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seedling plants
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High temperature is one of the main constraints affecting plant growth and

development. It has been reported that abscisic acid (ABA) synthesis gene 9-

cis-epoxycarotenoid dioxygenase (NCED) positively regulates plant resistance

to salt, cold, and drought stresses. However, little is known about the function

of the NCED gene in heat tolerance of rice. Here, we found that OsNCED1 was

a heat stress inducible gene. Rice seedlings overexpressing OsNCED1 showed

enhanced heat tolerance with more abundant ABA content, whereas the

knockout mutant osnced1 accumulated less ABA and showed more sensitive

to heat stress. Under heat stress, increased expression of OsNCED1 could

reduce membrane damage and reactive oxygen species (ROS) level of plants,

and elevate the activity of antioxidant enzymes. Moreover, real time-

quantitative PCR (RT-qPCR) analysis showed that overexpression of

OsNCED1 significantly activated the expression of genes involved in

antioxidant enzymes, ABA signaling pathway, heat response, and defense.

Together, our results indicate that OsNCED1 positively regulates heat

tolerance of rice seedling by raising endogenous ABA contents, which leads

to the improved antioxidant capacity and activated expression of heat and ABA

related genes.

KEYWORDS

rice, seedling, heat stress, ABA, OsNCED1
Introduction

Rice (Oryza sativa L.) is a major food crop cultivated in countries around the world,

especially in Asia, and feeds more than 50% of the global population. Rising temperature

due to global warming has a serious impact on rice production, and the damage may

continue to rise in the future, particularly for Asian rice (Qin-Di et al., 2021). Growing
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rice above its optimal growth temperature of 5°C results in a

corresponding thermal response profile at the cellular and

metabolic levels to maintain its own survival and growth

(Barnabás et al . , 2008). Heat stress is an essential

environmental factor limiting rice growth and reproduction,

causing different damage to different development stages of rice,

and it will suffer from different degrees of heat stress from

germination to seedling, anthesis, grain filling, and grain

maturation stages (Qin-Di et al., 2021). It has been reported

that rice yield decreases by 3.2% for every 1°C increasing in

global temperature (Zhao et al., 2017). The difficulty of rice to

maintain its normal ontogeny under high temperature

conditions, including photosynthesis, respiration, enzyme

activity, formation of organs of both sexes, nutrient uptake,

and so on, which is the main reason why it affects rice yield

(Barnabás et al., 2008).

Abscisic acid (ABA) is a sesquiterpenoid with 15 carbon

atoms, which is synthesized indirectly by the carotenoid pathway

in plants. The synthetic path of ABA is that zeaxanthin

epoxidase (ZEP) catalyzes zeaxanthin (C40) to all-trans-

violaxanthin, then the neoxanthin synthase (NSY) converts all-

trans-violaxanthin to 9’-cis-neoxanthin, and finally the cis

isomer is cracked by 9-cis-epoxycarotenoid dioxygenase

(NCED) and product C15 xanthotoxin, which is an important

step of ABA biosynthesis (Chen et al., 2020). ABA plays a crucial

role in regulating plant stress responses. Its biosynthesis is

induced by several environmental stresses, such as drought,

salt, and cold stress (Nambara and Marion-Poll, 2005). Studies

have shown that the bloating germination of Arabidopsis

thaliana seeds at elevated temperatures is associated with the

induction of elevated ABA levels by the zeaxanthin epoxidase

gene ABA1 and the three 9-cis-epoxycarotenoid dioxygenase

genes NCED2,NCED5 and NCED9 (Toh et al., 2008). Heat stress

decreases auxin and gibberellin content, and increases

endogenous ABA content in rice anthers (Tang et al., 2007).

Exogenous ABA maintains carbon and energy balance of rice by

increasing sucrose transport and accelerating sucrose

metabolism, to prevent pollen abortion under heat stress, and

improve seed setting rate (Rezaul et al., 2019). The bZIP

transcription factor gene of the ABA signaling pathway,

ZmbZIP4, can regulate ABA synthesis related genes to

promote the synthesis of ABA to improve high temperature

tolerance in maize (Zea mays) seedlings (Ma et al., 2018). The

above findings indicate that ABA is involved in plant response to

high-temperature stress, but the underlying mechanism of the

effect of heat stress on endogenous ABA content in rice is

still unclear.

