AUTHOR=Zhang Xiaodong , Duan Chaohui , Wang Yafei , Gao Hongyan , Hu Lian , Wang Xinzhong TITLE=Research on a nondestructive model for the detection of the nitrogen content of tomato JOURNAL=Frontiers in Plant Science VOLUME=13 YEAR=2023 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2022.1093671 DOI=10.3389/fpls.2022.1093671 ISSN=1664-462X ABSTRACT=
The timely detection of information on crop nutrition is of great significance for improving the production efficiency of facility crops. In this study, the terahertz (THz) spectral information of tomato plant leaves with different nitrogen levels was obtained. The noise reduction of the THz spectral data was then carried out by using the Savitzky-Golay (S-G) smoothing algorithm. The sample sets were then analyzed by using Kennard-Stone (KS) and random sampling (RS) methods, respectively. The KS algorithm was optimized to divide the sample sets. The stability competitive adaptive reweighted sampling (SCARS), uninformative variable elimination (UVE), and interval partial least-squares (iPLS) algorithms were then used to screen the pre-processed THz spectral data. Based on the selected characteristic frequency bands, a model for the detection of the nitrogen content of tomato based on the THz spectrum was established by the radial basis function neural network (RBFNN) and backpropagation neural network (BPNN) algorithms, respectively. The results show that the root-mean-square error of correction (RMSEC) and root-mean-square error of prediction (RMSEP) of the BPNN model were respectively 0.1722% and 0.1843%, and the determination coefficients of the correction set (