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the B3 gene family in soybean
and the response to melatonin
under cold stress
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and Gaobo Yu2*

1College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China,
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Introduction:Melatonin is a multipotent molecule that exists widely in animals

and plants and plays an active regulatory role in abiotic stresses. The B3

superfamily is a ubiquitous transcription factor with a B3 functional domain

in plants, which can respond temporally to abiotic stresses by activating

defense compounds and plant hormones. Despite the fact that the B3 genes

have been studied in a variety of plants, their role in soybean is still unknown.

Methods: The regulation of melatonin on cold resistance of soybean and the

response of B3 genes to cold stress were investigated by measuring

biochemical indexes of soybean. Meanwhile, the genome-wide identification

of B3 gene family was conducted in soybean, and B3 genes were analyzed

based on phylogeny, motifs, gene structure, collinearity, and cis-regulatory

elements analysis.

Results: We found that cold stress-induced oxidative stress in soybean by

producing excessive reactive oxygen species. However, exogenous melatonin

treatment could increase the content of endogenous melatonin and other

hormones, including IAA and ABA, and enhance the antioxidative system, such

as POD activity, CAT activity, and GSH/GSSG, to scavenge ROS. Furthermore,

the present study first revealed that melatonin could alleviate the response of

soybean to cold stress by inducing the expression of B3 genes. In addition, we

first identified 145 B3 genes in soybean that were unevenly distributed on 20

chromosomes. The B3 gene family was divided into 4 subgroups based on the

phylogeny tree constructed with protein sequence and a variety of plant

hormones and stress response cis-elements were discovered in the

promoter region of the B3 genes, indicating that the B3 genes were involved

in several aspects of the soybean stress response. Transcriptome analysis and

results of qRT-PCR revealed that most GmB3 genes could be induced by cold,
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the expression of which was also regulated bymelatonin. We also found that B3

genes responded to cold stress in plants by interacting with other transcription

factors.

Discussion: We found that melatonin regulates the response of soybean to

cold stress by regulating the expression of the transcription factor B3 gene, and

we identified 145 B3 genes in soybean. These findings further elucidate the

potential role of the B3 gene family in soybean to resist low-temperature stress

and provide valuable information for soybean functional genomics study.
KEYWORDS
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1 Introduction

Soybean is one of the most important crops in the world and

are widely grown around the world. However, soybean growth is

threatened by different abiotic stresses including salinity, drought,

and extreme temperature (Zhang et al., 2020). Cold is an important

environmental factor that limits plant growth and reduces crop

productivity and quality (Zheng et al., 2021). Under the condition

of low temperatures, plants exhibit a variety of cold-induced

physiological and biochemical reactions, including the

production of reactive oxygen species, changes in membrane

lipid composition and the osmotic fluid, and so on (Yuan et al.,

2018). Therefore, it is very important to explore the mechanism of

cold resistance of soybean to improve the yield and quality.

Transcription factors are considered one of the most

important regulators of plant gene expression, which play an

important role in various abiotic stress resistance. Hou et al.

(2020) found that inhibiting the expression of NAC genes would

increase the sensitivity of pepper to cold stress. bZIP73

transcription factor has been revealed to improve the low-

temperature stress tolerance of rice seedlings (Liu et al., 2018;

Liu et al., 2019). In addition, the B3 transcription factor plays an

important role in the cold stress of rubber trees (Gong et al.,

2018). The B3 superfamily is a ubiquitous transcription factor

with a B3 functional domain (a highly conserved domain that

binds to DNA) in plants, and it is also one of the unique

transcription factors in plants (Peng and Weselake, 2013). The

B3 superfamily consists of several different gene families,

including ARF (Auxin response factor), LAV (Leafy

cotyledon2 (LEC2) – Abscisic acid insensitive3 (ABI3)–VAL),

REM (Reproductive meristem) and RAV (Related to ABI3 and

VP1) families (Swaminathan et al., 2008). It has been shown that

different ARFs regulated the content of soluble sugars, promoted

root development, and maintained chlorophyll content to be

resistant to drought and salt stress (Verma et al., 2022). The
02
results of Verma and Bhatia (2019) also indicated that the B3

superfamily of chickpeas could respond to abiotic stresses.

