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Accurate predictions of wheat yields are essential to farmers’production plans

and to the international trade in wheat. However, only poor approximations of

the productivity of wheat crops in China can be obtained using traditional linear

regression models based on vegetation indices and observations of the yield. In

this study, Sentinel-2 (multispectral data) and ZY-1 02D (hyperspectral data)

were used together with 15709 gridded yield data (with a resolution of 5 m ×

5 m) to predict the winter wheat yield. These estimates were based on four

mainstream data-driven approaches: Long Short-Term Memory (LSTM),

Random Forest (RF), Gradient Boosting Decision Tree (GBDT), and Support

Vector Regression (SVR). The method that gave the best estimate of the winter

wheat yield was determined, and the accuracy of the estimates based on

multispectral and hyperspectral data were compared. The results showed that

the LSTM model, for which the RMSE of the estimates was 0.201 t/ha,

performed better than the RF (RMSE = 0.260 t/ha), GBDT (RMSE = 0.306 t/

ha), and SVR (RMSE = 0.489 t/ha) methods. The estimates based on the ZY-1

02D hyperspectral data were more accurate than those based on the 30-m

Sentinel-2 data: RMSE = 0.237 t/ha for the ZY-1 02D data, which is about a 5%

improvement on the RSME of 0.307 t/ha for the 30-m Sentinel-2 data.

However, the 10-m Sentinel-2 data performed even better, giving an RMSE

of 0.219 t/ha. In addition, it was found that the greenness vegetation index SR

(simple ratio index) outperformed the traditional vegetation indices. The results

highlight the potential of the shortwave infrared bands to replace the visible

and near-infrared bands for predicting crop yields Our study demonstrates the

advantages of the deep learning method LSTM over machine learning methods

in terms of its ability to make accurate estimates of the winter wheat yield.

KEYWORDS

band selection, deep learning, google earth engine (GEE), hyperspectral, winter
wheat, yield estimation
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1 Introduction

Wheat is one of the most important food crops in China and

has the greatest cultivation area and total production among all

cereal crops. It has been predicted that world’s total wheat yield

will increase by 17% by 2030 due to global warming (Jägermeyr

et al., 2021). Therefore, using scientific methods to study the

various parameters of wheat growth is very important to

ensuring the stability of the country’s wheat market (Weiss

et al., 2020). Accurate forecasts of wheat production are of

vital importance to farmers ’ production plans, the

international wheat trade, and import/export plans, and make

a direct contribution to the development of China’s wheat

market, especially in the context of the COVID-19 pandemic

(Mawani and Li, 2020).

Traditional agricultural yield forecasting methods mainly

include agronomic forecasting methods (Feng and Wu, 2006),

crop-growth models (Thorp et al., 2008), and meteorological

statistical methods (Betbeder et al., 2016), and these are used to

establish crop yield models based on different perspectives.

However, these methods not only consume a lot of manpower

and material resources, there are also spatial and temporal gaps

in the results. Since 2000, satellite remote sensing technology has

played an important role in related fields such as resource

surveys (Mitchell, 2021), urban planning (Guo et al., 2019),

agricultural development (Qiao et al., 2021), and national

security (Zhang et al., 2022). The use of satellite remote

sensing has become an effective way of making yield

predictions due to its advantages of simple data acquisition,

low cost, efficiency, wide spatial coverage, and short operating

cycles (Peng et al., 2014; Zhang et al., 2019; Wang et al., 2020).

Vegetation indices (VIs) have been widely used to predict

crop yields over the past few decades (Jin et al., 2017; Kamir

et al., 2020). In most such studies, indices such as the

Normalized Difference Vegetation Index (NDVI) and

Enhanced Vegetation Index (EVI) which are based on visible

and near-infrared bands (Peng et al., 2010; Cunha and Silva,

2020) are used. However, these vegetation indices mainly reflect

the greenness of vegetation and cannot fully capture

environmental stresses on crops (Zhang et al., 2021). This

means that the role of other vegetation indices such as the

Normalized Difference Water Index (NDWI) (Gao, 1996),

which reflects the crop water content, and the Red Edge

Position Index (REP), which is sensitive to changes in

chlorophyll concentration, should be also considered when

making yield estimates. In our study, four different types of

vegetation indices reflecting crop growth status were used as

described above.

