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Research on a nondestructive
model for the detection of the
nitrogen content of tomato

Xiaodong Zhang1,2, Chaohui Duan1,2, Yafei Wang1,2,
Hongyan Gao1,2, Lian Hu3 and Xinzhong Wang1,2*

1College of Agricultural Engineering, Jiangsu University, Zhenjiang, China, 2Key Laboratory of
Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University,
Zhenjiang, Jiangsu, China, 3Key Laboratory of Key Technology on Agricultural Machine and
Equipment, Ministry of Education, South China Agricultural University, Guangzhou, China
The timely detection of information on crop nutrition is of great significance for

improving the production efficiency of facility crops. In this study, the terahertz

(THz) spectral information of tomato plant leaves with different nitrogen levels

was obtained. The noise reduction of the THz spectral data was then carried

out by using the Savitzky-Golay (S-G) smoothing algorithm. The sample sets

were then analyzed by using Kennard-Stone (KS) and random sampling (RS)

methods, respectively. The KS algorithm was optimized to divide the sample

sets. The stability competitive adaptive reweighted sampling (SCARS),

uninformative variable elimination (UVE), and interval partial least-squares

(iPLS) algorithms were then used to screen the pre-processed THz spectral

data. Based on the selected characteristic frequency bands, a model for the

detection of the nitrogen content of tomato based on the THz spectrum was

established by the radial basis function neural network (RBFNN) and

backpropagation neural network (BPNN) algorithms, respectively. The results

show that the root-mean-square error of correction (RMSEC) and root-mean-

square error of prediction (RMSEP) of the BPNN model were respectively

0.1722% and 0.1843%, and the determination coefficients of the correction

set (Rc
2) and prediction set (Rp

2) were respectively 0.8447 and 0.8375. The

RMSEC and RMSEP values of the RBFNN model were respectively 0.1322% and

0.1855%, and the Rc
2 and Rp

2 values were respectively 0.8714 and 0.8463. Thus,

the accuracy of the model established by the RBFNN algorithm was slightly

higher. Therefore, the nitrogen content of tomato leaves can be detected by

THz spectroscopy. The results of this study can provide a theoretical basis for

the research and development of equipment for the detection of the nitrogen

content of tomato leaves.
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1 Introduction

China is the world’s largest tomato-planting country,

accounting for about 1/3 of the global tomato-planting area

(Wang et al., 2021). At present, the planted area of facility

tomato in China is in a leading position globally, but there is a

large gap between the per-mu yield of facility tomato in China

and that in developed countries. The main reason for this is that

China has some long-term problems growing crops. The misuse

of fertilizer during production leads to soil pollution, and a lack

of a timely understanding of the nutritional status of crops leads

to shortages of nutrients and the water supply during the

fertilizer season (Li et al., 2019; Hu and Cai, 2021). Therefore,

to improve the production efficiency of facility crops and avoid

environmental problems caused by the unreasonable application

of chemical fertilizers, it is necessary to carry out scientific and

theoretical research on the detection of information on crop

nutrition. This is expected to greatly improve the production

efficiency of facility crops and reduce pollution. Thus, technology

for the non-destructive testing of crop nutrition is of

great significance.

In the traditional facility nutrition management process, the

judgment of the nutritional status of plants is mainly realized by

expert experience and chemical determination, which are

characterized by some problems. Expert experience is easily

affected by subjective factors, and accurate judgment cannot be

achieved (Fitzgerald et al., 2006; Huang et al., 2009; Zhang et al.,

2018). Although chemical determination has high detection

accuracy, it is difficult to realize the dynamic feedback control

of crop nutrition information due to poor timeliness, and the

sampling process causes certain damage to crops (Gao et al.,

2012; Tian et al., 2016).

In recent years, non-destructive testing technology has been

used to diagnose the nutritional elements of crops. This

technology can quickly judge the nutritional status of crops

without causing damage to them, and has gradually become a

popular method for nutritional testing (Song et al., 2016; Yang

et al., 2018). Some research has been conducted on the nutritional

element diagnosis of crops both domestically and internationally,

and some achievements have been made; however, there remain

some shortcomings. For example, the method of crop information

processing is relatively simple, and the model accuracy is not high

(Yada et al., 2008; Hang et al., 2015). Moreover, related research is

mainly focused on the analysis of the reflection intensity, texture,

and other characteristics of the crop leaves, and biological

macromolecules inside crops, such as nucleic acids and

phospholipids, cannot be detected in detail (Breitenstein et al.,

2012; Gente et al., 2013; Gente et al., 2015).