Melatonin is a multipotent molecule that exists widely in

animals and plants (Zhan et al., 2019). Melatonin plays a positive

role in the regulation of plants in response to abiotic stresses

including drought, low temperature, and saline-alkali stress

(Arnao and Hernández-Ruiz, 2021). In recent years, stress

resistance has been verified to be improved by the over-

expression of genes coding melatonin synthesis in Arabidopsis

thaliana, rice, tomato, and other plants (Park et al., 2013; Zuo

et al., 2014; Wang et al., 2014). However, the regulation of

melatonin on B3 transcription factors under abiotic stresses has

not been reported. Therefore, we first explored the response of

exogenous melatonin on soybean to cold stress by regulating B3

transcription factors. At the same time, the whole genome

identification of the soybean B3 superfamily was characterized.

And the potential function of the B3 superfamily in the abiotic

stress response of soybean was further clarified by analysis of the

phylogenetic relationship, chromosomal location, expression

pattern, and structure of the protein.
2 Materials and methods

2.1 Plant materials and treatments

The variety Nannong 513 provided by Nanjing Agricultural

University, was a temperature-sensitive variety. The seeds were

grown in pots with peat soil and vermiculite (7:3), the germination

was conducted in a plant incubator, and the temperature was set at

25°C. Four treatment groups were set in this experiment with

three independent biological replicates. The plants were treated at

the V1 stage of soybean (the first trefoil stage in the vegetative

growth period of soybean), and the treated plants were pretreated

with foliar application of exogenous melatonin (100 mmol/L) at
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night, while the other plants were sprayed with distilled water as

control. After two days of spraying, half of the plants in both

groups were put in another plant incubator at 4°C to conduct cold

stress, while the other plants were still kept at 25°C as normal

temperature control (Gai et al., 2020). Plant leaves were sampled

at 24 h after cold treatment for transcriptome analysis and qRT-

PCR detection, and 3 d after cold stress for physiological and

biochemical determination.
2.2 Physiological response analysis of
soybean to cold stress and melatonin
treatment

The determination of the activity of peroxidase (POD) and

catalase (CAT), and the glutathione redox homeostasis (GSH/

GSSG), hydrogen peroxide (H2O2), and malondialdehyde

(MDA) were conducted with POD, CAT, GSH, GSSG, H2O2,

and MDA assay kits, respectively (Suzhou Grace Biotechnology

Co., Ltd.). Evans Blue staining was performed according to the

method of Xia et al. (2009).

The melatonin (MT) content in soybean was determined

according to Yan et al., 2019, leaves were ground to a powder in

liquid nitrogen and then extracted with 1.5 mL of chloroform at

4°C for 15 h. After centrifugation of the extraction mixture, the

chloroform fraction was evaporated to dryness and dissolved in

100 µL of 42% methanol. Aliquots of 10 µL were subjected to

HPLC using a fluorescence detector system. The contents of

abscisic acid (ABA) and indole-3-acetic acid (IAA) were

determined by ELISA reagent kits (Shanghai Enzyme-linked

Biotechnology Co., Ltd. Shanghai, China) (Yu et al., 2022).

The data were subjected to analysis of variance with SPSS, and

the means were compared using Duncan’s t-test at the 5% level.

meanwhile, the data was visualized using origin 8.0 (microcal

Inc, Northampton, mA, USA).
2.3 Identification of the GmB3 genes

Input 118 known A. thaliana B3 gene IDs into the

Arabidopsis genome database (TAIR, http://www.arabidopsis.

org/, 2020) to obtain protein sequences. Candidates from the

soybean B3 family were investigated with BLASTP using

Arabidopsis thaliana B3 protein sequence as probe. In the

SMART database (http://smart.embl-heidelberg.de/, 2020), the

domain of Pfam (PF02362) was identified and screened in

the phytozome database. Finally, 145 GmB3 genes were

identified and named GmB3-1–GmB3-145 according to their

chromosomal positions. The theoretical isoelectric points (pI),

the number of amino acids, and the grand average of

hydropathicity (GRAVY) of all predicted B3s was then
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determined by ExPASy (Wilkins et al., 1999). Multisequence

matching and Maximum-Likelihood analysis were performed

using 1000 replicates as bootstrap values (Morgulis et al., 2008).
2.4 The motif and gene structure analysis
of GmB3 genes