Both broadband multispectral data and narrowband

hyperspectral data can be used to calculate spectral VIs, but

the former are limited and prone to oversaturation where

vegetation cover is high (Jiang and Huete, 2010) and thus have

difficulty reflecting changes in biophysical and chemical
Frontiers in Plant Science 02
parameters. Narrow hyperspectral bands are more sensitive to

crop growth changes than multispectral broad bands (Sellami

et al., 2022), but there have been fewer quantitative studies

involving the former compared to the latter. Based on

narrowband data, the hyperspectral vegetation index (HVI)

can fully describe the changes in biophysical and chemical

parameters that occur as crops grow, which is important to

improving the accuracy of yield estimates made by models (Xiao

et al., 2022). Therefore, an increasing number of hyperspectral

vegetation indices have been applied to the prediction of crop

parameters including the crop yield (Yang et al., 2021), leaf area

index (Xing et al., 2013), and nitrogen content (Ma et al., 2022).

Further, hyperspectral data typically require sophisticated data

mining and filtering techniques given the large number of bands

and low signal-to-noise ratio (Marshall et al., 2022). In previous

studies, hyperspectral band selection methods include band-by-

band combination method (Xing et al., 2013), Optimum Index

Factor (Kong et al., 2022), the successive projection algorithm.

For example, based on PRISMA hyperspectral images and

Sentinel-2 multispectral images, Marshall et al. (2022) used

three separate models based on Two-band Vegetation Indices

(TBVIs), Random Forest (RF), and Partial Least Squares

Regression(PLSR) to estimate the yield of four different crops

and revealed the potential complementarity of hyperspectral

image PRISMA in predicting crop biomass and yield. However,

most studies use only visible wavelengths (Zhang et al., 2018),

there are few reported attempts at directly evaluating the

potential of Shortwave infrared bands (1000-2500 nm) in crop

yield prediction; and investigating the spectral information

captured within full waveband range remains unexplored for

yield prediction.

The construction of linear regression models linking

vegetation indices or climatic variables that track the evolution

of crop canopy spectral reflectance patterns over the growing

season and yields is the traditional method of estimating yields

(He and He, 2013). However, although the calculations may be

simple, the relationships involved are not simply linear, and

these methods do not capture yield variations well. In the last

five years, with the advent of the big data era, conditions have

been created for machine learning methods (Zhang et al., 2021),

and more and more computer-dependent machine learning

models have been applied to crop yield estimation, usually

outperforming traditional linear regression. Deep learning

(DL) is an advanced Machine Learning (ML) method that uses

multiple, stacked nonlinear layers, at each of which the original

input data can be transformed into a higher and more abstract

representation (Cai et al., 2019), such as Long Short-Term

Memory (LSTM) , Deep Neura l Ne twork (DNN) ,

Convolutional Neural Network (CNN), and Recurrent Neural

Network (RNN), have produced definitively higher accuracies

across various regression and classification tasks (LeCun et al.,

2015). The main advantage of using deep learning techniques in

agricultural applications is that the data are hierarchically and
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incrementally trained with high-level features, eliminating the

need to generalize the output. Deep learning models are thus

becoming a powerful tool for predicting the yields of various

crops (Haider et al., 2019; Sharma et al., 2020; Tian et al., 2021).

For example, Zhang et al. (2021) found the LSTM deep learning

algorithm outperformed the two other machine learning models

in estimating maize yields in China. Huang et al. (2022)

developed a Dual-Stream deep-learning neural network model

for improving county-level winter wheat yield estimates in

China and achieved an average R2 of 0.79. Han et al. (2022)

integrated an attention-based deep learning framework and the

SAFY-V model for winter wheat yield estimation using time

series SAR and optical data. Xie and Huang (2021) found the

estimated yields from LSTM, 1-D CNN, RF correlated strongly

with statistical yields, and the LSTM model achieved the highest

estimation accuracies for wheat yields at the site, municipal and

county levels. However, the application of ML and DL to yield

estimation is still in its infancy, especially in China.

