dataset size (Fewer Classes),
Frontiers in Plant Science 10
the model was efficiently trained for classifying healthy and

unhealthy pepper plants through leaf images. The pepper plant

disease detection model confusion matrix is shown in Table 7.

The model achieved higher accuracy in the detection of bacterial

spot disease. In comparison, for the detection of the healthy

class, the proposed achieved higher accuracy and f-measure than

the unhealthy class. The detailed performance analysis can be

seen in Table 8 which consists of classwise and average values of

four performance metrics.

The second experiment is performed on the potato leaf

image to classify them into healthy or Early Blight or Late

Blight Classes. Figure 8 is the confusion matrix created using

the actual plant condition and model predicted values for each
FIGURE 6

Proposed model segmentation results.
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individual class the True Positive Rate (TP), False Positive Rate

(FP), False Negative Rate (FN), and True Negative rate (TN) are

calculated. Using these measures for the proposed model, the

accuracy, precision, recall, and F-measure are calculated, which

can be seen in Table 9. Due to the data imbalance, the model’s

performance is assessed using the F-Measure. The F-measure

finally evaluates the proposed model’s correct detection rate,

indicating that the proposed model slightly performed better in
Frontiers in Plant Science 11
detecting healthy plants than the other unhealthy class (Early

Blight, Late Blight).

Table 10 presents a quantitative evaluation of the efficacy of

the proposed model in identifying diseases that can affect tomato

plants. Images of tomato plant leaves in both healthy and

unhealthy states (bacterial spot, Target spot, mosaic virus, etc)

are used in the experiment. In order to evaluate the effectiveness of

the model, we first compute the four standard performance

evaluation metrics using the confusion matrix values presented

in Figure 9. Because of the imbalance in the data, the performance

of the model is evaluated using the F-Measure. The proposed

strategy was successful in achieving higher detection accuracy as

well as the f-measure for both the Healthy and Unhealthy classes.
4.4 Performance of plant survival
prediction

The plant survival estimation is performed using a linear

regression model. The survival is estimated using the model

trained on the entire dataset consisting of 1000 attributes which

are the features extracted using the CANet CNN model. The

plant survival is also estimated using a regression model followed

by the LASSO features selection method that reduces the feature

vector size and tries to select the optimal attributes. The feature

vector dimensions by the LASSO method are reduced to 1x241,

shown in Table 11.
FIGURE 7

Proposed CANet CNN Model performance comparison using the DICE coefficient metric.
TABLE 6 Performance Analysis of the proposed leaf lesion
segmentation model.

Performance Metric Results

Accuracy 92%

Precision 95%

Recall 91%

IoU 90%
TABLE 7 Proposed model confusion matrix for Peppers plant disease
classification.

Healthy Bacterial Spot

Healthy 2587 143

Bacterial Spot 190 2312
TABLE 8 Detail Performance by class for pepper disease detection.

Accuracy Precision Recall F-Measure

Healthy 93.63% 94.76% 93.15 93.95315

Bacterial Spot 88.59% 92.40% 94.17 93.28223

Average 91.11% 93.58% 93.66% 93.61
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5 Discussion

Deep learning-based algorithms have attained state-of-the-

art performance in numerous sectors where they have been

widely implemented. However, leaf lesion segmentation

provides numerous specific challenges:
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◼Image quality has a significant effect on segmentation

efficiency. For instance, blurry visuals result in negative

effects.

◼Image preprocessing steps have an effect on performance

as well. For instance, standardization of intensity across

cases is crucial for lesion segmentation.
FIGURE 8

Proposed model confusion matrix for Potato plant disease classification.
TABLE 9 Detail Performance by class for potato disease detection.

Accuracy Precision Recall F-Measure

Healthy 94.86214 92.05567 93.21785 92.63311

Early Blight 92.59859 92.52593 92.16044 92.34282

Late Blight 91.55251 90.94133 90.07024 90.50369

Average 93.01 91.84 91.81 91.82
TABLE 10 Detail Performance by class for Tomato disease detection.