Terahertz (THz) detection technology an advanced

technology known as “one of the ten technologies that will

affect the future of mankind in the 21st century,” and has

received increasing attention in the biological sciences field
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(Zhao et al., 2018; Zhang et al., 2021). THz waves refer to

electromagnetic waves with a frequency between 0.1 and 10 THz

and a position between microwave and infrared radiation. Under

THz radiation, the chemical bonds of the molecules of various

nutrients are broken and formed within picoseconds, resulting

in the strong absorption of THz waves. Thus, THz spectroscopy

can be used for the detection of the nitrogen content of crops.

While THz spectroscopy has been widely used, due to the

limitations of detection objects and technical means, its

application in the field of agricultural engineering remains in

its infancy. Some scholars have found that the spectral resolution

of THz time-domain spectroscopy (THz-TDS) can be used to

identify the composition of objects, and THz imaging

technology can be used to identify nutrients such as

chlorophyll, lutein, and the nitrogen-to-sugar ratio.

Characteristic fingerprints lacking internal components and

macromolecules can be used to diagnose the internal structure

of crops with different nutrients (Liu et al., 2020; Zhang et al.,

2022). For example, Liu et al. (Liu and Han, 2014) took

advantage of the fact that the absorption of the THz spectra of

proteins, amino acids, and other substances in biscuits is much

less than that of water. They conducted respective model

analyses on the frequency domain, refractive index, and

absorption coefficient of THz spectral data, and obtained the

best effect of the absorption coefficient model. Long et al. (2017)

used a THz spectrometer to obtain the spectral data of leaves in

vitro in a point-by-point scanning manner, and observed the

differences of different water contents under image

reconstruction. The regression prediction model was

established according to the mean values in the time and

frequency domains and the measured water content of the

THz image of the leaf. These previous studies prove the

feasibility of using THz spectroscopy to detect crop nutrition.

Therefore, in view of the current shortcomings, the

advantages of THz imaging technology were used in this

research for the identification of chlorophyll, lutein, the

nitrogen-to-sugar ratio, and other nutritionally abundant

internal components and characteristic fingerprints of

macromolecules. The detection accuracy of the nitrogen

content of tomato leaves is expected to be improved by using

the algorithm to detect crop nutrition.
2 Materials and methods

2.1 Sample cultivation

The quality of the test sample cultivation has a direct impact

on the test results. Therefore, in the process of sample

cultivation, the influence of environmental factors should be

minimized and the accuracy of the sample data should be

improved. The experiment was carried out in a Venlo-type
frontiersin.org
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greenhouse (32.2°N, 119.5°E) at the Key Laboratory of Modern

Agricultural Equipment and Technology, Ministry of Education,

Jiangsu University. The environmental temperature of the

greenhouse was maintained at 10.7-29.4°C, and the relative

humidity was 37.3%-87.9%. The test samples were 906 red

tomatoes (Shanghai Changchong Tomato Seed Industry Co.,

Ltd.). Tomato seeds with large, plump grains and similar shapes

were selected, and the selected seeds were placed in lightly salted

water to screen out diseased seeds and sclerotia. Additionally, a

0.3 m × 0.6 m black plastic plug tray was selected as the seedling-

raising device. The seedling base was composed of vermiculite,

perlite, and peat at a ratio of 1:3:1. The screened seeds were

evenly sown in the plastic plug tray. After the seedlings had three

true leaves, they were transplanted into a plastic round pot with

a radius of 10.5 cm and a height of 29 cm. To achieve the

purpose of soilless cultivation, perlite with strong root fixation

was selected as the matrix. Each sample was repeated 30 times.