9-cis-epoxycarotenoid dioxygenase (NCED) is a key rate

limiting enzyme in ABA biosynthesis, and its activity affects

endogenous ABA accumulation in plants (Kalladan et al., 2019).

Overexpression of NCED promotes ABA synthesis in response

to various abiotic stresses (Zhang et al., 2014; Huang et al., 2018),

whereas knockdown of NCED reduces ABA accumulation, and
Frontiers in Plant Science 02
shows abiotic stress sensitive (Frey et al., 2012). The first NCED

gene to be discovered was viviparous 14 (VP14) in a maize

mutant (Nambara and Marion-Poll, 2005), and NCED genes

were subsequently isolated from other plant species, such as

tomato (Solanum lycopersicum), Arabidopsis, and apple (Huang

et al., 2018).

There are five members of the NCED family in rice,

OsNCED1, OsNCED2, OsNCED3, OsNCED4 and OsNCED5

(Zhu et al., 2009). OsNCED1 expression is elevated by salt and

drought stress but repressed by water stress (Huang et al., 2018;

Jiang et al., 2019). It has also been shown that the cis-acting

element ABRE region exists in the AhNCED1 promoter, and

ABA treatment under water stress can increase promoter

activity, promote AhNCED1 gene and protein expression, and

promote ABA synthesis to enhance water stress (Liang et al.,

2009), and that the ectopic expression of AhNCED1 will improve

ABA accumulation to improve water stress tolerance in

Arabidopsis plants (Wan and Li, 2006). In addition, OsNCED1

could indirectly regulate the seed setting rate of rice under low

temperature stress at flowering stage by regulating ABA

metabolic pathway (Huang et al., 2018). Both OsNCED2 and

OsNCED3 expression levels correlate with delayed seed

germination (Zhu et al., 2009; Song et al., 2012). OsNCED3

regulates seed dormancy, stomatal opening, plant growth and

leaf senescence by altering ABA accumulation in rice (Huang

et al., 2018). In addition, OsNCED3, OsNCED4 and OsNCED5

induce the expression and promote ABA production under

water stress, which would affect plant growth and water stress

(Teng et al., 2014; Zhang et al., 2015). We have reported that

overexpression of OsNCED1 improved high temperature stress

tolerance at heading and anthesis stages of rice (Zhou et al.,

2022). However, the roles of OsNCED1 under heat stress in rice

seedling stage remains unclear.

At present, little is known about the function of genes

involved in the ABA synthesis pathway and signal regulation

pathway in heat stress responses in rice. In this study, we

constructed OsNCED1 overexpressing and gene edited

transgenic rice plants, and aimed to explore the biological

function of OsNCED1 under heat stress at the seedling stage

of rice.
Materials and methods

Plant materials

The rice japonica variety Nipponbare (Nip), OsNCED1

overexpression lines (Nip), 252 and osnced1 mutants (252)

were used in this study. 252 was an extreme heat tolerant

individual of the recombinant inbred lines derived from a

cross between the heat-tolerant rice line 996 and the sensitive

line 4628. The overexpression vectors (pCAMBIA1300-

OsNCED1) and gene editing vectors (pBWA(V)HU-ylcas9-
frontiersin.org
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osnced1) were constructed, and respectively transformed into

Agrobacterium tumefaciens EHA105, and then introduced into

Nip and 252 plants. Positive transgenic lines were selected and

further identified by PCR and real time-quantitative PCR.

Overexpression lines (OE-1 and OE-2) with higher transcript

levels were used for further analysis, and osnced1 mutants (ko-1

and ko-2) were also obtained for further analysis by sequencing.
High temperature treatment

Seeds of wild-type (Nip and 252), OsNCED1 overexpression

lines (OE-1 and OE-2), and osnced1 mutants (ko-1 and ko-2)

were soaked in water at 37°C for 2 d, and sown in a rice seedling

box in light incubator, with the temperature was 25°C, the light

intensity was 30000 lux, the light cycle was 12/12 h (light/dark),

and the relative humidity was 70%, and germinated for 8 d.

