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Background: Nitrogen(N), phosphorus(P), and potassium(K) are essential

elements that are highly deficient during plant growth. Existing diagnostic

methods are not suitable for rapid diagnosis of large-scale planting areas.

Near-ground remote sensing technology based on unmanned aerial vehicle

(UAV) and sensor is often applied to crop growth condition monitoring and

agricultural management. It has been proven to be used for monitoring plant N,

P, and K content. However, its integrated diagnostic model has been less studied.

Methods: In this study, we collected UAV multispectral images of Ligusticum

chuanxiong Hort. in different periods of nutritional stress and constructed

recognition models with different heights and algorithms. The optimal model

variables were selected, and the effects of different sampling heights andmodeling

algorithms on the model efficiency under the time span were evaluated. At the

same time, we evaluated the timeliness of the model based on leaf element

content determination and SPAD. It was also validated in field crop production.

Results: The results showed that the LR algorithm’smodel had optimal performance

at all periods and flight altitudes. The optimal accuracy of N-deficient plants

identification reached 100%, P/K-deficient plants reached 92.4%, and normal plants

reached 91.7%. The results of UAV multispectral diagnosis, chemical diagnosis, and

SPAD value diagnosis were consistent in the diagnosis of N deficiency, and the

diagnosis of P and K deficiencywas slightly lagging behind that of chemical diagnosis.

Conclusions: This research uses UAV remote sensing technology to establish

an efficient, fast, and timely nutritional diagnosis method for L. Chuanxiong,

which is applied in production. Meanwhile, the standardized production of

medicinal plant resources provides new solutions.

KEYWORDS

nutrient deficiency, symptom identification, unmanned aerial vehicle (UAV), canopy
reflectance, medicinal plants, ligusticum chuanxiong Hort
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1 Introduction

There are 14 essential mineral nutrients in the whole life cycle

of plants (de Bang et al., 2021), among which nitrogen(N),

phosphorus(P), and potassium(K) are closely related to the yield

and quality of cultivated crops and are more likely to be deficient

(Sanchez et al., 2020). N is a component of plant proteins, nucleic

acids, chlorophyll, and other substances. N deficiency can cause

phenotypic symptoms such as stunted growth, yellowing old

leaves, small leaves, and reduced branching and flowering

(Rahayu et al., 2005). P is an element involved in energy

metabolism (ATP, NADPH), nucleic acids, and membrane

phospholipid composition (Kamerlin et al., 2013). P deficiency

causes a reduction in cell division and elongation, reddish-purple

or dark green plant leaves, and stunted plant growth and

development (Hughes and Lev-Yadun, 2015). K regulates plant

growth in plants by affecting electroneutrality, osmoregulation,

anion-cation balance, and biochemical pH status, and K+ reduces

the production of reactive oxygen species (ROS) by suppressing

the number of electrons used for side reactions with oxygen, such

that potassium deficiency can lead to local necrosis of the plant

foliage (Pottosin and Shabala, 2016). K deficiency also predisposes

the plant to collapse by hindering cell wall development

(Anschutz et al., 2014). Identifying and replenishing N, P, and

K deficiencies at an early stage of plant deficiency is the key to

ensuring proper plant growth. Therefore, N, P, and K are the plant

nutrients that need to be monitored as a priority in field

production management.

Ligusticum chuanxiong Hort. is one of the commonly used

medicinal plants of the Umbelliferae family, which has been

cultivated in China for more than 1500 years (Ran et al., 2011).

Its roots are widely used in China, Japan, Korea, Singapore, and

other Asian regions for treating and preventing cardiovascular

and gynecological diseases (Chen et al., 2018). Currently, the

cultivation area of L. chuanxiong in the Chengdu Plain of China is

more than 6000 hm² year-round, with an annual production of

1.8×107~20×107 kg (Peng et al., 2020). However, irrational

fertilization exists in the process of large-scale cultivation. This

causes a waste of resources (Krasilnikov et al., 2022),

environmental pollution and damages the quality of

Chuanxiong herbs (Liu, 2009; Chen et al., 2022).On the other

hand, due to the specificity of their use, medicinal plants are often

subject to strict requirements in terms of growing environment

and cultivation management, which requires a large amount of

labor. With the urbanization and aging of China’s population,

labor management costs have increased. Therefore, in the context

of large-scale cultivation and rising labor costs, there is an urgent

need for efficient and reliable tools to assist medicinal growers in

management and decision-making.

In the process of crop planting and production, due to the

differences in soil properties and nutrient content, as well as
Frontiers in Plant Science 02
temperature changes, rainfall conditions, etc., the nutrient loss is

different (St Luce et al., 2011). Adequate fertilization is an

important factor to ensure crop yield and quality (Imran et al.,

2021). Therefore, it is necessary to monitor the nutritional status

of the key stages of crop growth to take timely remedial

measures. At present, the nutritional diagnosis of crops mainly

includes sensory empirical, chemical, and spectral. Sensory

experience diagnosis is highly subjective. Chemical diagnosis

relies on laboratory conditions, and the operation process is

cumbersome and time-consuming (Daughtry et al., 2000). The

spectral diagnosis method established by using the close

correlation between crop nutritional status and its spectral

characteristics is fast, non-destructive, and easy to grasp

(Balasubramanian et al., 1998; Toth and Jozkow, 2016;