In most studies, yield data are obtained from plot-based

manual surveys or consist of county-level regional yields that

need to be collected from official statistics websites for larger

areas (Sun et al., 2020b). In our study, the yield data used were

based on the grid scale (with a resolution of 5 m × 5 m), and

accurate measurements were made using specialist instruments

at harvest time. These data were more suitable for use as labels to

be trained and validated by the models. The number of sample

points (15709) was sufficient to allow proper training of the DL

andMLmodels.In this study, using this large number of sampled

data together with 30-m ZY-1 02D hyperspectral imagery and
Frontiers in Plant Science 03
10- and 30-m Sentinel-2 multispectral remote sensing imagery,

we established four data-driven models – LSTM (Long Short-

Term Memory), RF (Random Forest), SVR (Support Vector

Regression), and GBDT (Gradient Boosting Decision Tree) – to

estimate winter wheat yields.
2 Material and methods

2.1 Study areas

Located in the Changping District of Beijing (Figure 1),

Xiaotangshan National Precision Agriculture Demonstration

Base (40.10°N, 116.26°E; altitude 39 m) has a typical climate

of the northern winter wheat zone, with an average of 2506.5

hours of sunshine a year, an average annual temperature of 13.3°

C, and an average annual rainfall of 563.8 mm. The base is used

for high-quality agricultural research area relevant to large

irrigated areas and high winter wheat yields.
2.2 Datasets and processing

2.2.1 Wheat yield data and auxiliary data
(1) Yield data: From 2020 to 2021, as part of the key project

‘Remote sensing inversion of wheat vegetation parameters based

on deep learning’, a yield survey was conducted on winter wheat

plots at Xiaotangshan. A total of 15709 dry weight yield data

were collected. These data were to be used for training wheat
FIGURE 1

Geographical location and layout of the study area.
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yield estimation models; the values collected ranged from 1.39 to

6.75 t/ha and satisfied the amount of variation that was required.

Measurements of the yield were also made at 39 sample points

on the ground – within the square area in the upper-right corner

of the study area shown in Figure 1. These data were used to

select the hyperspectral bands.

(2) ASD spectral data: Adjustable speed drives (ASDs) are

mainly used to measure the reflectance and transmittance of

surface sediments, soils, plants, water bodies, and artificial

targets in the range 350–2450 nm. Using an ASD, we obtained

spectral data for the 39 sample points on April 14, 2021; these

data had a spectral resolution of 3 nm in the 350–1000 nm

interval and 8 nm in the 1000–2450 nm interval. From these

data, we selected the same 166 bands that are contained in ZY-1

02D data and selected the best vegetation index combination

through making correlation analysis with the yield of 39 sample

points. The result was then migrated to the band selection of the

hyperspectral data.

(3) Grouped data experiments: The data that had been

acquired at the 39 sample points were divided into several

groups based on the seeding density, irrigation rate,

fertilization rate, and seeding method; experiments were then

conducted on these different seeding groups of data. A

correlation analysis between the different variables and the

yield was performed in order to provide data on which the

planting of wheat crops could be based.

2.2.2 Remote sensing data
(1) Sentinel-2 imagery: Sentinel-2 is an important optical

remote sensing satellite of the European Space Agency’s (ESA’s)

‘Copernicus’ satellite series. Sentinel-2 data are used for land

monitoring and can provide images of vegetation, soil and water

cover, inland waterways and coastal areas. The Sentinel-2
Frontiers in Plant Science 04
satellite carries a multispectral imager (MSI) that has a swath

width of 290 km and orbits at an altitude of 786 km. The data

cover 13 spectral bands and have ground resolutions of 10, 20,

and 60 m, respectively. Among all satellite data, only Sentinel-2

data contain three bands in the red-edge range, which means

that these data are extremely useful for monitoring vegetation

health. In this study, three visible bands, one near-infrared band,

one shortwave infrared band, and three red-edge bands were

used (see Table 1). Winter wheat was sown in the study area on

October 7, 2020 and harvested on June 16, 2021. A total of 99

Sentinel-2 images from the ‘COPERNICUS/S2_SR’ dataset in

the Google earth Engine (GEE) that covered the period from

sowing to harvest were used in this study.