Subsequently, 8-day-old transgenic lines and wild-type (WT)

were transferred to a light incubator at 45°C for 48 h, and moved

to a light incubator with 25°C for recovery. Corresponding WT

and transgenic lines were grown in a 25°C light incubator and

were set as controls. After 7 days of recovery, the phenotypes of

the treated and control plants were photographed and the

survival rate of seedling was counted. Four biological replicates

were performed for each treatment, and 30 seedlings were

replicated for each treatment.
Measurement of abscisic acid content

Eight-day-old transgenic lines and WT rice plants were

transferred to a light incubator at 45°C for 48 h, while the

corresponding WT and transgenic seedlings were placed in a

light incubator with 25°C as controls. The corresponding WT

and transgenic plants were sampled for the determination of

ABA content before and 48 h after treatment, and the

determination method was referred to the method as described

previously (Huang et al., 2018). Briefly, 0.1 g of fresh plants was

extracted with 1.5ml of phytohormone extraction buffer and 2 ng of

ABA-d6 internal standard was added, then sample was freeze-dried

in nitrogen for 2 times. The ABA levels were quantified by liquid

chromatography-tandem mass spectrometry (LC-MS/MS).
Measurement of physiological indexes

Eight-day-old transgenic lines and WT rice seedlings were

treated in a light incubator and exposed to heat stress (45°C) for

48 h, and those in a light incubator at 25°C served as controls.

After 48 h of treatment, plants under high temperature stress

and control conditions were used for the determination of

relative electrolyte leakage rate, malondialdehyde (MDA)

content, hydrogen peroxide (H2O2) content and superoxide
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anion (O2
-) content, superoxide dismutase (SOD) activity,

peroxidase (POD) activity, and three biological replicates were

performed. The electrolyte leakage rate conductivity of heat-

treated and control plants was measured by the conductivity

meter (DS-11A), the MDA content was measured by the

thiobarbituric acid (TBA) colorimetric method, the SOD

activity was measured by the riboflavin nitro blue tetrazolium

(NBT) method, and the POD activity was measured by the

guaiacol method. The electrolyte leakage rate, MDA content and

antioxidant enzyme activities were determined by the method of

Zhou et al. (2022), with a slight modification. Referring to the

method of Sun et al. (2019), 3,3-diaminobenzidine (DAB) and

nitro blue tetrazolium were used to detect the accumulation of

H2O2 and O2
- in the leaves of plants. The content of H2O2 and

O2
- of high temperature treated and control plants were

determined using kits (BC3595, Solarbio).
Quantitative real-time PCR analysis

The WT plants treated with high-temperature for 0 h, 2 h, 4 h,

and 8 h, the transgenic and WT plants of high-temperature treated

for 48 h and the control were collected, and the corresponding RNA

was extracted after snap freezing with liquid nitrogen. RT-qPCR

was used to determine the expression levels ofOsNCED1 along with

the transcript levels of genes involved in antioxidant enzymes, ABA

signaling pathway, heat response, and defense. Total RNA

extraction was performed using RNA easy isolation reagent

(R701-01, Vazyme) and was reverse transcribed for qPCR

analysis using the HiScript® II Q RT SuperMIX for RT-qPCR

(+gDNA wiper) kit (R223-01, Vazyme). Rice OsActin1 was used as

an internal reference gene, and primers for amplification were

designed by Primer Premier 6.0. The relative changes in gene

expression levels were quantitated based on three biological

replicates via the 2-DDCt method.
Statistical analysis

All experiments were conducted in three biological replicates.

Data are presented as mean ± SE, and statistical analysis was

performed using DPS (version 7.05). Data were analyzed by one-

way ANOVA and it was considered statistically significant at p <

0.05, p < 0.01. Plotted using GraphPad Prism (version 8.01).
Results

Response of OsNCED1 to heat stress at
rice seedling stage

In our previous study, the quantitative proteomics

technology of iTRAQ quantitative marker combined with LC-
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MS/MS analysis was used to compare and analyze the difference

of anther protein expression between heat tolerant rice line 996

and heat sensitive rice line 4628 under heat stress, and it was

found that OsNCED1 was significantly upregulated (Zhou et al.,

2022). In order to further explore the response of OsNCED1 to

heat stress at rice seedling stage, RT-qPCR was used to detect the

expression level of OsNCED1 in seedling of Nip and 252, an

extreme heat tolerant individual, at 45°C for 0 h, 2 h, 4 h, 8 h and

48 h. Upon heat stress, the expression of OsNCED1 increased

significantly in Nip and 252, peaked at 4 h and then decreased at

8 h of the heat stress (Figures 1A, B). These results indicated that

OsNCED1 responded to heat stress and its expression was

strongly induced.
Effects of heat stress on survival rate and
endogenous ABA content of OsNCED1
transgenic and WT seedlings