Sanchez et al., 2020). Although the existing proximal spectral

diagnosis technology identifies more types of element

deficiencies with high accuracy (Rustioni et al., 2018; Sanchez

et al., 2020), the collection efficiency is low and cannot meet the

real-time monitoring of large-scale agricultural fields. And with

the development of UAV technology, it is equipped with

different sensors such as RGB, Multispectral, Hyperspectral,

Thermal Sensor, Light Detection and Ranging (Sun et al.,

2022). Appropriate sensors can be selected according to the

application (Zhu et al., 2021), thus providing a new solution for

crop growth monitoring (Toth and Jozkow, 2016). UAVs are

equipped with optical sensors to collect and quantify light

attenuation caused by photon scattering, absorption, and

transmission caused by the interaction of light with plant

canopy tissue. These interrelationships are closely related to

the physical and chemical properties of the plant, thus obtaining

crop phenotypic parameters to provide an accurate and timely

assessment of the crop development status (Homolova et al.,

2013), such as the assessment of crop nutrition, disease, pest

incidence, weeds, biomass, etc. (Osco et al., 2020; de Castro et al.,

2021; Rehman et al., 2022). At present, the acquisition of near-

Earth spectral image technology based on UAV has attracted the

attention of many scholars due to its high efficiency, real-time

and non-destructive characteristics.

The sustainable development of agroecosystems needs to be

considered in crop growth detection. Non-destructive, low-cost,

and high-efficiency UAV multispectral technology solves the

problem. Multispectral cameras have three or more discrete

bands. The choice of bands depends on the need for vegetation

indices (VI) associated with crop phenotypes, which are more

sensitive to vegetation characteristics than a single wavelength.

Among them, indices such as Normalized Difference VI

(NDVI), Green Normalized Difference VI (GNDVI),

Normalized Difference Red-edge Index (NDRE), and soil-

adjusted VI (SAVI) are considered to be closely related to the

nutritional status of plants (Osco et al., 2020). Rehman et al.

(2022) used NDVI and NDRE to establish a prediction model for
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rice nitrogen and yield in different locations and time spans.

Gordillo-Salinas et al. (2021) found that GNDVI and Blue

Normalized Difference Vegetation Index (BNDVI) had better

prediction effects on the nitrogen content of wheat in different

phenological periods. Furlanetto et al. (2021) found that

GNDVI, NDVI, Ratio between Infrared and Green (GRVI),

Ratio between Green and Infrared (GNIR), Ratio between Red

and Infrared (RNIR), and Ratio between Infrared and Red (RVI)

can effectively differentiate adequate K supply maize plants

under treatment with severe potassium deficiency. Gracia-

Romero et al . (2017) found that the NDVI, SAVI,

Renormalized difference vegetation index (RDVI), Enhanced

vegetation index (EVI) and other indices of corn plants with

and without phosphate fertilizer had significant changes. Given

this, we believe that UAV multispectral technology has the

potential for integrated diagnosis of plant N, P, and K

deficiency and can meet the needs of future crop cultivation

and production self-energy and intelligence.

This study aimed to verify the possibility of distinguishing N,

P and K deficiency in plants using UAV multispectral

technology. And we will evaluate the impact of different

algorithms and flight altitudes on classification accuracy as

well as the timing of the diagnosis compared to other

diagnostic methods. We expect that UAV multispectral

technology with a suitable algorithm and flight altitude can

accurately identify deficient plants and can detect the deficiency

symptoms of plants as early as possible.
2 Materials and methods

The method is described in three main stages: a)

experimental design and data collection; b) digital image

processing and data analysis; c) Chemical analysis of leaf tissue

and determination of growth indicators. The specific steps of

each phase are organized in a workflow (Figure 1) and

detailed below.
2.1 Experimental design and data
collection

2.1.1 Study area and experimental design
The field experiment was conducted in the Medicinal

Botanical Garden of Chengdu University of Traditional

Chinese Medicine (30°69’N, 103°81’E, 524m ASL) located in

Chengdu City, Sichuan Province, China, from January 2022 to

June 2022 (Figure 2A). The region has a humid subtropical

monsoonal climate. The average temperature during the

experiment was 13.7°C, and the accumulated rainfall was

316.99 mm. The cultivation medium is made of yellow loam,

perlite, and coconut coir in a volume of 5:3:2. The yellow soil was

collected from long-term unfertilized plots (pH 6.98, organic
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matter content of 18.4 g/kg, available nitrogen content of 43.71

mg/kg, available phosphorus content of 19.57 mg/kg, and

available potassium content of 51.92 mg/kg). After the soil was

air-dried for several days, it was crushed and passed through a

5 mm sieve (Rajkovich et al., 2011). The mixed cultivation

medium was packed into polypropylene pots with quartz sand

at the bottom, and 2/3 of the pots were buried in the soil and

kept at the same height.