The MEME tool (http://meme.nbcr.net/meme/, 2020) was

used to detect the B3s’ motifs (Bailey et al., 2009). The exon-

intron sequence of B3 genes was determined by comparing the

coding sequence and genome sequence of B3 genes using the

Gene Structure Display Server (GSDSv2.0; http://gsds.cbi.pku.

edu.cn/, 2020) (Hu et al., 2015).
2.5 Collinearity analysis

Coordinate correspondence between DNA and protein

sequences is determined using Gene-wise (Simmons et al.,

2019). Whole-genome protein sequences and gene positions

for soybean were retrieved from EnsemblPlants (http://plants.

ensembl.org/index.html, 2020), MCScanX was utilized to

analyze B3s gene duplication events (Wang et al., 2012).

TBtools were adopted to visualize the results.
2.6 Identification of plant growth
regulator-related cis-elements

The upstream 1.5 kilobases (kb) genomic DNA sequences of

the GmB3s were retrieved from the soybean genome and the

putative cis-regulatory elements in promoter regions were

identified using the PlantCare database (http://biinformatics.

psb.ugent.be/tools/plantcare/, 2020) (Rombauts et al., 1999).
2.7 Expression profiles of GmB3 genes in
diverse tissues

The B3 gene expression data in different tissues were

obtained from the Phytozome database (https://phytozome-

next.jgi.doe.gov/pz/, 2022).
2.8 Analysis of the expression level of
GmB3 genes from transcriptome data

Plant leaves were sampled at 24 h after cold treatment for

transcriptome analysis, each treatment was repeated with three

times (Yu et al., 2021). The total RNA was extracted, and the
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library was built, and the quality was tested, and the

transcriptome was sequenced, analyzed and annotated by LC

SCIENCES (Hangzhou, China) (Sheng et al., 2017). During the

detection of DEGs, a fold-change ≥ 1.5 and a false discovery rate

< 0.05 were used to screen different expression genes. Differential

expression profiles of differentially expressed genes were

presented. Amazing HeatMap software (Chen et al., 2020) was

used to generate a heatmap.
2.9 RNA extraction and qRT-PCR assays

Total RNA was extracted using TRIzol® reagent (Invitrogen,

Carlsbad, CA, USA). One microgram per RNA sample was used

as the template for the synthesis of the first-strand cDNA, using

the ReverTra Ace™ qPCR RT Master Mix with gDNA Remover

(TOYOBO Co., Osaka, Japan). Subsequently, qRT-PCR was

performed with SYBR® Select Master Mix RT-PCR System

(Takara) on an optical 96-well plate. Select actin as an internal

reference. All the primers used for gene expression analysis were

shown in Table S1. Relative expression level of genes was

calculated using formula 2−DDCT (Livak and Schmittgen, 2001;

Cui et al., 2019). Three independent biological replicates

were analyzed.
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2.10 Prediction of transcription factors of
soybean B3 gene family

We utilized PlantRegMap (Internet) http://plantregmap.

gao-lab.org/index- chinese.php (Tian et al., 2020) to predict

transcription factors associated with GmB3. Simultaneously,

the transcription factors (TFs) network was visualized using

Origin 8.0.
3 Result

3.1 Effects of exogenous melatonin
treatment on oxidative stress in soybean
under cold stress

To assess the cold-caused injury to soybeans, we analyzed its

Chlorophyll and H2O2 content, MDA accumulation, and

electrical conductivity. The cold treatment significantly

increased the content of Chlorophyll, MDA, and electrical

conductivity by 23.4%, 29.9%, and 263.6%, respectively,

compared with the control. However, exogenous melatonin

application substantially decreased the content of MDA and

electrical conductivity by 11.4% and 46.7%, respectively,
A B C

D E F

G H I

FIGURE 1

Effects of exogenous melatonin treatment on oxidative stress in soybean. (A) Chlorophyll content. (B) H2O2 content. (C) MDA content. (D)
Electrical conductivity. (E) POD activity. (F) CAT activity. (G) GSH content. (H) Evans blue staining. (I) Phenotype of soybean seedlings. Note:
H2O2: Hydrogen peroxide, MDA: Malondialdehyde, POD: Peroxidase enzyme, CAT: Catalase, GSH: Glutathione. Error bars represented the
standard deviation (SD; n = 3). According to Duncan’s multiple tests, bars with different letters were significantly different (p < 0.05).
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compared with the only cold treatment, and chlorophyll content