In order to study the role of OsNCED1 in heat stress, two

mutants, ko-1 and ko-2, were constructed in the background of

252 (Figure 2A; Supplementary Figure 1). The ko-1 and ko-2 had

two different mutation sites in the OsNCED1 exons, which

caused premature termination of OsNCED1 protein. The

overexpression lines OE-1 and OE-2 of OsNCED1 were

constructed in the background of Nip. And the expression

levels of the overexpression lines OE-1 and OE-2 were 50.9

times and 30.9 times higher than that of Nip, respectively

(Figure 2B). As shown in Figures 2C, D, upon heat stress, the

survival rate of Nip was significantly lower than that of the two

overexpression lines (OE-1 and OE-2), while the survival rate of

252 was significantly higher than that of the two mutants (ko-1
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and ko-2). Under the control conditions, there is no significant

difference between transgenic plants and corresponding WT

(Figure 2D). The results showed that OsNCED1 positively

regulated the heat stress of rice seedlings.

ABA is in a dynamic equilibrium in response to physiological

changes and stimuli from the external environment in plants.

NCED is a key rate limiting enzyme for ABA biosynthesis, and

affects the accumulation of endogenous ABA (Kalladan et al., 2019).

The ABA content under control and heat stress revealed that the

ABA levels of the overexpression lines OE-1 and OE-2 under

control conditions were 13.5 ng/g and 12.4 ng/g, respectively, and

significantly higher than that of Nip (6.4 ng/g), whereas the ABA

levels of the mutants ko-1 and ko-2 were 6.2 ng/g and 5.9 ng/g,

respectively, and significantly lower than that of 252 (12.9 ng/g)

(Figure 2E). The ABA contents of the transgenic and WT plants

were significantly increased under heat stress, indicating that heat

tolerance of rice might be improved by increasing the ABA content.

Thus, OsNCED1 might improve the tolerance to heat stress by

affecting the accumulation of endogenous ABA in rice.
Changes in membrane lipid peroxidation
and antioxidant enzyme activities in
OsNCED1 transgenic and WT seedlings
under heat stress

To reveal the underlying physiological mechanism which

OsNCED1 improves heat tolerance in rice, MDA content,

relative electrolyte leakage rate, SOD activity and POD activity

of OsNCED1 transgenic and WT seedling were measured under

heat stress. Malondialdehyde can reflect the rate and intensity of

peroxidation of plant membrane lipids, and can also indirectly
A B

FIGURE 1

Transcript level of OsNCED1 in Nip and 252 under heat stress. (A) Transcript level of OsNCED1 in Nip under heat stress. (B) Transcript level of
OsNCED1 in 252 under heat stress. Data are means ± SD (n = 3; **P< 0.01, Student’s t-test).
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reflect the potential antioxidant capacity of plant cells (Rezaul

et al., 2019). Relative electrolyte leakage rate conductivity is an

important parameter to examine the membrane permeability of

plant cells under abiotic stress (Huang et al., 2018). Under control

conditions, there was no significant difference in MDA content

and relative electrolyte leakage rate between transgenic and WT

seedlings (Figures 3A, B). After 48 h of heat stress, the MDA

content in both transgenic and WT seedlings increased

significantly, but the increase of MDA content and relative

electrolyte leakage rate of overexpression lines were significantly

lower than that of Nip (Figures 3A, B), whereas the increase in the

MDA content and relative electrolyte leakage rate of the mutants

was significantly higher than that of 252, indicating that the

increase in OsNCED1 can reduce membrane damage in plants

under heat stress.