Accuracy Precision Recall F-Measure

Healthy 99.13739 96.77627 92.08589 94.37284

Bacterial Spot 99.19452 96.91211 94.11765 95.49444

Early Blight 99.08788 95.3106 94.10704 94.70499

Late Blight 99.03394 95.75359 93.35277 94.53794

Leaf Mold 98.9702 92.81364 95.01247 93.90018

Leaf Spot 98.79526 97.89744 98.99741 98.44435

Spider Mite 98.88953 93.45238 93.8434 93.64748

Target Spot 99.04419 95.25223 93.96956 94.60654

Mosaic Virus 99.14418 94.07583 96.12591 95.08982

Yellow Leaf
Curl Virus

99.14632 92.93905 97.03844 94.94451

Average 99.04 95.18 94.86 94.97
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Fron
◼The heterogeneity of lesion tissue may provide a

formidable obstacle to the development of an efficient

approach.

◼Unbalanced data is a common complication for the use of

deep learning.

◼Figure 2 depicts the data distribution from our studies

during the training phase for lesion categorization and

overall survival prediction. Cases of Healthy account for

more than fifty percent of the training data. In survival

prediction, the range of mid-term survival days is

insufficiently broad relative to the short- and long-

term ranges, resulting in an imbalance of data. This

data disparity may lead to misclassification. In the

segmentation process, lesion samples are typically

substantially larger than those of other defective

tissues. To solve the potential data imbalance issue in

lesion segmentation, we implement plant leaf lesion

segmentation based on leaf subregions as opposed to

employing each defective tissue separately.
The fundamental challenge with disease classification is the

lack of data. Even after increasing the training sample size using

data augmentation approaches, 110250 examples may not be

sufficient for deep learning in this work. Similar data deficiency

issues exist for global survival prediction. In the PlantVillage

Challenge training phase, only ten classes are accessible. In

addition to the deep learning-based approach, we implement

global survival prediction using a conventional machine learning

method by extracting features such as gray-level co-occurrence
tiers in Plant Science 13
matrix (GLCM), intensity, etc., applying LASSO to select

features and then using linear regression for survival

prediction. We compare the outcome to our proposed

method’s outcome. The comparison demonstrates that the

performance of the proposed strategy is superior. In this

paper, we also assess the influence of various diseases on

overall survival. There are three classification models trained

for the classes of peppers, potatoes, and tomatoes. The detection

accuracy of models for pepper, potato, and tomato plants is

99.11%, 94.01%, and 99.04%, respectively shown in Table 12.

The proposed deep-learning model for pepper, potato, and

tomato plant disease detection is shown in Figure 10.
5 Conclusion

This study investigates several plant disease diagnostic

and analysis tasks using deep learning and plant leaf imagery.

These tasks involve segmenting the leaf lesion area,

classifying the lesion into its subtypes, and predicting the

plant’s overall survival. We built a context-aware 3D CNN

that extracts and classifies high-dimensional, non-invariant

characteristics from a plant leaf image to identify the disease

type. Similarly, a unique method is established utilizing the

regression model to predict long-term, short-term, and

intermediate-term plant survival. The features learning

block of the CANet CNN model extracts features, reduces

the dimension of the features vector by picking only the

optimum features, and employs the LASSO features selection

algorithm. The PlantVillage Dataset comprises numerous
FIGURE 9

Proposed model confusion matrix for Tomato plant disease classification.
TABLE 11 Performance analysis and comparison of survival estimation model with LASSO and without LASSO approach.

Metric Linear Regression Linear Regression + LASSO

Correlation Coefficient 2.04 0.91

Mean Absolute Error 1.54 0.65

Root Mean Squre Error 2.97 0.89
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photos of crop leaf diseases. This study has validated the

suggested model using three different plant diseases: pepper,

potato, and tomato. The pepper plant has only two classes,

but the potato and tomato plants have multiple classes. The

suggested model achieves a DICE coefficient of 90% while

segmenting plant leaf lesions. The classification accuracy for

detecting pepper illness is 91.11%, for detecting potato

disease is 93.01%, and for detecting tomato, the disease is

99.04%. Consequently, the improved accuracy suggests that

the suggested method applies to the PlantVillage dataset and

other datasets for lesion segmentation, classification, and

plant survival calculation.
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FIGURE 10

Performance Comparison of the proposed deep learning model
for pepper, potato, and tomato plant disease detection.
TABLE 12 Performance Comparison of the proposed disease subtype classification model with some state-of-the-art models.

Study Model Accuracy

(Wu et al., 2020) DCGAN+CNN 94.33%

(Sibiya and Sumbwanyambe, 2021) N-Fuzzy+CNN 89%

(Islam et al., 2022) Parallel CNN 98%

(Brahimi et al., 2017) DNN 99.18

Proposed CANet 99.04%
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