(2)ZY-1 02D imagery: The ZY-1 02D satellite was

successfully launched from the Taiyuan Satellite Launch

Center on September 12, 2019 and carries a hyperspectral

camera (Advanced HyperSpectral Imager, AHSI) with 166

bands. This instrument has a spatial resolution better than

30 m (9 and 17 nm, respectively in the visible–near-infrared

and shortwave infrared bands), a swath width of 60 km, an

operating cycle of 55 days, and bands whose wavelengths range

from 396 to 2501 nm. Four ZY-1 02D hyperspectral images

acquired on March 24, March 30, April 8, and May 1, 2021 were

selected for use in this study.
2.3 Methodology

2.3.1 Feature selection and its importance
2.3.1.1 Selection of the vegetation index

Using spectral information about the amount of chlorophyll

and water absorbed or reflected by a crop in specific wavelength

bands, information about parameters related to the growth of
TABLE 1 Details of the data used in this study.

Sensor Band name Spectral range (nm) Band number Bandwidth (nm) Spatial resolution raw/resample(m)

Sentinel-2 Blue 458–523 1 65 10/30

Green 543–578 1 35 10/30

Red 650–680 1 30 10/30

Red-edge 1 698–713 1 15 20/30

Red-edge 2 733–748 1 15 20/30

Red-edge 3 773–793 1 20 20/30

NIR 785–900 8 115 10/30

SWIR1 1565–1655 11 90 20

ZY-1 02D VNIR 396–1040 76 9 30

SWIR 1006–2501 90 17 30

ASD VNIR 350–1000 217 3 —

SWIR 1000–2450 181 8 —
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the crop can be obtained. From our own spectral measurements,

we found that there was strong reflectance from the wheat ears at

850 nm (near infrared) and 1800–1900 nm (shortwave infrared)

and that the ratio of the red to near-infrared bands effectively

reflected the grain quality of the crop and was well correlated

with the yield. We thus selected the simple ratio vegetation index

SR for use in this study. In addition, we selected the enhanced

vegetation index EVI as another index related to vegetation

greenness; this index is based on the blue, red, and near-infrared

bands. At late maturity, the spectral properties of plants are

strongly influenced by the water content and thickness of the

leaves. Absorption bands close to 1.4 µm, 1.9 µm, and 2.6 µm are

formed by the absorption of water molecules, and distinct

reflection peaks are located at 1.6µm and 2.2µm, between the

absorption bands.The intensity of these two reflectance peaks is

important for detecting the water content of plant leaves, and

based on this spectral feature, we chose a vegetation index

NDWI, named by GAO in 1996, to study the water content of

wheat. The red-edge band is located between an absorption

valley and a peak and covers the range from 690 to 730 nm; the

leaf reflectance changes abruptly in this interval. The red-edge

band is sensitive to changes in chlorophyll content and is the

most obvious to use for detecting stress caused by disease in

winter wheat (Jiang and Huete, 2010). We therefore also selected

the red-edge position index REP, which is based on the red-edge

band of Sentinel-2, for use in this study.

In summary, we selected a total of eight bands in the visible

red, green, and blue bands, near-infrared, shortwave infrared

and red edge, and calculated the following four vegetation

indices: Enhanced Vegetation Index (EVI), Normalized

Moisture Index (NDWI), Simple Ratio (SR), and Red Edge

Normalized Difference Vegetation Index (REP) (Table 2).