Next, the activities of SOD and POD of transgenic and WT

seedlings under heat stress were measured. As shown in

Figures 3C, D, after 48 h of heat stress, the WT and transgenic

lines showed higher activities of both antioxidative enzymes than

that of the control, and the increases in antioxidative enzyme

activities were significantly greater in the OE-1 and OE-2 lines

than that of Nip, and the activities of antioxidant enzymes in ko-
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1 and ko-2 lines were significantly lower than that of 252. These

results suggested that OsNCED1 could enhance seedling

antioxidant enzyme activities under heat stress and attenuated

membrane damage upon heat stress in rice seedling.
Changes in reactive oxygen species
levels in OsNCED1 transgenic and WT
seedlings under heat stress

To examine whether OsNCED1 confers stress resistance to

ROS, the accumulation of H2O2 and O2
- was examined under

heat stress. The DAB and NBT staining result showed no

obvious difference between the transgenic and WT seedling

leaves under control conditions, whereas the leaves of the

overexpression lines OE-1 and OE-2 seedlings under high-

temperature stress stained lighter than that of Nip, whereas

the leaves of the mutants ko-1 and ko-2 seedlings stained darker

than that of 252 (Figures 4A, B).

Further the determination result of H2O2 content and O2
-

content of OsNCED1 transgenic and WT seedlings showed that

Nip accumulated significantly more H2O2 and O2
- than that of
A B D

E

C

FIGURE 2

Phenotypic analyses of OsNCED1 transgenic lines under heat stress. (A) The diagram of the two CRISPR/Cas9 target sites, and nucleotide
mutation sequences of ko-1 and ko-2 lines. The base pairs in blue indicated protospacer adjacent motif (PAM), and the red represented small
guide RNA (sgRNA) sequence. (B) Real-time quantitative PCR analysis of OsNCED1 in OsNCED1 overexpression lines OE-1 and OE-2. Data are
means ± SD (n = 3; **P< 0.01, Student’s t-test). (C) Phenotypes of two WT and OsNCED1 transgenic rice seedlings before heat stress and 7 days
after moderate temperature recovery. Bars = 1 cm. (D) Survival rates (%) of two WT and OsNCED1 transgenic lines after heat stress for 48 h.
Data are means ± SD (n = 4; *P< 0.05, **P< 0.01, Student’s t-test). (E) Endogenous ABA content in WT and OsNCED1 transgenic lines under
control and heat stress. Data are means ± SD (n = 3; **P< 0.01, Student’s t-test).
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overexpression lines OE-1 and OE-2, and the H2O2 content in

Nip was 43% and 46% higher than that of overexpression lines

OE-1 and OE-2, respectively; the O2
- content was 48% and 61%

higher than that of overexpression lines OE-1 and OE-2,

respectively (Figures 4C, D). In addition, the accumulation of

H2O2 and O2
- in 252 was significantly lower than that of the

mutants, the H2O2 content was 57% and 54% lower than that of

the mutants ko-1 and ko-2, respectively; the O2
- content was 52%

and 65% lower than that of the mutants ko-1 and ko-2,

respectively (Figures 4C, D). The results indicated that

OsNCED1 positively regulated plant antioxidant resistance

under heat stress, and its overexpression could alleviate

oxidative damage under heat stress.
Transcriptional changes of antioxidant
and defense related genes in OsNCED1
transgenic and WT seedlings under
heat stress

To elucidate the potential molecular mechanism of

OsNCED1 for heat tolerance, the transcript levels of several

antioxidant and defense related genes in the transgenic and WT

plants under control and heat stress conditions were detected by
Frontiers in Plant Science 06
RT-qPCR assays. These genes included three antioxidant genes

(catalase encoding gene OsCATB, superoxide dismutase gene

Fe+SOD, and ascorbate peroxidase OsAXP1) (Feng et al., 2006;

Ye et al., 2011; Li et al., 2015) and three defense genes (stress-

responsive NAC transcription factor gene osSNAC1, AP2/

EREBP transcr ip t ion fac tor OsDREB2A , and la te

embryogenesis abundant enriched protein gene OsLEA3) (Hu

et al., 2006; Xiao et al., 2007; Zhang et al., 2013), which had been

shown to play critical roles in protecting rice against

abiotic stress.