During the experiment, the cultured tomato plants were watered

with the Japanese Yamazaki nutrient solution formula (Mao

et al., 2022). Figure 1 displays the sample cultivation and

transplanting site.
2.2 Equipment

The TS7400 THz–TDS measurement system produced by

Japan’s ADVAN Corporation was used to collect the THz

information of the samples. The system is specially customized

for the detection of agricultural biological information. It has an

attenuated total reflection (ATR) module and can perceive high

water contents for the detection of biological tissue and living

samples. Figure 2 shows the structure of the TS7400 THz-TDS

measurement system.
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1. Operating/analyzing computers; 2. Ethernet; 3. Optical

fiber; 4. Analysis unit; 5. Measurement unit; 6. THz transmitter;

7. THz detector; 8. Sample stage; 9. Cryostat transfer module; 10.

Removable stand.

The working principle of the TS7400 THz-TDS

measurement system is as follows. The THz measurement

unit, the THz transmitter, and the THz detector are connected

by optical fiber without adjusting the external optical path. The

THz transmitter emits laser pulses that are divided into two

mutually perpendicular beams under the action of the beam

splitter. One laser beam is a stronger pump light, and the other is

a weaker probe light. The pump light is incident on the emitting

crystal to generate a THz pulse that passes through the sample

stage through the mirror. It is then transmitted to the THz

detector through the detection crystal collinear with the probe

light that has undergone multiple reflections. The value is

transmitted to the control computer. After the control

computer receives the signal, the analysis unit can directly

calculate parameters such as the refractive index, absorption

coefficient, and dielectric constant of the sample, and the time-

domain THz spectrum and distribution information of the

sample can be obtained. Compared with the traditional THz

device, this device not only has higher accuracy, but the size of

the detectable sample is also expanded from a maximum of 3

cm² to 225 cm², which can better meet the measurement needs

of crop samples.
2.3 Sample data collection and processing

2.3.1 Sample data collection
Samples were collected from the tomato plants after 65 days of

nitrogen stress treatment. During leaf collection, the healthy 7-leaf
A B

FIGURE 1

The sample cultivation. (A) Before smoothing (B) After smoothing.
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pinnate compound leaves of the tomato that best reflect the growth

state were selected and cut off. They were immediately placed in a

sealed bag to maintain freshness, which was placed in a portable

refrigerated incubator (Ni et al., 2021) to prevent the external

environment from affecting it. Twenty leaf samples were selected

for each nitrogen stress gradient, and a total of 80 samples were

collected from four gradients. The samples were then placed in the

THz-TDS measurement system for sample scanning to obtain the

spectral information. Before the experiment, a dehumidifier was

turned on, and the relative humidity in the sample detection box

was reduced to below 5% to eliminate the interference of water

vapor on the THz spectrum. Ten sampling points were scanned for

each sample to obtain the spectral information, and the average

value was taken as the data collected for the sample.

The nitrogen content of the collected test samples was

determined by the Nessler reagent colorimetric method, and the

colorimetrywasperformedwithaspectrophotometerat420nm.The

actual measurement value of the nitrogen content of the sample was

calculated by drawing the standard curve of the nitrogen content

concentration and the photometric values, as presented in Figure 3.

2.3.2 Data smoothing
The Savitzky-Golay (S-G) smoothing algorithm is a

commonly used algorithm in data preprocessing due to its

simple, fast, and easy-to-use process. The principle is to first

take a window with an odd number of points in width, and to use

the least-squares method for fitting via the translation of the

window. The original value is then replaced with the fitted value

of the midpoint of the window to achieve the smoothing of the

data (Zhao et al., 2018). In this study, the S-G smoothing

algorithm was used to preprocess the data, and the window
Frontiers in Plant Science 04
width was 7 points/time. Taking the power spectrum data as an

example, the comparison of the effect before and after the

smoothing of the THz power spectrum is shown in Figure 4.

The results demonstrate that the algorithm can effectively reduce

the interference signal and improve the modeling efficiency and

model accuracy.
2.3.3 Data set partitioning
The division of the sample set is the key to the applicability

of the model. If the selected calibration set has good

representativeness, the predictive ability of the model can

be enhanced.