was further increased. Interestingly, the content of H2O2 in

soybean with foliar application of melatonin decreased by 28.8%,

compared with cold treatment alone (Figures 1A–D). This

indicated that exogenous melatonin treatment could alleviate

the damage caused by cold stress in soybean.

We measured the activity of antioxidant enzymes including

POD and CAT to unveil how melatonin alleviates cold-induced

oxidative stress. The cold treatment significantly enhanced the

activity of POD and CAT by 97.9% and 54.5%, respectively,

compared with the control (Figures 1E, F). While compared with

cold treatment alone, the activity of POD and CAT increased by

26.4% and 59.3%, respectively, with foliar application of

melatonin. In addition, compared with the control, the GSH/

GSSG ratio of soybean leaves after cold treatment decreased by

41.6%, compared with the control, but increased by 26.5% after

melatonin application, compared with cold treatment alone

(Figure 1G). The results of Evans blue staining also

demonstrated that the damaged tissues in soybean leaves

increased after cold treatment, while the application of

melatonin alleviated the damage to soybean leaves

(Figure 1H). Soybean seedling growth was seriously affected by

the cold, compared with the control, the development of soybean

seedlings was significantly inhibited and the leaf surface was

damaged after cold stress, while melatonin treatment alleviated

the leaf surface damage of soybean after cold stress (Figure 1I).

This indicated that exogenous melatonin treatment could

improve the antioxidant enzyme activity and GSH/GSSG ratio

of soybean against cold stress.
3.2 Effect of exogenous melatonin
treatment on hormone content in
soybeans under cold stress

To evaluate the effect of exogenous melatonin on

endogenous melatonin and other hormones in soybean under

cold stress, the content of melatonin, indoleacetic acid, and
Frontiers in Plant Science 05
abscisic acid in the leaves of soybean seedlings were analyzed

under different treatments (Figure 2). Compared with the

control, the content of endogenous melatonin in soybean

seedlings after exogenous melatonin treatment increased in

both normal temperature and cold treatment groups,

especially for the cold treatment, the melatonin content in

soybeans increased more significantly with the application of

melatonin. Although no significant difference appeared in

melatonin content in soybeans between the cold treatment and

control. Interestingly, compared with the control, the cold

treatment increased the content of IAA and ABA in soybeans,

while both were further increased with the application of

melatonin. The results suggested that exogenous melatonin

might alleviate soybean response to cold stress by regulating

the hormone content in soybeans under cold stress.
3.3 Effects of exogenous melatonin
treatment on the expression of B3 genes
in soybean under cold stress

B3 transcription factors play an important role in plant

tolerance to abiotic stress. To further study the effect of

exogenous melatonin on cold stress, the expression of several

representative soybean B3 genes was determined after treatment

with melatonin under cold stress by qRT-PCR (Figure 3). The

results explored that the expression of B3-001, B3-003, B3-078,

B3-083, B3-093, B3-095, B3-108, and B3-123 was induced by cold

treatment and increased by 3.36-fold, 1.03-fold, 2.04-fold, 2.16-

fold, 29.52-fold, 80.52-fold, 1.94-fold, and 1.38-fold, respectively,

compared with the control. While the application of exogenous

melatonin substantially further improved the expression of all

the above genes, compared with only cold treatment, which up-

regulated by 52.4%, 58.1%, 25.4%, 130.4%, 15.4%, 240.5%,

199.7%, and 141.2%, respectively. Similarly, the transcription

of B3-049 gene was also significantly induced with the

application of melatonin, compared with the cold treatment

alone, although no significant difference was observed between

cold and normal temperature treatment. There was no
A B C

FIGURE 2

Effects of exogenous melatonin treatment on the content of hormone in soybeans. (A) the content of MT. (B) the content of IAA. (C) the
content of ABA. Note: MT: Melatonin, IAA: Indoleacetic acid, ABA: Abscisic acid. Error bars represented the standard deviation (SD; n = 3).
According to Duncan’s multiple tests, bars with different letters were significantly different (p < 0.05).
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significant difference in the expression of the above genes

between melatonin treatment and control under normal

tmperature, except for B3-078 gene. The above results

indicated that melatonin could alleviate the cold stress of

soybean by inducing the expression of B3 genes.
3.4 Identification and chromosome
distribution of B3 gene family in soybean

