AUTHOR=Zhou Quan , Gunina Anna , Chen Jiao , Xing Yi , Xiong Ying , Guo Zhiming , Wang Longchang TITLE=Reduction in soil CO2 efflux through alteration of hydrothermal factor in milk vetch (Astragalus sinicus L.)-rapeseed (Brassica napus L.) intercropping system JOURNAL=Frontiers in Plant Science VOLUME=13 YEAR=2023 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2022.1093507 DOI=10.3389/fpls.2022.1093507 ISSN=1664-462X ABSTRACT=Introduction

Intercropping has a potential to reduce the CO2 emission from farmlands. Limited information is available on the underlying reasons.

Methods

This study investigated the effect of milk vetch (Astragalus sinicus L.) (MV), rapeseed (Brassica napus L.) monoculture (RS) and intercropping (Intercrop) on soil CO2 emissions, moisture and temperature in a bucket experiment during 210 days from October 2015 to May 2016 on Chongqing, China.

Results

The results showed that soil CO2 efflux of MV, RS and Intercrop was 1.44, 1.55 and 2.08 μmol·m-2·s-1 during seedling and stem elongation stages and 3.08, 1.59 and 1.95 μmol·m-2·s-1 during flowering and podding stages. At seeding and stem elongation stages Intercrop had 1.4 times higher soil CO2 efflux than the mean of MV and RS. In contrast, MVhad 1.6 times higher soil CO2 efflux than Intercrop thereafter, which shows it was inhibited if milk vetch presents as Intercrop only. Decreased sensitivity of soil respiration to temperature in 1.4 times and lower soil moisture by Intercrop were found compared to MV. Intercrop decreased soil moisture, especially at the seedling and stem elongation stages, compared to the monoculture. The fluctuation on soil respiration in RS and Intercrop was slight with changes in soil moisture.

Conclusion

Thus, milk vetch-rapeseed system has a potential to decrease CO2 emission from farmland, however soil moisture should be regulated properly.