The random sampling (RS) algorithm is a simple method of

randomly extracting samples regularly or irregularly from the

entire sample set. A portion of the samples can be randomly

selected as the prediction set until the sampling is full, and the

remaining portion is used as the calibration set. The Kennard-

Stone (KS) method was jointly proposed by Kennard and Stone

(He et al., 2018), and its sample screening process of the

calibration set is as follows. By calculating the Euclidean

distance between two samples, the two samples with the

largest distance enter the calibration set. The distance between

the two selected samples is selected, the shortest distance among

them is selected, and the sample corresponding to the longest

distance among these shortest distances is entered into the

calibration set. This method can ensure that the calibration set

samples are evenly distributed according to the spatial distance,

and the Euclidean distance between the two vectors is calculated

as follows:

dx(p, q) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
J

j−1
½xp(j) − xq(j)�2

s
(1)
FIGURE 2

The structure and working principle of the Advantest-TS7400
THz-TDS measurement system.
FIGURE 3

The standard curve of the nitrogen content.
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where dx(p,q) is the Euclidean distance of the spectral reflectance

between samples p and q, is the reflectance of sample p at the jth

wavelength point, xq(j) is the reflectance of q at the jth

wavelength the reflectivity of each wavelength point, and J is

the number of wavelength points.

Table 1 reports the results of the power spectrum and

absorbance after sample division by the RS and KS algorithms.

The data in the calibration set obtained by sample division

by the KS algorithm had a higher determination coefficient and a

lower root-mean-square error (RMSE) than the data obtained by

the RS algorithm. The subsequent data analysis and processing

were therefore carried out on the basis of the division of the

sample data set by the KS algorithm.
Frontiers in Plant Science frontiersin.org05
2.4 Model construction method

2.4.1 Uninformative variable elimination
Uninformative variable elimination (UVE) (Jiang et al.,

2019) can filter out spectral variables that contribute less to

the modeling, which allows for the selection of representative

spectral variables. The filtered variables are called uninformative

variables, and by filtering them out, the complexity of the model

and the number of variables required for subsequent modeling

can be reduced. The UVE algorithm is based on the partial least-

squares (PLS) algorithm. During variable screening, artificial

noise variables equal to the original variables are added to the

PLS model. The variables are randomly numbered, and one is

left by crossover. This method is used to obtain regression

coefficients of variables including artificial noise. In the

analysis, the random change generated by artificial noise is

used as a reference, and the reliability of each variable is

measured by the threshold and the stability value. When the

absolute value of the stability is less than the threshold, the

variables in this part are regarded as non-informative variables.
A

B

FIGURE 4

The comparison of the THz power spectrum before and after smoothing. (A) Before smoothing, (B) After smoothing.
TABLE 1 The results of sample division by the RS and KS algorithms.

Method R2 RMSE

RS 0.8427 0.1379

KS 0.8922 0.1003
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The stability value is defined as follows:

Si =
mean(bi)
std(bi)

; i = 1, 2, 3⋯,m (2)

where i is the sample variable number, Si is the stability value of

the variable numbered i, bi is the regression coefficient of the

variable numbered i, std(bi) is the regression coefficient of bi,

mean(bi) is the mean value of bi, and m is the total number

of variables.

The steps of using the UVE algorithm to filter the feature

frequencies are as follows.
Fron
(1) A l×µ noise matrix is artificially generated, the spectral

matrix is set as X, and the spectral matrix and noise

matrix are spliced into a new matrix P of l×2µ.
(2) Using the cross leave-one-out method, a regression

analysis is performed on the matrix P, and the

regression coefficient matrix L (l×2µ) is obtained.
(3) The mean valuemean(bi) and the regression coefficient std

(bi) are respectively calculated, and the stability valuematrix

corresponding to each variable is obtained by Eq. (4).

(4) In the range of the noise variable interval [µ+1, 2µ], the

maximum and minimum values of the stability value

matrix are obtained, and the characteristic variable is

selected in the range of [1, µ].
2.4.2 Stability competition adaptive
reweighting sampling algorithm

Stability competitive adaptive reweighted sampling (SCARS)

(Liu et al., 2014) is a common algorithm used to screen the

optimal feature combination. During calculation, the measured

THz spectral data can be set as a matrix XN×P. The number of

samples is N, P is the number of variables, and the specific

operation steps of SCARS are as follows.