We used Arabidopsis B3 protein sequence as reference,

screened candidate B3 protein through blast comparison of

soybean genome, and screened 145 B3 genes through

conservative domain (PF02362) and redundancy elimination.

The candidate genes were named GmB3-001 to GmB3-145 based

on the location on chromosomes (Figure 4). The soybean B3 genes

were unevenly distributed on 20 chromosomes, among which the

20th chromosome was focused for the distribution of 12 soybean

B3 genes. The B3 protein sequence consisted of 72-1136 amino

acids, with an average length of 538 amino acids. The relative

molecular weight and isoelectric point of B3 protein ranged from
Frontiers in Plant Science 06
8632.16 kDa (GmB3-140) to 127058.28 kDa (GmB3-117) and 4.86

(GmB3-100) to 11.02 (GmB3-066), respectively. Among them, 75

B3 proteins were acidic (with an isoelectric point < 7), while 70 B3

proteins were alkaline (isoelectric point > 7) (Table S2).
3.5 Phylogenetic relationship of GmB3
genes and synteny analysis of
GmB3 genes

The phylogenetic tree was constructed using the B3 protein

sequences of soybean. The B3 family of soybean could be

classified into four subgroups (namely B3-I, B3-II, B3-III, and

B3-IV) based on the phylogenetic tree analysis. These B3 groups

(I-IV) consisted of 57, 25, 11, and 52 members, respectively

(Figure 5A). To elucidate the evolutionary relationship between

the B3 gene family, we constructed a co-linear map of B3 genes

in Arabidopsis and soybean, which revealed that 20 pairs of B3

genes presented collinearity between soybean and Arabidopsis

(Figure 5B), and 26 pairs of B3 genes existed collinearity among

14 chromosomes in soybean (Figure 5C).
A B C

D E F

G H I

FIGURE 3

Effects of exogenous melatonin treatment on the expression of B3 genes in soybean. (A) GmB3-001 expression. (B) GmB3-003 expression. (C)
GmB3-049 expression. (D) GmB3-078 expression. (E) GmB3-083 expression. (F) GmB3-093 expression. (G) GmB3-095 expression. (H) GmB3-
108 expression. (I) GmB3-123 expression. Error bars represented the standard deviation (SD; n = 3). According to Duncan's multiple tests, bars
with different letters were significantly different (p < 0.05).
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3.6 Gene structure, motif pattern, and
conserved domain of GmB3 genes

To identify the conserved structure of soybean B3 protein, 30

motifs were predicted by MEME motif analysis. Similar motif

structures were present in the B3 members of the same

subgroup, although different motifs appeared in various

subgroups. For instance, most B3 proteins of subgroup

contained 7 to 25 motifs, except for GmB3-35 and GmB3-85,

containing one motif. Most GmB3 proteins of subgroup II

contained 2 to 8 motifs, while Motif 30 was only found in

subgroups II. Most B3 proteins of subgroup III only contained 2

motifs, although GmB3-60 and GmB3-77 contained one motif.

And B3 proteins of subgroup IV contained 1 to 7 motifs

(Figures 6A, B). The B3s structure of exon and intron was

detected to obtain gene structure. Although different gene

structures were exhibited in four subgroups, a relatively
Frontiers in Plant Science 07
consistent gene structure of B3s was found in each

subgroup (Figure 6C).
3.7 Cis-Elements in the promoter regions
of GmB3 genes

To investigate the regulatory mechanism of the B3 gene, we

scanned the sequence of the promoter codon 2000bp upstream

of ATG and obtained a number of cis-acting elements associated

with plant hormones and stress response. Hormone response

elements were mainly induced by auxin (AuxRR-core),

gibberellin (GARE), and abscisic acid (ABRE). Among them,

84 B3 genes were found with ABA response elements,

accounting for 57.9% of the total genes. In addition, 7 B3

genes with auxin response elements and 15 B3 genes with GA

response elements were found. The predicted stress response
FIGURE 4

Chromosomal distribution of the 145 GmB3 genes identified in the present study. The chromosome number was indicated above the chromosome.
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elements mainly included LTR (low-temperature response),