As shown in Figures 5A–C, there was no obvious difference

in antioxidant genes between WT and transgenic lines seedlings

under control conditions, but under heat stress, both WT and

transgenic seedlings showed upregulated expression of

antioxidant genes, especially OsCATB. Compared with Nip,

the transcript levels of the three antioxidant related genes were

significantly upregulated in the overexpression lines; the

transcript levels of antioxidant related genes were significantly

downregulated in the mutants compared to 252. Subsequently,

the expression levels of three defense genes, OsSNAC1,

OsDREB2A and OsLEA3, in the WT and OsNCED1 transgenic

lines under heat stress were examined. As shown in Figures 5D–

F, the transcript levels of the three defense related genes were

significantly higher in the overexpression lines than that of Nip
A B

DC

FIGURE 3

Changes in membrane lipid peroxidation and antioxidant enzyme activities in the transgenic lines and WT plants under heat stress. The
electrolyte leakage rate (A) and MDA content (B) and SOD activity (C) and POD activity (D) in transgenic lines and WT after 48 h heat stress.
Data are means ± SD (n = 3; *P< 0.05, **P< 0.01, Student’s t-test).
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under heat stress, with OsLEA3 upregulation being the most

significant. The transcript levels of defense related genes in the

two mutants were significantly lower than that of 252. These

data suggested that OsNCED1 induced the expression of

antioxidant and defense related genes under heat stress.
Transcriptional changes of genes related
to heat and ABA responses in OsNCED1
transgenic and WT seedlings under
heat stress

The main function of HSPs was to regulate the folding and

unfolding of proteins, as well as their subcellular localization and
Frontiers in Plant Science 07
degradation of unfolded and denatured proteins (Singh et al.,

2016). SLG1 is able to interact with cytoplasmic tRNA 2-

thiolated protein 1 (RCTU1) in rice to regulate tRNA

thiolation levels and thus positively regulate rice heat tolerance

(Xu et al., 2020). Therefore, the expression of HSPs genes and

SLG1 in OsNCED1 transgenic and WT seedlings under heat

stress was examined using RT-qPCR. As shown in Figures 6A–

C, the transcript levels of OsHSP70, OsHSP90 and SLG1 of the

overexpression lines were significantly higher than that of WT

under 48 h heat stress, and the transcript levels of genes related

to heat tolerance in the two mutants were significantly lower

than that of 252. In contrast, there were no significant difference

in the expression levels of these heat tolerance related genes

between WT and transgenic lines under control conditions.
A

B

DC

FIGURE 4

Accumulation of H2O2 and O2
- in seedlings under heat stress. (A) O2

- production in leaf discs of WT and transgenic lines upon heat exposure.
Bar = 1 cm. (B) H2O2 accumulation in leaf discs of WT and transgenic lines upon heat exposure. Bar = 1 cm. (C) Quantitative measurement of
total H2O2 content in WT and transgenic lines upon heat exposure. (D) Quantitative measurement of total O2

- content in WT and transgenic
lines upon heat exposure. Data are means ± SD (n = 3; **P< 0.01, Student’s t-test).
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OsNCED1 is involved in ABA biosynthesis , so the

transcriptional change of ABA responsive genes between the

transgenic lines and WT plants under heat stress was

investigated. These ABA responsive genes included OsbZIP46

(ABRE binding protein), OsABI5 (ABRE binding factor), and

OsSAPK10 (stress-activated protein kinase), which have been

shown to be involved in ABA responsive responses (Zou et al.,

2008; Yang et al., 2011; Wang et al., 2020). As shown in

Figures 6D–F, the transcript levels of the three ABA

responsive genes in the overexpression lines showed greater

upregulation under heat stress than that of Nip, and the mutants

were upregulated less than 252. These results indicated that

OsNCED1 positively activated the expression of heat responsive

genes and ABA responsive genes under heat stress.
Discussion

Temperature is an important factor affecting rice growth and

yield quality. With global warming, it is extremely important to

understand how plants respond to high temperatures and breed

high temperature tolerant rice varieties. Temperature of 10-15°C

above ambient was generally considered as heat shock or heat

stress in plants (Liu et al., 2018), whereas heat tolerance was the

ability of plants to cope with heat stress, that was, the ability of

plants to survive in an environment growing above the most
Frontiers in Plant Science 08
suitable temperature (Liu et al., 2016). The optimal growth

temperature at the seedling stage of rice was 25-28°C, and heat

stress at seedling stage (42-45°C) lead to increased water loss,

leaf wilting and yellowing, impaired root growth, and severe or

even seedling death (Liu et al., 2016; Liu et al., 2018). In this

study, we showed that overexpression ofOsNCED1 increased the

heat tolerance of rice seedlings, while osnced1 seedlings exhibited

reduced heat tolerance (Figure 2), indicating that OsNCED1

positively regulates heat stress tolerance in rice seedling plants.