(1) The stability value cj of each frequency-band variable is

calculated as follows:

cj =
bj

s(bj)

�����
�����; j = 1, 2,⋯ P ; (3)

where cj is the stability value of the jth variable during Monte

Carlo (M) sampling, bj is the value of the j
th variable during M

sampling, and s(bj) is the standard deviation of the jth variable

during M sampling.

(2) The adaptive reweighted sampling method is combined

with forced frequency band selection to screen groups with large

stability values. They are combined into a subset of variables, and

the ratio of variables to the whole frequency band is determined

by the exponential decay function (EDF).

(3) These two steps are repeated in turn to obtain variable

subset K. A PLS regression (PLSR) model is obtained, and the
tiers in Plant Science 06
obtained variable subset is then evaluated through tenfold cross-

validation. The K value is the number of operations in the

SCARS algorithm, and the RMSE of cross-validation (RMSECV)

value can be used as the judgment basis for whether the variable

subset is a feature variable subset. The feature variable subset can

be obtained at the smallest value of the RMSECV.

2.4.3 Interval partial least-squares algorithm
Interval PLS (iPLS) (De Lima et al., 2012) is a commonly used

interval filtering algorithm for characteristic variables that was

proposed by Norgaard at the beginning of the 20th century. Based

on the PLSR model, the algorithm divides the overall intervals

into equal intervals to be filtered. The PLSRmodel of each equally

spaced interval n is respectively established. By comparing the

model accuracy of each subinterval, the subinterval with the best

accuracy is selected as the modeling candidate frequency interval.

2.4.4 Radial basis function neural network
Radial basis function neural networks (RBFNNs) are

developed based on the mult i-dimensional spat ia l

interpolation of radial basis functions. They are feed-forward

neural networks with good performance and can be understood

as function approximation or curve fitting in high-dimensional

space. The proposal of the RBFNN provided new ideas and

methods for the application and research of neural networks in

various fields. In practical applications, this neural network has

the advantages of a fast learning speed, no local minimum

problem, and the ability to establish a corresponding network

topology according to different types of data (Gao et al., 2014).

The RBFNN is mainly composed of an input layer, a hidden

layer, and an output layer. When using this neural network to

establish the model, P can be set as the sample input matrix of

the correction set, and T is the sample output matrix of the

correction set. The calculation formula of hidden-layer neurons

can be obtained as follows:

ai = exp ( − C − pik k2bi); i = 1, 2,⋯,Q ; (4)

where Q is the number of calibration set samples, and C is the

center of the radial basis function. The connection weight

between the hidden layer and input layer is set as W.

Moreover, b2 is the threshold value of N output layer neurons,

and the following formula can be obtained.

W ; b2½ � � A; I½ � = T ;A = a1, a2,⋯, aQ
� �

; I = 1, 1,⋯, 1½ �1�Q (5)

By solving Eq. (5), the threshold value b2 and the connection

weight value W between the output layer and the hidden layer

can be obtained as follows.

Wb = T= A; I½ �
W = Wb :, 1 :Qð Þ
b2 = Wb ; ,Q + 1ð Þ

8>><
>>: (6)
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2.4.5 Backpropagation neural network
Backpropagation neural networks (BPNNs) (Li et al., 2020;

Liu et al., 2021) can achieve the goal of not solving the relevant

mapping equation in advance by learning the relationship

between the input and output. Because of its high fault

tolerance and parallel processing ability, the BPNN has a wide

range of applications in target classification, recognition,

and optimization.

The BPNN algorithm is mainly composed of forward

calculation and error-reverse calculation. The topology

includes an input layer, a hidden layer, and an output layer.

During forward calculation, when the signal received by the

output layer is an unexpected output value, a reverse

propagation error signal will be generated, and the

propagation path is the initial connection path. Compared

with the RBFNN, the BPNN has the following characteristics.
Fron
(1) It has more hidden layers and hidden-layer nodes, and it

can approximate any nonlinear mapping relationship.

(2) BPNNs are global approximation algorithms, which

improves their generalization ability at the cost of

reducing model accuracy.