The germplasm material was crop rhizomes harvested from

Fengdui Village, Dujiangyan City, Sichuan Province. The area is

a Geo-Authentic product area of L. chuanxiong. Before planting,

remove the aerial parts and fibrous roots according to traditional

planting habits. After 3 days of placement, choose rhizomes of

even size for planting. Two in each pot are one sample, totaling

196 samples. Hoagland’s nutrient solution was watered weekly

after planting to ensure normal growth in the early stages

(Hoagland and Arnon, 1950). Until April 1, samples were

divided into control (CK), N deficient (ND), P deficient (PD),

and K deficient (KD) groups. Each processed 48 samples. Every 7

days, 500 ml of the corresponding nutrient solution was poured,

CK was poured with Hoagland’s nutrient solution, and the stress

group was poured with Hoagland’s nutrient solution with the

relative mineral elements completely removed. The deficient

nutrient solution was prepared according to the method of Xu

and Mou (2016). Watering the soil with sufficient water to

remove the pre-watering Hoagland’s solution before starting

the treatment. After 30 days of treatment, 24 samples were

divided from ND, PD, and KD as nitrogen supplementation

group (NS), phosphorus supplementation group (PS), and

potassium supplementation group (KS), respectively, and

changed to watering with whole Hoagland nutrient

solution (Figure 2B).

2.1.2 Remote sensing image acquisition
A total of nine missions were conducted during the

experiment in April-May 2022 to capture multispectral images

between 11:00 and 13:00 in cloudless and windless weather. The

interval between each capture was about 7 days. The drone used

is the DJI Phantom 4 Multispectral (DJI, Shenzhen, China),

which was equipped with a multispectral lens having six CMOS

sensors, including one RGB sensor for visible imaging and five

single-band sensors (B: 450 ± 16 nm, G: 560 ± 16 nm, R: 650 ±

16 nm, RE: 730 ± 16 nm, NIR: 850 ± 26 nm). Missions were

uploaded to the drone via DJI GS Pro. Above ground level

(AGL) was set to 5 and 10 meters. Under this AGL, the drone did

not affect the crop canopy, and the orthoimage stitching was

normal. The ground sampling distance (GSD) was 0.265 cm/

pixel (5m AGL) and 0.529 cm/pixel (10m AGL). The camera was

connected to the drone with a gimbal, and shooting angle was

90° from the ground. The for-ward overlap rate was 80%, and

the side overlap rate was 75%. Image geographic coordinates

determined by Real Time Kinematic (RTK) GPS with an error of

less than 1 cm in the horizontal direction and less than 1.5 cm in
frontiersin.org
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the vertical direction. The 10% and 90% radiometric calibration

plates (JINGYI, Guangzhou, China) were placed in the center of

the plot before the mission begin. It was used to verify the

radiometric calibration effect.
2.2 Digital image processing and
data analysis

2.2.1 Generation of orthorectified mosaic and
radiometric correction

The generation of orthorectified mosaic was done on DJI

Terra (DJI, Shenzhen, China) and the steps include radiometric

calibration, image alignment, dark angle compensation, and

aberration calibration. The radiometric calibration was

calculated as follows (DJ-Innovations, 2020):

Xref =
XDN � pCamX

XLS � pLSX
� rNIR (1)

Where X is the response band, XDN is the brightness value

of the image element in this band, XLS is the light-sensitive

signal obtained by the light intensity sensor, rNIR is the
Frontiers in Plant Science 04
parameter that regulates the interconversion between the

NIR image signal and the multispectral light intensity sensor,

and pCamX and pLSX are the calibration parameters obtained

by the multispectral light intensity sensor in other bands with

reference to the NIR band.

2.2.2 Feature extraction and variable screening
Mask images were made using the support vector machine

(SVM) algorithm (Figure 3), and vegetation indices were

calculated (Table 1). Then the image was segmented, and

mask extracted the sample mean reflectance and vegetation

index (Hassanzadeh et al., 2020), then removed redundant

variables through the information value (IV) and correlation

between variables (Zaghwan and Gunawan, 2021). Correlation

coefficients between variables were calculated by person

correlation analysis, and 90% was used as the correlation

threshold to remove redundant variables (Hassanzadeh et al.,

2020). The IV is used primarily to evaluate the predictive ability

of variables in the classification model. The higher the IV value,

the higher the information contribution of the variable. Before

calculating IV, the data needs to be discretized. The calculation

formula is as follows (Zhang et al., 2017):
FIGURE 1

Workflow of the process performed in this study.
frontiersin.org
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IV =o
n

i
(yi=yT − ni=nT)� ln(

yi=ni
yT=nT

)

� �
(2)

Where n is the number of groups, set to 10; i represents the

ith group; yi is the number of positive samples in this group; ni is

the number of negative samples in this group; yT is the number

of all positive samples in the sample; nT is the number of all

negative samples in the sample; to prevent extreme values, if the

number of positive samples or negative samples in the variable

group is 0, it is adjusted to 1.
2.2.3 Data analysis and evaluation
Data processing and evaluation were performed in Python 3.8.

Divide the data into training and test sets according to 7:3.