B2, B3, and B4: (visible) blue, green, and red bands; B5, B6,

and B7: bands within the red edge; B8: near-infrared band

(wide); B11: shortwave infrared band

2.3.1.2 Data preprocessing and calculation of
vegetation indices

We called Sentinel-2 data from the Google Earth Engine

(GEE) and filtered out all the images in which the cloud cover
Frontiers in Plant Science 05
was greater than 30%. After that, using the GEE, we calculated

the mean value of each selected vegetation index in one-month

steps for the period October 2020 to June 2021 and constructed a

sequence of the mean monthly values. The four ZY-1 02D scenes

were first preprocessed in ENVI5.3 – the preprocessing steps

included orthorectification, geometric correction, and

atmospheric correction. The processed data were then

uploaded to the GEE platform for the feature calculation. All

bands of both types of imagery were resampled using nearest-

neighbor interpolation to the spatial resolution required for

our experiments.

2.3.1.3 Feature importance

In recent years, neural networks have been widely used, and

they are usually considered black-box models with poor

interpretability (Lu et al., 2017). Usually, feature selection

mostly takes place at the data-processing stage. This means

that parameters such as the number of features need to be set

artificially based on experience (Poria. et al, 2015). This

introduces a lot of uncertainty, which leads to a loss of

learning and generalization ability. To avoid the problem,

many researchers have tried using different approaches to

incorporate the traditional feature selection process into the

networks in order to understand their convolution processes

(Krizhevsky et al., 2012; Alain and Bengio, 2018). Various

methods of obtaining the feature importance have been

proposed: these include Permutation Feature Importance,

SHAP Feature Importance, and LOFO Feature Importance,

which are universal and can be applied to any model

(Breiman, 2001; Fisher et al., 2019). The principle on which

the Permutation Feature Importance (PFI) method is based is

that the relationship between the features and the true results has

been destroyed and that the model prediction error increases

after the replacement of the feature values. The PFI approach

provides a global insight into the behavior of the LSTM yield-

prediction model, and automatically takes into account all

interactions with other features. In contrast to methods that

remove certain features, PFI does not require the model to be

retrained, thus saving time and computational resources. In

addition to this, the use of a subset of features seems intuitive;
TABLE 2 The different vegetation indices used in this study.

VI Equation Reference

EVI(Enhanced Vegetation Index) 2:5*
B8 − B4

B8 + 6*B4 − 7:5*B2 + 1
Huete et al. (2002)

SR(Simple Ratio) B8
B4

Jordan (1969)

NDWI(Normalized Difference Water Index) B8 − B11
B8 + B11

Gao (1996)

REP(Red Edge Position Index) 705 + 35*
0:5*(B4 + B7) − B5

B6 − B5
Horler et al. (1983)
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however, the reduced number of features is meaningless in terms

of feature importance since we are interested in the importance

of the fixed features of the model. In this study, the four

vegetation index feature variables (SR, EVI, NDWI, and REP)

were input to the proposed model for training, and the

importance of each feature was calculated using the PFI

method based on the LSTM neural network that we

constructed. The steps used to obtain the importance of the

neural network features in this study consisted of the following:

train the LSTM neural network model; perform a random

shuffle on one vegetation index feature to make it not

corresponding to yield at a time and put it to the model for

prediction to obtain loss; record the corresponding loss of each

shuffled feature column. Taking SR as an example, Figure 2 show

the flow of PFI method.

2.3.2 Hyperspectral band selection
ZY-1 02D data consist of a total of 166 bands: 3 of these

bands overlap when the VNIR and SWIR bands are partially

spliced, giving 163 effective bands. A statistical approach, the

band-by-band combination method, was used to select the

bands among the 163 bands that were related to high wheat

yields. In a recent study (Zhang et al., 2018), the band-by-band

combination method that was used consisted of taking every

possible pair of bands to construct vegetation indices based on

specific mathematical algorithms, and the vegetation index with

the highest correlation coefficient with the winter wheat LAI was

selected as the best band combination. In this study, we

calculated the values of three types of vegetation index –

difference, ratio, and normalized – by arbitrarily combining

pairs of bands of ASD data that consisted of the same 163

bands as ZY-1 02D data. An analysis of the correlation between

the values of these indices and the winter wheat yield was then

performed, and the indices that were most relevant to the winter

wheat yield were determined. The above results were then used

to calculate the values of three ZY-1 02D features:
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SSI(i,j)=Ri−Rj (1)