(3) The ownership value must be updated during each

sample learning. While this increases the robustness of

the reverse neural network model, the update of the

weight value slows down the convergence speed and the

model easily falls into the local minimum.
3 Results and discussion

To build the model for the prediction of the nitrogen content

of tomato, all samples were divided into calibration and

prediction sets. There were 80 samples to be tested, of which

60 were included in the calibration set and 20 were included in

the prediction set. The RMSE was used to evaluate the fitting

accuracy of the calibration set model, and the coefficient of

determination (R2) was used to examine the degree of

correlation. Their calculation formulas are as follows:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
(y − ŷ )2

n − 1

vuuut
(7)

R2 = o(ŷ −y)2

o(ŷ −y)2
= 1 −o( y − ŷ )2

o( y − y)2
(8)

where y is the measured value of the ith sample in the calibration

set, y ̂ is the predicted value of the ith sample in the calibration set,

and ȳ is the average value of the measured values of all samples

in the calibration set.
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3.1 Extraction of THz spectral
information from tomato leaves

In the frequency-domain spectrum, with the change of the

band, the samples have different absorptions of THz waves at

different frequencies, as shown in Figure 5. The figure presents

the THz frequency-domain spectral curves of four different

nitrogen-stressed tomato leaf samples, from which it is evident

that the trends of various spectral curves were roughly similar.

By preprocessing the raw THz spectral data, the vast majority

of invalid information and noise signals in the data were

removed. It can also be seen from Figure 5 that there were

obvious gradient differences in the THz power spectrum curves

of the samples under different nitrogen stress gradients. In the

power spectrum graph, the value of the power spectrum shows a

trend of first increasing and then decreasing, and it reached a

peak value of around 0.7 THz. At the peak value and its

surrounding frequencies, the nitrogen stress gradient curves

presented obvious stratification. However, when the frequency

was too small or too large, the THz power spectrum of each stress

gradient was too dense, and the discrimination was not obvious.

3.1.1 Processing results of the uninformative
variable removal algorithm

Figure 6 shows the results of the uninformative

variable screening.

In Figure 6, the left side is the THz spectrum variable, the

right side is the artificially generated noise variable, and the

abscissa and the ordinate are respectively the serial number and

stability index corresponding to the variable. The larger the

absolute value of the stability index corresponding to the

variable, the greater the correlation with the model. The

dotted line in the figure is the screening threshold set based on
FIGURE 5

The THz frequency-domain spectra of leaf samples with
different nitrogen contents.
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artificial noise. Based on this threshold, a total of 17

characteristic frequency bands were screened, as shown in

Figures 7, 8.

3.1.2 Processing results for the stability
competition adaptive reweighting
sampling algorithm

In this study, when using the SCARS algorithm for filtering,

the number of cycle sampling instances was 50 and THz power

spectrum data were taken as the object. After 50 rounds of

sampling had been reached, each index value had reached a

stable state. The processing result of the SCARS algorithm is

shown in Figure 9.

It can be seen from Figure 9 that with the increase of the

number of iterations of the SCARS algorithm, the number of

frequency bands retained generally decreased. However, the

speed of reduction slowed down, indicating that the SCARS

algorithm used coarse screening in the early stages of screening

the characteristic frequency bands and fine screening in the later
Frontiers in Plant Science 08
FIGURE 7

The characteristic bands selected based on the UVE algorithm.
FIGURE 8

THz images of leaves with different nitrogen levels in the characteristic frequency bands screened by the UVE algorithm.
FIGURE 6

The UVE feature frequency point screening results.
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stages. It can be seen that with the gradual increase of the

number of runs, the RMSECV value presented a decreasing

trend. The RMSECV value was the minimum when the number

of runs reached 43, which indicates that the frequency band with

less correlation with the sample nitrogen content had been

removed before. After 43 runs, the value had rebounded, and,

combined with the change in the regression coefficient path, this

indicates that the characteristic frequency bands related to the

sample nitrogen content may have been removed by mistake.