Standardize and PCA dimensionality reduction of selected

variables (Abdi and Williams, 2010). Since the dataset is an

unbalanced sample, the SMOTE algorithm was used to

oversample the training set data (Zhu et al., 2017). And then, the

model was trained using K-Nearest Neighbor (KNN), Logistic

Regression (LR), Naive Bayesian Model (NBM), Support Vector

Machine (SVM), Decision Tree (DT), and Random Forest (RF)
Frontiers in Plant Science 05
algorithms. The optimal parameters of the model were determined

by grid search and five-fold cross-validation. Model performance

was evaluated by AUC (Area under the Curve), precision, recall,

and f1-score. All evaluation metrics were averaged over ten

random divisions of the training and test sets obtained (Hossin

and Sulaiman, 2015). AUC is the area under the ROC curve, which

is applicable to the evaluation of classification models with

unbalanced samples. The closer the AUC is to 1, the better the

model is; close to 0.5, the model has no predictive value. Precision

indicates the proportion of true cases among positive cases, recall

indicates the proportion of true cases among all positive cases, f1-

score neutralizes the precision and recall for evaluation, and the

calculation equation is as follows (Wu et al., 2022):

precision =
TP

TP + FP
(3)

recall =
TP

TP + FN
(4)

F1 _ score =
2� precision� recall
precision + recall

(5)
A B

C

FIGURE 2

Study site, experimental design, and stress characterization. (A) Study area location, (B) Study area, (C), Stress characterization. CK, control
group, ND, nitrogen deficiency group, PD, phosphorus deficiency group, KD, potassium deficiency group, NS, nitrogen supplementation group,
PS, phosphorus supplementation group, KS, potassium supplementation group.
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Where TP is the number of samples where the instance is a

positive class and is predicted to be positive, TN is the number of

samples where the instance is a negative class and is predicted to

be negative, FN is the number of samples where the instance is a

positive class and is predicted to be negative, and FP is the

number of samples where the instance is a negative class and is

predicted to be positive.
Frontiers in Plant Science 06
2.3 Ground sampling and
chemical analysis

Ground sampling activities were conducted before each

nutrient watering (16:00-18:00 on the same day), and nine

sampling sessions were conducted. SPAD was measured with

MultispeQ V2 (PhotosynQ, USA) by selecting the first fully
TABLE 1 Vegetation indices, equations, and sources used in the study.

VIs Name Formula References

NDVI Normalized Difference VI NDVI=(NIR–R)/(NIR+R) (Rousel et al., 1973)

RVI Red Ratio VI RVI=NIR/R (Jordan, 1969)

EVI Enhanced VI EVI = 2:5(
NIR − R

NIR + 6R − 7:5B + 1
) (Huete et al., 2002)

DVI Difference VI DVI=NIR–R (Richardson et al., 1977)

RDVI Renormalized Difference VI RDVI = (NIR − R)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NIR − R

p
(Roujean and Breon, 1995)

SAVI Soil Adjusted VI SAVI=1.5(NIR–R)/(NIR+R+0.5) (Huete, 1988)

GNDVI Green Normalized Difference VI GNDVI=(NIR–G)/(NIR+G) (Gitelson et al., 1996)

NDRE Normalized Difference Red-edge VI NDRE=(NIR–RE)/(NIR+RE) (Gitelson et al., 1994)

OSAVI Optimization of Soil-Adjusted VI OSAVI=(NIR–R)/((NIR+R+0.16) (Rondeaux et al., 1996)

GRVI Green Ratio VI GRVI=NIR/G (Xue et al., 2004)

LCI Leaf Chlorophyll Index LCI=(NIR–RE)/(NIR–R) (Datt, 1999)

NDWI Normalized Difference Water Index NDWI=(G–NIR)/(G+NIR) (Gao, 1996)

BNDVI Blue Normalized Difference VI BNDVI=(NIR–B)/(NIR+B) (Peñuelas et al., 1995)

BVI Blue Ratio VI BVI=NIR/B (Jordan, 1969)

BRVI Simple Blue Ratio Index BRVI=R/B (Peñuelas et al., 1994)
A B

FIGURE 3

Mask extraction. Support vector machines (SVM) separated the crop crown from the background. (A) RGB image. (B) Mask.
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expanded leaf below the terminal branch and measuring the

mean of five parts of the leaf on both sides of the base, both sides

of the middle, and the tip. Each treatment was randomly

sampled 10 times. At the same time, the first fully expanded

leaf was collected for chemical analysis of nutrient element

content, all samples were collected, and each 8 replicate

samples were mixed into 1 sample (about 0.25 g). A minimum

of 3 samples per treatment were used for chemical analysis. After

collection, they were placed in ice boxes and brought back to the

laboratory for chemical assays, washed 2-3 times using RO water

dripping, deenzymated at 105°C for 30 min, and dried at 65°C to

constant weight. Digest with H2SO4 -H2O2, Kjeldahl analyzer

(BUCHI K-360, FOSS, Sweden) was used to determine the total

K, UV-Vis spectrophotometer (A580, AOE, China) for total P

determination, and total K was determined using a flame

photometer (6400A, shjingmi, China) (PRC, 2011).