RSI(i, j) =
Ri

Rj
(2)

NDSI(i, j) =
(Ri − Rj)

(Ri + Rj)
(3)

Here i, and j are labels representing any two bands; Ri, and Rj
represent the corresponding band values.

2.3.3 Establishment of the yield
prediction models

All of the feature-yield data were randomly divided into two

groups in the ratio 9:1, with 90% of the data used for training and

10% of the data used for testing. In order to allow a comprehensive

evaluation of the experimental results to be made, three metrics

were used: the mean absolute error (MAE), the root mean squared

error (RMSE), and the coefficient of determination (R2). The model

that had the largest value of R2 and the smallest values of MAE and

RMSE was considered to be the optimal one.

The MAE, the RMSE, and R2 were calculated as follows:

MAE(X, h) = 1
mo

m

i=1
jh(xi) − yij (4)

RMSE(X, h) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
mo

m

i=1
(h(xi) − yi)

2

s
(5)

R2(X, h) = 1 −
o
i
(h(xi) − yi)

2

o
i
(yi − yi)

2 (6)

Here, yi is the true value of yield, h(xi) is the value predicted by

the yield estimation model, m is the number of sample points, yi
is the mean value of the yield, and i is the i-th sample point.

2.3.3.1 LSTM time-series DL model

The LSTM model used a Recurrent Neural Network (RNN)

architecture consisting of an input layer, one or more LSTM

layers, and an output layer that could learn time-dependent

information to incorporate the crop growth process (Hochreiter

and Schmidhuber, 1997). The LSTM layers were composed of

LSTM cells. Each cell contained three types of gates: the input

gates determined what input information was retained, the forget

gates determined how much of the previous information input

was retained, and the output gates combined the previous output

with the current input to determine the final output. In the neural

network that was designed, the vegetation index time-series data

were passed through two LSTM layers that consisted of 100

neurons, then through an ReLU activation function and a fully

connected layer. A dropout rate of 0.3 and L2 regularization were

applied to avoid overfitting and improve the generalization effect.

We set lr to be 0.001, batch_size to be 64, and epoch to be 700 to

further reduce the risk of overfitting. The calculation process of a

basic LSTM unit is as follows:
FIGURE 2

Flowchart of the PFI method.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1090970
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Cheng et al. 10.3389/fpls.2022.1090970
it = s(Wihht−1 +Wixxt + bi)

ft = s(Wfhht−1 +Wfxxt + bf )

gt = tanh (Wghht−1 +Wgxxt + bg )

ct = it ⊗ gt + ft ⊗ ct−1

ot = s (Wohht−1 +Woxxt + bo)

ht = ot ⊗ tanh (ct)

Wih, Wix, bi, Wfh, Wfx, bf, Wgh, Wgx, bg, Woh, Wox and b° are

model parameters; gt is the nonlinear transformation for better

representing the input xt; it, ft, ot are the input gate, forget gate

and output gate, respectively; s, ⊗are the sigmoid function and

the element-wise multiplication (i.e., Hadamard product)

operation, respectively.

2.3.3.2 RF, GBDT, and SVR ML models

Given that the machine learning models (RF, GBDT, and

SVR) could not learn time-series information as the LSTM

recurrent neural network could, the data had to be converted

from a 4×9 matrix format into a 1×36 vector format before

being input.