MBS (drought induction), and ARE (anaerobic induction),

among which, 103 B3 genes containing ARE elements that

were the most frequent, accounting for 71.0% of the total,

while 34 B3 genes containing MBS and 26 B3 genes containing

LTR were revealed (Figure 7). These results suggested that B3

genes might be involved in the response of soybean to hormones

and abiotic stresses.
3.8 Expression patterns of GmB3s in
different tissues

The transcription level of B3 in different tissues (including

roots, stems leaves, and flowers) was analyzed based on the

Phytozome database. Remarkable difference appeared in B3s

expression levels of various soybean tissues (Figure 8).

Thereinto, the expression of GmB3-116 was only high in

flower, while the expression of GmB3-093 was only high in

stem. However, GmB3-123 was only highly expressed in root,

while GmB3-078 was only weakly expressed in root. These

results suggested that B3 genes were expressed in a tissue-

specific manner in the soybean.
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3.9 Expression of GmB3 gene and
interactional transcription factors under
different treatments

Based on the transcriptome data, the response of B3 gene

family members to cold and melatonin was analyzed. Compared

to control, 39 B3 genes were induced and 59 B3 genes were

inhibited by cold stress. The transcription of 40 B3 genes of

soybean was induced, however, the expression of 57 B3 genes

was reduced by melatonin treatment compared with the control.

Similarly, the transcription of 42 B3 genes was enhanced, while

the expression of 57 B3 genes was decreased by cold and

melatonin treatment compared to the cold treatment alone

(Figure 9A). It suggested that B3 genes responded to

melatonin under cold treatment in soybean.

To further investigate the regulatory mechanism of the B3

gene of soybean, we predicted that a total of 34 transcription

factor families interacted with the B3 gene. Among all B3 genes,

18 transcription factors were predicted to interact with GmB3-

004 and GmB3-013, with the largest number (Figure 9B).

Interestingly, transcriptome data revealed that 14 transcription

factor families contained genes that could be induced by cold,

while regulated by melatonin treatment (Figure 9C). The results
A

B C

FIGURE 5

The phylogenetic tree of B3 members and collinear analysis of GmB3s. (A) Phylogenetic analysis of GmB3 genes. (B) Collinear map of B3 genes
between soybean and Arabidopsis. (C) Collinear map of different GmB3 genes in soybean.
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indicated that the B3 gene regulated soybean stress response

through interaction with transcription factors, suggesting that

the B3 gene played an important role in plant resistance to

abiotic stress through interaction with transcription factors.
4 Discussion

Low temperature is a typical abiotic stress factor which has

been reported to limit plant growth and yield (Shen et al., 2022).

Plants have evolved various strategies for sensing and responding

to cold stress. Nevertheless, how plants perceive cold signals

remains an important question to be addressed. Plants may

sense and transmit cold signals to cells through a variety of

mechanisms, including reactive oxygen species (ROS), calcium

(Ca2+), and plant hormone signals (Liu et al, 2022). Melatonin is a

pleiotropic molecule widely existing in animals and plants, which
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has a positive regulatory role in drought, low temperature, salinity,

and other abiotic stresses (Zhan et al, 2019; Arnao and

Hernández-Ruiz, 2021). It has been shown that exogenous

melatonin could improve cold stress tolerance in Arabidopsis,

tomato, cucumber, and other plants (Bajwa et al., 2014; Ding et al.,

2017; Zhao et al., 2017). In this study, exogenous melatonin

treatment significantly increased the content of endogenous

melatonin in soybean compared with control or cold treatment

alone. Melatonin is an important modulator of gene expression

related to plant hormones, such as auxin carrier proteins and the

metabolism of gibberellins, cytokinins, abscisic acid, indole-3-

acetic acid, and ethylene. The results showed that melatonin could

effectively promote the plant growth and development under

stresses (Arnao and Hernández-Ruiz, 2018). Similarly,

melatonin treatment alone decreased auxin and abscisic acid

contents in soybeans, while melatonin application under cold

stress increased auxin and abscisic acid contents in soybeans. This
A B C

FIGURE 6

Gene structure and conserved motifs in GmB3 genes. (A) The phylogenetic tree of GmB3s protein. (B) The motif composition of GmB3
proteins. Different colors represented different motifs. (C) Exon-intron structure and conserved domain of GmB3 genes.
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suggests that melatonin could alleviate cold stress in soybean by