After the last flight mission, dry biomass and leaf-to-stem ratio

(LSR) were determined by the weighingmethod (Smart et al., 2004),

and chlorophyll and carotenoid contents in leaves were determined

by the acetone extraction colorimetric method (Arnon, 1949).
3 Results

3.1 Effect of nutritional deficiency on the
growth of L. chuanxiong

Samples were collected after 58 days of stress and measured

for biomass, chlorophyll content, carotenoid content, and leaf-

to-stem ratio (Table 2). Except for KS, all treatment groups

showed a significant decrease in biomass compared to CK, with

ND showing the largest decrease of 43.52%, PD and KD

decreasing by 21.15% and 14.33%. And biomass increased in

all groups after supplementation with deficient nutrients

compared to those with complete deficiency. For chlorophyll

content, only ND showed significant differences with CK. PD

(P=0.121) and KD (P=0.078) showed an increasing trend in

chlorophyll content, but there was no significant difference. For
Frontiers in Plant Science 07
carotenoid content, ND was significantly reduced, and PD

significantly increased compared to CK. For LSR, all treatment

groups showed a decrease compared to CK. The decreases were

52.27%, 42.05% and 18.18% in the KD, ND and PD groups. And

LSR increased after supplementation with deficient nutrients

compared to the deficient treatment. Collectively, all stress

groups caused a reduction in biomass compared to the control

group, with ND>PD>KD. Only ND significantly reduced

chlorophyll and carotenoid contents. All the stress groups

caused a reduction in the leaf-to-stem ratio, where KD>ND>PD.
3.2 Model building and evaluation

3.2.1 Variable filtering
Including single-band reflectance and vegetation index, we

counted 20 indicators as pre-selected variables (Figure S1). To

remove redundant information and simplify the workflow by

information value (IV) and Pearson correlation analysis. We

used IV as the degree of variable contribution and 0.9 as the

correlation threshold (Figure 4) and finally determined the

GRVI, LCI, BRVI, RVI, GREEN band, RED band, RE band,

OSAVI, BVI, EVI as the input variable.

We removed the background of the selected variables and

conducted PCA dimension reduction. As shown in Figure 5,

with increasing stress time, phenotypic changes were first seen in

the ND group (After 15 days). After 22 days of stress, the PD and

KD groups began to show differences from the CK group. After

30 days of stress, we set up a supplemental fertilizer treatment,

and the supplemental fertilizer treatment group gradually

returned to the level of the CK group.
3.2.2 Different algorithms and AGL evaluation
The classification effects of different algorithms under 5 m

and 10 m AGL were compared (Figures 6A, B), with AUC as the

evaluation criterion. LR maintains the optimal classification

performance under different stress stages and heights; NBM,
TABLE 2 Effect of different treatments on plant biomass, chlorophyll content, carotenoid content, and leaf-to-stem ratio.

Group Dry biomass (g/pot) Chlorophyll (mg/g) Carotenoid (mg/g) Leaf-to-stem ratio

CK 69.75 ± 8.41 0.83 ± 0.15 0.19 ± 0.02 0.88 ± 0.14

ND 39.39 ± 5.25** 0.54 ± 0.15** 0.14 ± 0.02** 0.51 ± 0.09**

NS 48.73 ± 5.53** 0.8 ± 0.18 0.18 ± 0.03 0.66 ± 0.16**

PD 55.002 ± 9.50** 0.91 ± 0.14 0.22 ± 0.03* 0.72 ± 0.05*

PS 57.26 ± 4.97* 0.85 ± 0.2 0.21 ± 0.03 0.71 ± 0.12*

KD 59.75 ± 11.09* 0.92 ± 0.13 0.21 ± 0.03 0.42 ± 0.06**

KS 61.44 ± 10.51 0.85 ± 0.16 0.20 ± 0.03 0.52 ± 0.07**

* (P<0.05) and **(P<0.01) represent significant differences from the control group. Statistical methods used were Student’s t-test.
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SVM, and RT also have high classification performance, while

Decision Tree and KNN perform poorly. After 23 days of stress,

the AUC values of the models constructed by LR, NBM, SVM,

and RT algorithms reached or approached 0.9. The classification

effect was the best at 38 and 45 days of stress, and the AUC

values of the LR models exceeded 0.99. After 52 days, the

classification performance of all algorithms and flight altitude

models decreased. Overall, LR is best for building models.

Comparison of the LR algorithm at different heights

(Figure 6C). The classification effect of 5m AGL was higher

than that of 10m AGL before 22 days of stress. The AUC reached

above 0.9 after 15 days of stress, while the AUC exceeded 0.9

after 22 days with 10 m AGL. Both models had similar

classification performance after 31 days. AUC all reached

above 0.99 after 45 days of stress. Overall, modeling efficacy
Frontiers in Plant Science 08
was similar for 5m and 10m collection data after 30 days of

stress, but 5m AGL modeling was more sensitive to

nutrient deficiency.

3.2.3 Model evaluation
Based on the results in the above sections, we choose to use

the LR algorithm to build the model under 5m AGL and perform

PCA dimensionality reduction visualization for samples in

different stress periods (Figure 7). After 15 days of stress, the

ND group was gradually separate from the CK and PD\KD

groups (Figure 7C), and the prediction accuracy was 78.48%.