When the RMSECV value was the lowest, the subset of selected

characteristic frequency bands was the best. Five characteristic

frequencies were obtained, namely 0.574, 0.624, 0.642, 0.704,

and 0.817 THz, and they were used as alternative characteristic

frequency bands. The selected THz spectral bands are shown in

Figures 10, 11.

3.1.3 Processing results for the interval partial
least squares algorithm

When using the iPLS algorithm to filter the optimal

frequency band interval, the number of subintervals to be

divided must first be determined. Too many or too few

subintervals will affect the subsequent selection of the optimal

frequency band interval. In this study, the pretreated THz

spectral intervals were divided into 10-45 equidistant intervals.

As shown in Figure 12, when the RMSECV value was the

minimum, the overall THz spectral interval was divided into

22 equidistant subintervals.

According to the number of subintervals shown in Figure 12,

the THz spectral interval in the range of 0-1.4 THz was divided

into 22 equal parts, and the PLS model index values in each

subinterval were calculated. Table 2 reports the THz spectral

frequency division range of each subinterval and the

corresponding RMSECV value. Figures 13, 14 show the

operation results of the iPLS algorithm.

It can be seen from Figure 13 that the index values of the PLS

model established in each subinterval presented a trend of first

decreasing and then increasing, and were closely related to the

power spectrum curves of each stress gradient. When the power

spectrum curve density was large, the corresponding modeling

effect was poor; on the contrary, the modeling effect was better.
Frontiers in Plant Science 09
FIGURE 9

The running process of the SCARS algorithm.
FIGURE 10

The characteristic bands selected based on the SCARS algorithm.
FIGURE 11

THz images of leaves with different nitrogen levels in the characteristic frequency bands screened by the SCARS algorithm.
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Finally, the subinterval with the interval number of 12 was

selected as the characteristic frequency subinterval, and there

were 31 characteristic frequency points in total.
3.2 Establishment and analysis of
the model

3.2.1 Results for the radial basis function
neural network

An RBFNN with strict logic was established by using the

function package in MATLAB software. The expansion speed is

the key to determining the quality of the RBFNN, and the setting

of this parameter depends on the target object. Figure 15 exhibits

the change of the RMSE of correction (RMSEC) of the RBFNN,

iPLS, UVE, and SCARS models with an expansion speed of 0.1-1

and an interval of 0.1.
Frontiers in Plant Science 10
It can be seen from Figure 15 that when the diffusion speed

was 0.5 and 0.6, the RBFNN model had the best RMSEC value.

The established neural network model was tested to verify the

prediction set, and the prediction results are reported in Table 3.

According to the results reported in Table 3, when the

RBFNN algorithm was combined with the characteristic bands

screened by SCARS, the detection model had the best effect. The

RMSEC and the RMSE of prediction (RMSEP) were respectively

0.1322% and 0.1855%, and the determination coefficients of the

correction set (Rc
2) and prediction set (Rp

2) were respectively

0.8714 and 0.8463. The scatter plot of the optimal results of the

model based on the RBFNN algorithm is presented in Figure 16.
3.2.2 Results for the backpropagation
neural network

The sample data were trained using the scaled conjugate

gradient function in the BPNN tool in MATLAB software. The

specific training process included using the newff function to

construct the basic structure of the BPNN. Moreover, the

architecture based on the BPNN trained the model through

the Trainlm function, and the Sim function output model was

used to train the process. Taking the combination of

characteristic bands screened by the iPLS algorithm as an

example, the training process of its BPNN is shown in Figure 17.

It can be seen from Figure 17 that the number of network

iterations epochs was 22.Moreover, the learning rate was set to 0.01,

and the number of hidden-layer neurons was set to 6. The sample

data filtered by other algorithms were input into the network after

normalization, and the training results are reported in Table 4. By

comparing theresults in the table, it is evident that themodelingeffect

obtained by combining the SCARS filtering algorithm was the best.

According to the results reported in Table 4, when the

BPNN algorithm was combined with the characteristic bands
FIGURE 12

The results of the optimal number of isometric interval partitions.
TABLE 2 The index values of each subinterval model.