A Random Forest (RF) is formed by integrating multiple

decision trees that are trained on randomly selected samples

(Breiman, 2001). In our study, 90% of the samples were used for

training and the remaining out-of-bag (OOB) samples were used

for error assessment. Optimal parameter tuning was performed;

the best combination was found to be a setting of 150 for the

number of trees and a value of 200 for the random state

parameter.The core algorithm of RF is as follows:

 min|{z}
A,s

½min|{z}
C1

o
Xi∈D1(A,s)

(yi − C1)
2 + min|{z}

C2

o
Xi∈D2(A,s)

(yi − C2)
2�

Where C1 is the sample output mean of D1 data set, C2 is the

sample output mean of D2 data set, A is the division feature and s

are the division point, yi the i-th sample point.

A Gradient Boosting Decision Tree (GBDT) is an iterative

decision tree algorithm that consists of multiple decision trees

and which uses the accumulated conclusions of all the trees as

the final result; the advantage of the GBDT method is its

robustness to outliers. Parameter tuning was performed for the

GBDT model, and the best combination was found to be:

number of trees = 1250, subsample = 0.6, and learning rate =

0.1. The core algorithm of GBDT is as follows:

f (x) =o
m

i=1
T(X, qi)

Where T(X,q) is the decision tree, q is the parameter of the

decision tree, m is the number of trees.

A Support Vector Regression (SVR) model is a tolerant

regression model that creates an ‘interval band’ with a spacing of

ϵ (the tolerance bias, an empirical value set by hand) on both
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sides of the linear function and which does not calculate the loss

for all samples falling into the interval band. The model is

obtained by minimizing the total loss and maximizing the

interval. SVR is sensitive to the choice of hyperparameters. We

selected the Gaussian kernel function (RBF) as the kernel

function. As for the other models, the best parameter settings

were found by experiment. It was found that the best

combination was a value of 1 × 105 for C and a value of 0.5

for gamma. The core algorithm of SVR is as follows:

min
w,b

1
2
‖w ‖22 +Co

m

i=1
(xi + x∧i )

Where w,b are the model parameters, m is the number of

sample points, x is the relaxation variable.

All the source codes are available at https://github.com/

limitlesszang/yield_prediction.
3 Results and discussion

3.1 Winter wheat yield predictions
obtained using the different models

The ability of the four common vegetation indices to predict the

winter wheat yield was evaluated using four methods (LSTM, RF,

GBDT, and SVR); the results of these predictions are visualized in

Figure 3. A comparison showed that, of the four models, the LSTM

made the best predictions, followed by the RF model. The spatial

distribution of the yield predicted by the four models roughly

matched the true yield distribution: in each case, the yield was high

in the middle of all the plots and low near the edges, a pattern that

may have been due to human activities and the presence of trees

around the plots. Overall, it was shown that the LSTM, RF, GBDT,

and SVR models could be used to make estimates of the winter

wheat yield that also reflected the spatial distribution.

All three metrics (R2, MAE, and RMSE) showed that the

LSTM model produced the best yield estimates (see Figure 4),

with a value of 0.93 for R2. The neural network architecture of

the deep learning model also performed well, giving an R2 of

0.886. The values of R2 for the GBDT and SVR models were

0.839 and 0.573, respectively. The two tree-based models – RF

and GBDT – were able to explain the yield change at least 10%

better than the SVR. In contrast, although the SVR technique

could effectively solve multiple collinearity problems among

independent variables, it only simulates the limited

relationship between input variables/features and modeling

targets (i.e., grain yield), and is unable to map highly non-

linear and complex relationship between variables. As reported

in many previous works, deep learning methods are generally

considered to be superior when the number of training samples
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is sufficiently large (Maimaitijiang et al., 2020; Khaki et al.,

2021). This is likely due to the fact that DL often exceeds popular

machine learning methods when dealing with larger sample size,

complex, nonlinear and redundant datasets (LeCun et al., 2015).