And the accuracy rate reached 97.77% after 22 days. From 38 to

58 days, the prediction precision and recall rate both reached

100% (Table 3). After 22 days of stress, there were differences

between PD\KD group and CK group (Figure 7D), the
A B

C

FIGURE 4

Variable screening based on IV and correlation. (A) The IV was calculated with PD\KD as the positive sample and the other treatment groups as the
negative sample. (B) The IV was calculated with the ND as the positive sample and the other treatment groups as the negative sample. (C) Heat map
of vegetation index correlation.
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recognition precision rate reached 87.1%, and the recall rate was

82.08%. The recognition accuracy rate between 30 and 45 days

was between 87.3% and 92.35%, the recall rate was between

86.37% and 89.03%, and the recognition effect was the best

(Table 3). The recognition rate decreased in both ND and PD

\KD groups after 52-58 days of stress.
3.3 Comparison with other diagnostic
methods and field validation

Diagnosis of each treatment group was performed by

chemically measuring the elemental content of the plant

leaves and SPAD (Figure 8). There was a significant

difference compared to the CK group, indicating that the
Frontiers in Plant Science 09
diagnostic method could make a valid diagnosis of stress in

that period. For the ND group, both chemical diagnosis and

SPAD diagnosis showed significant differences from the CK

group after 15 days of stress (Figures 8A, D); After 15 days of

stress, the images of RGB, GRVI, and results of PCA were

different from those of CK group (Figures 5, 7C). For the P

deficiency treatment, leaf P content was significantly different

between the CK group after 15 days (Figure 8B), while there

was no difference in SPAD compared to the CK group. There

was a difference between PCA images after 22 days of stress

(Figure 5), which was further proved by PCA scatter plot

(Figure 7). For the K deficiency treatment, leaf K content was

significantly reduced after 8 days of stress compared to the CK

group, and there was no significant difference in SPAD. The

diagnosis period of potassium-deficient plants by multispectral
FIGURE 5

Dimensionality reduction images at different stress times. The remote sensing images of selected variables were subjected to PCA downscaling.
b: PC1, g: PC2, r: PC3.
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imaging was 15 to 22 days after stress. Based on this,

multispectral diagnosis is similar to chemical diagnosis in the

diagnosis period of nitrogen deficiency, while phosphorus and

potassium deficiency are slightly lagged behind.

As shown in Figure 9, we predicted the nutrient status of the

field vegetation in L. Chuanxiong planted fields with the model

developed during the same period (after 38 days of stress). In this

image acquisition, potted plants of ND, PD, and KD groups were

placed in the open area of the field. We collected leaves from N

deficient area and normal field, and N content of the leaves in

this area was significantly lower than that of normal field leaves.

Moreover, the results predicted by the model were similar to the

ND group of crops (Figure 9B). Crops in most areas and the CK

group were predicted to be healthy vegetation (Figure 9A).

Crops in the roadside area were predicted to be phosphorus or

potassium deficient, similar to the results predicted for the PD

and KD groups (Figure 9C).
4 Discussion

4.1 Effect of N deficiency on crop
phenotype and canopy spectrum

N is an essential nutrient for plants’ main physiological

metabolic functions and is closely related to chlorophyll

synthesis and light metabolism. Under our experimental

condi t ions , n i t rogen defic iency produced dis t inc t

symptomatic features with uniform yellow leaves and slow

plant growth (Figure 2C). Yellowing symptoms occurred

first in the basal leaves and later caused the yellowing of the

whole plant.

In agreement with Have et al. (2017), N deficiency caused a

decrease in chlorophyll and carotenoid content in the leaves

(Table 2), while a decrease in the pigment content of canopy

leaves followed by an increase in visible light reflectance was the
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key to identifying N-deficient plants. N deficiency caused slow

crop growth and a significant reduction in LSR (Table 2), which

resulted in sparse vegetation canopy foliage. Although

background segmentation was performed prior to data

processing, mixed image elements still resulted in spectral

differences (Benincasa et al., 2017), which is also an important

factor in identifying N-deficient plants. Therefore, the key to

distinguishing N-deficient plants is the canopy pigment content

and the number of canopy leaves.

The indices LCI, NDWI, GNDVI, and NDRE in our study

contributed more information gain to the identification of N-

deficient plants than single bands (Figure 4A). This is

consistent with the finding of Osco et al. (2020) that

vegetation indices contributed more to the prediction of leaf

N content than spectral bands. Meanwhile, the green and red

band reflectance provided a high information gain (Figure 4A)

and a weak correlation with the vegetation index (Figure 4C),

which is also consistent with the finding of Li et al. (2022) that

the combination of vegetation index plus spectral band

variables can improve the accuracy of the model. In addition,

we verified by supplementing the treatments with deficient

elements that the change was indeed due to differences in N

deficiency. All indices and bands except the red-edge band

tended to move closer to the control after the N

supplementation treatment (Figure 5, Figure S1), with indices

such as OSAVI and RVI being more sensitive to the response of

N supplementation.
4.2 Effect of P and K deficiencies on crop
phenotype and spectrum

Plants are usually subjected to P deficiency conditions, where

the reduction in cell division and elongation leads to high

chlorophyll concentration and further causes anthocyanin

accumulation, giving the leaves a purplish-red color (de Bang
A B C

FIGURE 6

Different modeling algorithms and AGL evaluation. AUC is the evaluation metric of the model as the average of area of the ROC curves for each
classification sample. (A) performance evaluation of different algorithms at 5 m AGL, (B) evaluation of different algorithms at 10 m AGL,
(C) evaluation of logistic regression algorithms at different AGL.
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et al., 2021). However, Hughes and Lev-Yadun (2015) found that

reddening leaf margins were not a common symptom of all P

deficiencies. For example, in sugar beet, rice, and potato, P

deficiency symptoms only manifested as stunted growth with

dark blue/green leaf coloration. Under our experimental

conditions, only a few plants were observed to have reddish-

purple leaves in the early stages of stress, but the leaves were dark

green with little new leaf emergence (Figure 1C).