ABA is a hormone that is often involved in the stress

response of plants. When subjected to abiotic stresses such as

cold, drought and high temperature et al., plants will rapidly

accumulate ABA to activate various stress responses. For

example, ABA in grapes alleviated hyperthermic damage by

increasing the accumulation of osmoregulation substances and

endogenous hormone content (Lv et al., 2022). And SlSnRK2.3

regulated ABA signaling pathway regulates stomatal movement

under heat stress to improve the heat tolerance in tomato (Li

et al., 2022). Moreover, brassinosteroids enhanced tolerance of

canola seedlings to heat stress might be due to the induction of

elevated endogenous ABA concentrations (Kurepin et al., 2008).

It had also been shown in rice that the application of exogenous

ABA alleviated pollen sterility under high-temperature stress

and was responsible for improving heat tolerance in rice by

promoting sucrose transport and metabolism in spikelets,

antioxidant enzyme activity, maintaining carbon balance and
A B

D E F

C

FIGURE 5

Transcriptional expression of antioxidant and defense related genes in seedlings of WT and transgenic lines under heat stress. Three antioxidant
genes transcript levels of OsCATB (A), OsAXP1 (B), and Fe+SOD (C). Seedlings of WT and transgenic lines were subjected to heat stress at 45°C
for 48 h, and leaves were harvested for RNA extraction, cDNA synthesis and RT-qPCR analysis. For each RT- qPCR, rice reference gene
OsActin1 was used as a control to detect its transcript levels in different samples. Data are means ± SD (n = 3; *P< 0.05, **P< 0.01, Student’s t-
test). Three defense genes transcript levels of OsSNAC1 (D), OsDREB2A (E), and OsLEA3 (F). Data are means ± SD (n = 3; *P< 0.05, **P< 0.01,
Student’s t-test).
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energy balance (Rezaul et al., 2019). And high temperature stress

promoted ABA accumulation to regulate seed germination (Liu

et al., 2019). NCED genes contributed to higher ABA levels, and

increased abiotic stress tolerance in plants (Bang et al., 2013).

Our results suggested thatOsNCED1 enhanced rice seedling heat

tolerance, possibly by regulating the endogenous ABA content.

The reasons were as follows: firstly, the transcript levels of

OsNCED1 in both WT plants were rapidly induced under heat

stress (Figure 1). Secondly, ABA content of transgenic plants and

WT increased after heat stress; while ABA content of the

overexpression lines were significantly higher than that of Nip,

and ABA content in osnced1 were lower than that in 252

(Figure 2). Thirdly, the transcript levels of ABA related genes

were significantly upregulated in the overexpression lines under

heat stress (Figures 5, 6). In support of this idea, previous reports

had shown that ABA improved heat tolerance by inducing the

accumulation of several HSPs, including HSP70 and HSP90 in

plants (Li et al., 2014). There were also reports indicating that the

expression of OsLEA3 in rice seedlings was induced by ABA

(Xiao et al., 2007). And OsbZIP46 was involved in ABA signaling

and abiotic stress response (Yang et al., 2011).

ROS were harmful substances reflecting oxidative

metabolism. Both ROS production and scavenging affected

protein, fat and nucleic acid damage and cell death (Raja et al.,

2017). So, the dynamic balance of ROS was especially important

for plant growth and development. Efficient enzymatic and
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nonenzymatic antioxidant defense systems play an important