interacting with other hormones.

Extreme temperature could cause the generation of ROS,

such as superoxide, hydroxyl radicals, hydrogen peroxide, and
Frontiers in Plant Science 10
singlet oxygen, to restrict plant growth and development (Bita

and Gerats, 2013; Hasanuzzaman et al., 2020). Plants respond to

abiotic stress through increasing the content of antioxidant

substances and enhancing the activity of antioxidant enzyme
A B

FIGURE 7

Analysis of the cis-acting elements in GmB3 genes. (A) The phylogenetic tree of GmB3s’ protein. (B) Cis-elements analysis of GmB3 genes. Different
colors represented different cis-acting elements and their position in the GmB3 genes.
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to remove harmful ROS and free radicals, to against a series of

stresses (Roy et al., 2014). Both GSH and AsA, the important

antioxidant substances, and the antioxidant enzymes, including

APX, SOD, POD and CAT, contribute to alleviate the oxidative

stress damage in plants (Noreen and Ashraf, 2009). It has been

revealed that exogenous melatonin could promote the activity of

antioxidant enzymes in plants under stress, such as Arabidopsis,

oilseed rape and tomato, and improve plant resistance (Zeng

et al., 2018; Siddiqui et al., 2019). Raza et al. (2022) explored that

exogenous melatonin improved plant tolerance against extreme

temperature either by directly scavenging ROS molecules or

indirectly by improving photosynthetic efficacy, antioxidant

enzyme activities, and metabolite contents in plants. Our study

also revealed that, compared with cold stress alone, melatonin

application significantly reduced the content of H2O2 and MDA

and the electrical conductivity of soybeans, and increased the

content of chlorophyll in soybeans. This suggested that

exogenous melatonin treatment could remove excessive ROS

in soybean, and alleviate membrane lipid peroxidation under

cold stress, thereby improving the tolerance of soybean to

cold stress.

The B3 superfamily is a ubiquitous transcription factor with

a B3 functional domain (a highly conserved domain that binds

to DNA) in plants (Peng and Weselake, 2013), which consists of

several different gene families, including LAV, ARF, RAV, and

REM families (Swaminathan et al., 2008), and the B3

transcription factor plays an important role under abiotic

stress in plants (Gong et al., 2018). Kang et al. (2018) found

that the over-expressed sweet potato B3 gene IbARF5 in

transgenic Arabidopsis thaliana enhances the resistance to

drought and salt stress through carotenoid biosynthesis. In

addition, the B3 gene can also participate in regulating the

tolerance of Arabidopsis thaliana and rapeseed to cold stress

(Yamasaki et al., 2004; Luo et al., 2019). In the present study, the
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expression of B3 genes (including B3-001, B3-003, B3-078, B3-

083, B3-093, B3-095, B3-108, and B3-123) increased after cold

treatment compared with the control, which was substantially

further induced with foliar application of melatonin, compared

with the only cold treatment. It revealed that melatonin could

improve the tolerance to cold stress in soybean by inducing the

expression of B3 genes.

To further understand the B3 gene family in soybean, a total

of 145 B3 genes were identified in soybean, which was more than

that in Arabidopsis (118 B3 genes), tobacco (114 B3 genes), and

common bean (110 B3 genes) (Swaminathan et al., 2008; Xia

et al., 2019; Du et al., 2022). On the basis of phylogenetic

analysis, these B3 genes were clustered into four groups and all

145 B3 members exhibited typical characteristics of the B3 gene

domain. Introns are important components of genes. Despite the

lack of involvement in protein coding, intron acquisition or loss

and intron insertion position are widely regarded as key clues to

explore the evolutionary diversity of gene families (Rogozin

et al., 2000). Gene structure and motif analysis explored that

similar gene structures, motifs, and cis-regulatory elements

exhibited in each of the B3 gene subgroups, which supported

the reliability of the subfamily classification. These findings were

in agreement with previous studies on Arabidopsis, tobacco, and

common bean.