The present study differs from Gracia-Romero et al. (2017)’s

study in that P deficiency increased NDVI, GNDVI, LCI, and

other indices (Figure S1). The difference could be the

accumulation of more chlorophyll under P-deficient

conditions and the reduction in the number of new leaf

sprouts in the canopy or the difference in the GSD, making
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the previous spectral images contain more information about the

soil background.

Under K-deficient conditions, plants generally exhibit symptoms

of chlorosis or necrosis from the tip to the edge of old leaves (Ueno

et al., 2018) and loose leaves and stems. In this experiment, the

symptoms of edge necrosis of old leaves were not easily detected, but

the plants showed obvious relaxation of leaves and stems (Figure 1C).

At the same time, the number of new leaf germinations was

significantly reduced compared with normal plants.

K deficiency greatly reduced the leaf-to-stem ratio of crops

(Table 2), indicating that K deficiency limited the reduction of

crop new leaf germination, and the reflectance of new leaves in

the visible light band is lower than that of mature leaves (Nakaji

et al., 2019; Wu et al., 2022). The reduction of the visible light
A B

D E F

G IH

C

FIGURE 7

Classification results of logistic regression(LR) models under different stress time models. PCA dimensionality reduction and visualization of
sample data collected at 5 m height. (A-I) were the classification results after 1, 8, 15, 22, 30, 38, 45, 52 and 58 days of stress successively. The
LR algorithm predicts the test samples. ▼ are the correctly predicted samples in the test set, × are the incorrectly predicted samples in the test
set, and • are the training set samples.
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band in the canopy of K-deficient plants was related to the

decrease in the proportion of young leaves in the canopy caused

by K deficiency. This spectral change is similar to that of

Severtson et al. (2016) for diagnosing K deficiency in rapeseed

by a drone-carrying canopy sensor. Unlike the study of

Furlanetto et al. (2021), the former study found that the

chlorophyll concentration, GNDVI, RVI, and GRVI of maize

decreased in severe K deficiency. In this study, the chlorophyll

concentration of crops did not decrease under the state of P
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deficiency but increased compared with normal plants; the

GNDVI, RVI, GRVI, and other indices were significantly

higher than normal plants. This may be related to the

reduction of the new leaf germination of L. chuanxiong and

the higher spatial resolution in this study. It is worth noting that

GRVI obtained the best regression model between K content in

the former study and the maize growth stage, and in this study,

GRVI was also the best index to distinguish PD\KD groups from

other groups (Figure 2B).
TABLE 3 Evaluation index of models in different stress stages.

Processing time(day) CK ND PD\KD

precision recall f1-score precision recall f1-score precision recall f1-score

1 0.4834 0.46178 0.46028 0.37892 0.46428 0.4129 0.5881 0.51908 0.55046

8 0.31558 0.30658 0.3061 0.45906 0.5562 0.50048 0.57894 0.51332 0.54098

15 0.3868 0.4857 0.42704 0.7848 0.72878 0.7511 0.68514 0.63372 0.65652

22 0.66568 0.7395 0.69776 0.97772 0.98824 0.98284 0.871 0.8208 0.8439

30 0.71898 0.82944 0.76458 0.98888 0.92174 0.9526 0.92354 0.86366 0.88972

38 0.91042 0.90094 0.90274 1 1 1 0.87308 0.8903 0.87636

45 0.89516 0.91098 0.90098 1 1 1 0.91516 0.87378 0.89086

52 0.91714 0.83096 0.8659 1 1 1 0.83254 0.9159 0.86614

58 0.77534 0.8472 0.80246 1 0.89642 0.93846 0.85016 0.81076 0.82456
fro
A B

D

C

FIGURE 8

Chemical diagnosis and SPAD diagnosis results. (A) Leaf N content. (B): leaf P content. (C) leaf K content. (D) SPAD values; * (P<0.05) and **
(P<0.01) represent significant differences from the control group. Statistical methods used were Student’s t-test and ANOVA.
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In the model constructed in this study, PD and KD groups

were set as one category because the canopy of L. chuanxiong

under P and K deficiency treatments had similar spectral

characteristics and phenotypic changes. However, compared

with potassium deficiency, phosphorus deficiency did not

severely limit the germination of new leaves. The reason for the

spectral change may be the dark green overall appearance of the

plant due to the accumulation of pigment. Increasing the band of

the multispectral camera or adding texture information may be

the solution. In practice, this method should be applied for initial

diagnosis in large-scale production and combined with other

means to further determine phosphorus or potassium deficiency.
4.3 Effects of GSD and classifiers on
model performance