role in scavenging ROS, reducing membrane lipid peroxidation,

maintaining ROS dynamic balance and redox signals

(Hasanuzzaman et al., 2018). SOD dismutates superoxide to

hydrogen peroxide, while peroxidases (PODs) further

decompose hydrogen peroxide to water and molecular oxygen

(Wang et al., 2016). MDA accumulation and the electrolyte

leakage rate well reflected the degree of cell damage. In this

study, the activities of SOD and POD were increased in both the

transgenic and WT seedling under heat stress, and among them,

the OsNCED1 overexpression lines showed higher SOD activity

and POD activity, lower MDA content, electrolyte leakage rate

and O2
− content than Nip, thereby decreased cell membrane

damage and oxidative stress, whereas the knockout lines

happened to do the opposite, resulting in its poor survival

(Figures 3, 4). Consistent with the antioxidant enzyme

activities, we detected that the OsNCED1 overexpression lines

showed a significant upregulation in the transcript levels of the

antioxidant related genes OsCATB、Fe+SOD and OsAXP1

under heat stress, and the osnced1 mutants, although

somewhat upregulated, it was not upregulated as much as 252

(Figure 5). Therefore, OsNCED1 overexpression lines might be

to maintain the structure and function of cells under heat stress

by regulating their own enzyme system activity and content of

osmotic protective substances to scavenge toxic substances such

as free radicals. Consistent with this paper, it was reported that
A B

D E F

C

FIGURE 6

Transcriptional expression of heat tolerance and ABA related genes in WT and transgenic lines under heat stress. Three heat tolerance genes
transcript levels of OsHSP70 (A), OsHSP90 (B), and SLG1 (C). Seedlings of WT and transgenic lines were subjected to heat stress at 45°C for
48 h, and leaves were harvested for RNA extraction, cDNA synthesis and RT-qPCR analysis. For each RT-qPCR, rice reference gene OsActin1
was used as a control to detect its transcript levels in different samples. Data are means ± SD (n = 3; *p < 0.05, **p < 0.05, Student’s t-test).
Three heat ABA related genes transcript levels of OsbZIP46 (D), OsABI5 (E), and OsSAPK10 (F). Data are means ± SD (n = 3; *p < 0.05, **p <
0.05, Student’s t-test).
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copper/zinc superoxide dismutase 1 (CSD1) and CSD2 in

Arabidopsis altered the redox status and scavenged ROS of

cells to regulate heat tolerance (Guan et al., 2013). Similarly,

there was also evidence that transgenic potatoes overexpressing

CuZnSOD and APX had higher tolerance to high temperature

and oxidative stress (Kim et al., 2010). On the contrary, the loss

of AXP1 and CAT2 reduced the tolerance of Arabidopsis to high

temperature stress (Vanderauwera et al., 2011). Reports had

suggested that ABA in plants actively participated in antioxidant

defense mechanisms through various MAPK cascades, such as

ABA transiently activates MPK6 to regulate the expression of

catalase 1 (CAT1), and maintaining ROS homeostasis (Raja

et al., 2017).

Acting as a second messenger of ROS generating signals, H2O2

has a dual role in regulating plant physiological processes, since low

concentrations of H2O2 initiate various signals in cells, whereas high

concentrations of H2O2 cause oxidative damage (Quan et al., 2008;

Gill and Tuteja, 2010). ABA as a stress signal plays an important

role in abiotic stresses, but there are different claims about the

interaction between H2O2 and ABA under abiotic stress. Our study

showed that high-temperature treatment elevated endogenous ABA

in the overexpression plants (Figure 2E), accompanied by reduced

H2O2 content (Figures 4B, C), reduced oxidative damage, to

improve heat tolerance at the seedling stage of rice. Consistent

with our results, OsASR6 interacted with OsNCED1 to enhance

endogenous ABA content and reduce H2O2 accumulation to

improve rice salt tolerance (Zhang et al., 2022). In addition, the

ABA accumulation in the OsIAA18 overexpressing rice seedlings

was significantly higher than that in WT under both salt and

drought stress, and the genes of ABA synthesis and signaling

pathways were also evidently upregulated, along with obviously

lower level of H2O2 and improved salt and drought (Wang et al.,

2021). However, it has been shown that, under drought conditions,

ABA induces ROS production and increases H2O2 content in

Arabidopsis guard cells, which activates calcium ion channels to

promote stomatal closure and reduces water loss (Pei et al., 2000). It

has also been shown that exogenous ABA induces H2O2 production

via OsDMI3 in rice zhonghua11 (Shi et al., 2012). We speculated

that OsNCED1 in this study might reduce membrane damage and

ROS levels in plants under heat stress by regulating ABA content.

However, the exact role of OsNCED1 in ROS homeostasis under

heat stress requires further investigation. Our study provides a

valuable resource for the potential exploitation of OsNCED1 in the

genetic improvement of heat tolerance in rice. Future studies on

OsNCED1 will include determining how other genes, together with

OsNCED1, are involved in other physiological functions not

observed in osnced1 mutants. In addition, other novel regulatory

functions of OsNCED1 can be investigated by identifying its

interacting proteins.
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