The soybean B3 genes were predicted to proceed similar

functions with Arabidopsis B3 family members because of

homologous genes with high collinearity (Gazzarrini et al.,

2004). It has been revealed that most of the 20 B3 genes of

Arabidopsis that were collinear with soybean were associated

with auxin signal response. For instance, AT1G19850 (collinear

with GmB3-107), AT2G46530 (collinear with GmB3-018), and

AT3G61830 (collinear with GmB3-018) respond to auxin

(Varaud et al., 2011; Möller et al., 2017), and AT2G46870

(collinear with GmB3-133) and AT3G26790 (collinear with
A B

FIGURE 8

Expression profiles of GmB3 genes in different tissues. (A) The schematic diagram of different tissues of soybean. (B) The significant expression
of 12 GmB3s in different tissues. The expression level were based on the transcriptome data.
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GmB3-116) are involved in abiotic stress resistance (Chiu et al.,

2012; Sato et al., 2018). Taken together, B3 genes may be

involved in soybean response to abiotic stresses and hormones.

Abiotic stress resistance is one of the important

characteristics of soybean breed improvement (Wang and

Komatsu, 2018). In recent years, the B3 genes in Arabidopsis

and rapeseed have been found to be involved in defense against

cold stress (Yamasaki et al., 2004; Luo et al., 2019). Here,

transcriptome data revealed that most B3 genes could be
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induced or inhibited by cold, and their expression changes

after melatonin treatment. This led to the suggestion that the

B3 gene family played an important role in plants against cold

stress, which may be regulated by melatonin. qRT-PCR analysis

further supported the above findings.

Transcription factors are important proteins, which bind to

specific DNA motifs, regulate the transcription level of genes,

and play a significant role in the stress response of plants (Wu

et al., 2022). We have revealed 144 soybean B3 genes, which
frontiersin.org
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FIGURE 9

Network analysis of soybean B3 genes and transcription factors. (A) Expression level of B3 genes under different treatments. (B) Relationship
between the B3 gene and other transcription factors. (C) Expression level of other transcription factors under different treatments. Different
colors represent different GmB3 genes.
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could interact with 34 different transcription factors, and most of

them were regulated by melatonin under low temperature

conditions. Thus, melatonin can relieve cold stress in soybeans

by regulating the interaction of the B3 gene with transcription

factors. In addition, among them, 91 B3 genes had complex

associations with C2H2 zinc finger proteins transcription

factors, 87 B3 genes had complex associations with MYB

transcription factors, and 86 B3 genes had complex

associations with AP2 transcription factors, and the C2H2,

MYB and AP2 transcription factor are associated with plant

abiotic stress (Feng et al., 2020; Han et al., 2020; Dar et al., 2022).

Therefore, B3 genes can be involved in regulating stress through

its interaction with these transcription factors, but the

mechanism is need to be further studied.
5 Conclusion

In summary, we found that cold stress induced oxidative stress

in soybean by producing excessive reactive oxygen species.

However, exogenous melatonin treatment could enhance the

antioxidative system, including POD activity, CAT activity, and

GSH/GSSG, to scavenge ROS. Furthermore, exogenous melatonin

treatment could increase the content of endogenousmelatonin and

other hormones, such as IAA and ABA, and induce the expression

of B3 genes to alleviate cold stress in soybean. In addition, 145

GmB3 genes were identified from the soybean genome. The B3s

members were divided into four subgroups based on the analysis of

the composition, phylogenetics,motifs, gene structure, collinearity,

and cis-regulatory elements. Interestingly, transcriptome data and

qRT-PCR results explored that most B3 genes could be cold-

induced and the expression is regulated by melatonin for the first

time.We also found thatB3 genes could improve plant tolerance to

cold stress through interactionwith transcription factors, providing

new insight into the role of the B3 gene in soybean.
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