Background information, such as exposed soil and

vegetation shading, may significantly impact the vegetation

index, especially in the case of small canopy coverage
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(Benincasa et al., 2017). Removing the background does not

always improve the results, and the solution to the problem is

usually to increase the image’s resolution (Corti et al., 2018). In

the present study, lower AGL improved the model’s accuracy at

an early stage (15-22 days of stress). However, the higher

recognition accuracy (1-8 days of stress) before differences in

chemical assays led us to consider that lower AGL are more

susceptible to noise. While the model constructed with 10 m

AGL had lower classification performance in the early stage, it

achieved similar classification performance after 30 days of stress

(Figure 6C). There was also no significant change in accuracy

when Vega et al. (2015) used multispectral images to monitor

sunflower nitrogen status with GSDs ranging from 1 to 100 cm/

pixel. We argued that different GSD does not affect the accuracy

of model recognition, and using a lower AGL only means

increasing the model sensitivity at the early stage of stress, but

it may also reduce the model noise resistance.

We compared the model performance of KNN, LR, NBM,

SVM, DT, and RF with AUC as the evaluation index and found

that LR, NBM, SVM, and RF all achieved better prediction
FIGURE 9

Field verification (5m). **(P<0.01) represent significant differences from the control group. Statistical methods used were Student’s t-test.
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accuracy at 5m and 10m AGL. Among them, the LR algorithm

achieved the best results in each stress period and flight altitude,

but the model sensitivity was high and easily affected by noise at

5m AGL. Both NBM and RT have such problems, while SVM

performs better on this problem. The study by Zermas et al.

(2015) also showed that the LR algorithm showed higher

sensitivity than the SVM algorithm in distinguishing N-

defective leaves. KNN performs classification by measuring the

distance method between different feature values. NBM is a

probabilistic classification method proposed by Pearl based on

Bayes’ theorem. DT judges the attributes of samples sequentially

based on knowing the probability of occurrence of various

situations until the final result is derived. RF is an integrated

algorithm consisting of multiple decision trees. SVM and LR are

classification methods based on linear models, and the results of

the two algorithms are very close in most experiments. The SVM

is a structural risk minimization model, which is not easily

affected by outliers. This is why SVMwas not affected by noise in

this study, but it also means that it is not sensitive to vegetation

diagnosis at the initial stage of stress. Classifiers based on linear

discriminant always achieve better classification results in the

classification of remote sensing images, such as SVM and

LDA (Ang and Seng, 2021; Zhang et al., 2021), and the same

is true in this study. All classifiers showed a decrease in

performance at the later stage of stress, which is related to

plant physiological characteristics.
4.4 Consistency inspection with
traditional diagnostic methods and field
validation

In previous studies, vegetation indices such as NDVI,

GNDVI, and NDRE showed high sensitivity to leaf nitrogen

content (Gordillo-Salinas et al., 2021; Rehman et al., 2022), while

P and K deficiency treatments only responded to severe deficits

(Gracia-Romero et al., 2017; Furlanetto et al., 2021). The present

study’s spectral responses of P and K deficiency treatments also

showed delayed diagnosis time. We diagnosed K deficiency

symptoms after 7 days of stress and P and N deficiency

symptoms after 15 days of stress by chemical assays (Figure 8).

The spectral response of the ND group appeared at the same

time as the difference in leaf N content. The spectral response of

the PD and KD groups appeared 7 to 14 days after the

appearance of the elemental difference (after 22 days of stress).

It can be seen that UAVmultispectral technology lags behind the

chemical diagnosis of P and K deficiency symptoms but can

diagnose N-deficient plants promptly. Although the remote

sensing image diagnosis method in this study is relatively slow

in the diagnosis of phosphorus and potassium deficiency, it is

more suitable for large-scale agricultural production than the
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chemical diagnosis method, which needs to rely on a laboratory

environment and complex operation.

We verified the feasibility of the practical application of the

model in field. Unfortunately, areas predicted by the model to be

phosphorus or potassium deficient were not sampled, resulting

in our inability to rule out whether the crop in that area was

affected by other factors that influenced the results. However, the

model successfully identified crops of ND, PD, and KD groups in

fields. We cannot strictly control soil nutrient conditions in the

field, so constructing an accurate remote sensing nutrient

deficiency diagnostic model is difficult. The method used in

the paper can provide a solution bill for this purpose, but it is

difficult to achieve large-scale cultivation, so it needs to be

collected at a lower flight altitude. However, higher flight

altitude means higher efficiency, so the question of how

models built at lower flight altitudes can be applied at higher

flight altitudes will be a further research direction.
5 Conclusions

In conclusion, this study developed a nutrient deficit

recognition technology based on UAV multispectral images in

L. Chuanxiong and completed the process from nutrient

deficiency model construction to field application. Moreover,

we evaluated the influence of different algorithms and flight

altitude on the recognition model during the full growth period.

It can provide a reference for the application of UAV remote

sensing technology in intelligent agriculture and help L.

Chuanxiong cultivation personnel and botanists to make

decisions. In addition, with the rapid development of UAV

remote sensing technology, UAV with different sensors will

play a greater role in the development and utilization of

medicinal plant resources and regulate the production

methods of medicinal plant resources in a more reasonable

and efficient way.
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