Number Frequency range (THz) RMSECV (%) Number Frequency range (THz) RMSECV (%)

1 0-0.0636 0.8641 12 0.6996-0.7632 0.3671

2 0.0636 ~0.1272 0.8327 13 0.7632-0.8268 0.3826

3 0.1272-0.1908 0.7874 14 0.8268-0.8904 0.4952

4 0.1908-0.2544 0.8234 15 0.8904-0.9540 0.4611

5 0.2544-0.3180 0.7851 16 0.9540-1.0176 0.5312

6 0.3180-0.3816 0.7687 17 1.0176-1.0812 0.6074

7 0.3816-0.4452 0.7002 18 1.0812-1.1448 0.6341

8 0.4452-0.5088 0.6784 19 1.1448-1.2084 0.6139

9 0.5088-0.5724 0.6174 20 1.2084-1.2720 0.6732

10 0.5724-0.6360 0.5412 21 1.2720-1.3356 0.6954

11 0.6360-0.6996 0.4317 22 1.3356-1.4000 0.7441
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screened by SCARS, the RMSE values of the correction and

prediction sets were respectively 0.1721% and 0.1843%, and the

R2 values of the correction and prediction sets were respectively
11
0.8447 and 0.8375. The scatter plot of the optimal results of the

BPNN model is shown in Figure 18.

The analysis of the nitrogen detection model based on the

THz spectrum shows that the models built by the two algorithms

had good prediction effects. In terms of accuracy, the RBFNN

model was slightly better than the BPNN model.
4 Conclusion

In this study, a method for the detection of the nitrogen

content of tomato based on THz spectroscopy was investigated.

The basic contents of the method include data preprocessing,

sample set division, characteristic frequency band screening, and

model establishment. The research conclusions are as follows.
(1) In combination with the S-G smoothing algorithm, the

original THz spectral data were denoised to remove

invalid and interference information. The advantages

and disadvantages of the KS and RS sample set
FIGURE 14

THz images of leaves with different nitrogen levels in the characteristic frequency bands screened by the iPLS algorithm.
FIGURE 15

The influence of the diffusion velocity on the RBFNN model.
FIGURE 13

The results of running the iPLS algorithm.
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partitioning algorithms were compared and analyzed.

By analyzing the results of sample partitioning, it was

concluded that the sample set divided by the KS

algorithm could effectively cover the entire sample

range, and the partitioning effect was the best.

(2) After noise reduction, the THz spectral data still relied

on more low-correlation information. To improve the

accuracy and efficiency of the model, the candidate

characteristic bands of the THz spectrum were

screened by using the UVE, SCARS, and iPLS

algorithms, respectively.

(3) Based on the characteristic frequency bands screened by

the iPLS, UVE, and SCARS algorithms, the RBFNN and

BPNN algorithms were used to establish the models for

the detection of the nitrogen content of tomatoes. The

RMSEC and RMSEP values of the BPNN model were

respect ive ly 0 .1722% and 0.1843%, and the

determination Rc
2 and Rp

2 values were respectively

0.8447 and 0.8375. The RMSEC and RMSEP values of

the RBFNN were respectively 0.1322% and 0.1855%,

and its Rc
2 and Rp

2 values were respectively 0.8714 and

0.8463. Thus, the accuracy of the model established by

the RBFNN algorithm was slightly higher.
FIGURE 16

The scatter plot of the prediction results of the RBFNN model
based on THz spectroscopy.
FIGURE 17

The training process of the BPNN model.
TABLE 4 The prediction results of the BPNN model based on THz
spectroscopy.

Algorithm for band
screening

RMSEC
(%) Rc

2 RMSEP
(%) Rp

2

iPLS 0.2641 0.8114 0.2851 0.8024

UVE 0.2148 0.8322 0.2363 0.8187

SCARS 0.1721 0.8447 0.1843 0.8375
FIGURE 18

The scatter plot of the prediction results of the BPNN model
based on THz spectroscopy.
TABLE 3 The prediction results of the RBFNN model based on the THz spectrum.

Algorithm for band screening RMSEC (%) Rc
2 RMSEP (%) Rp

2

UVE 0.1721 0.8457 0.2197 0.8218

SCARS 0.1322 0.8714 0.1855 0.8463

iPLS 0.2214 0.8352 0.2784 0.8149
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