Our experiments verified that the network containing two LSTM

layers could capture more than 90% of the yield information

from the input features. Previous research has also demonstrated

that LSTM model performed best through several machine

learning models in winter wheat prediction. Xie and Huang

(2021) demonstrated that the accuracy of the LSTM model was

significantly higher than that of the 1-D CNN model due to the

better ability of the LSTM model to treat time-series satellite
Frontiers in Plant Science 08
data. However, when the amount of data is limited, the RF model

has the advantages of being insensitive to outliers, nonlinearity,

serial autocorrelation, and high dimensionality. For example,

Cao et al. (2021) found that the performance of RF was not

always worse than DL at both the county and field levels. What’s

more, although LSTM yielded superior performance over RF

methods, the improvement in grain yield prediction accuracy

was not substantial (see Figure 4), one reason could be the little

difference in measured gridded yield data. Future work will

examine the ability of more advanced deep learning

architectures (e.g., LSTM and its variants) at county scale to

extract better information for winter wheat yield prediction.
B

C D

A

FIGURE 3

Predictions of winter wheat yields obtained using the (A) LSTM, (B) RF, (C) GBDT, and (D) SVR models.
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3.2 Estimates of the winter wheat
yield based on multispectral and
hyperspectral data

The LSTM method was then used to produce estimates of

the winter wheat yield based on 30-m ZY-1 02D data, 30-m

Sentinel-2 data, and 10-m Sentinel -2 data. The modeling with

the ZY-1 02D data used the vegetation indices NDSI, SSI, and

RSI designed by ourselves as features, whereas three

conventional vegetation indices – NDWI, SR, and EVI – were

used with the Sentinel-2 data. The time-series consisting of

20210324, 0330, 0428, and 0501 were input into the LSTM

model for training, and predictions of the yield were obtained for

the entire study area (see Figure 5). It can be seen that, for all

three types of data, the yield distribution was correctly modeled

and that 10-m Sentinel-2 data best reflect the actual distribution

of the yield within the study area. The spatial resolution of the

results based on the other two datasets is low; as a result, the

corresponding yield distribution maps are coarse and do not

reflect the differences in yield between adjacent grid cells.

Overall, the estimates based on the 10-m Sentinel-2 data

were found to be the most accurate, followed by those based on

the 30-m ZY-1 02D data; the estimates based on the 30-m

Sentinel-2 were the least accurate (see Figure 6). By comparing

the results for the datasets with different spatial and spectral
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resolutions, it was found that the spatial resolution had a greater

impact on the winter wheat yield estimates than the spectral

resolution: this can be seen from a comparison of the results for

the 10-m Sentinel-2 data and the 30-m ZY-1 02D data. The 10-

m Sentinel-2 data, which was the dataset with the highest spatial

resolution, performed best, capturing 91% of the yield variation.

The observed data consisted of gridded data with a spatial

resolution of 5 m, and the satellite data with the spatial

resolution that was closest to this produced the best estimates

of the yield. The result was also recognized in previous studies

that hyperspectral PRISMA models was lower than the

multispectral Sentinel-2 models (Marshall et al., 2022).

However, multispectral bands provide coarser spectral

information than hypersectral bands (Yang et al., 2021). A

comparison of the results based on the ZY-1 02D and

Sentinel-2 data, which have the same spatial resolution,

showed that the ZY-1 02D data, which has more spectral

bands, performed better, indicating that the features most

important to the yield still remained after the band-by-band

combination and that the narrow bands could provide relevant

and accurate information about the yield. Therefore,

Hyperspectral (HS)-Multispectral(MS) fusion paradigm to

hyperspectral data is considered to get both advantages of high

spatial and spectral resolution. Here, some of the advantages and

limitations of applying hyperspectral imaging to estimates of
B

C D

A

FIGURE 4

Comparison between the estimates of the winter wheat yield obtained using the (A) LSTM, (B) RF, (C) GBDT, and (D) SVR models.
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agricultural yields are demonstrated. However, although the

mathematical relevance of the hyperspeactral band selection

method is maximized, the computational volume is large and

the physical meaning is not clear enough, resulting in low

applicability (Kong et al., 2022). Further research should be

targeted towards to the implementation and evaluation of more

applicable band select method in hyperspectral, making the most

effective use of hyperspectral band information.
3.3 Effect of various spectral bands and
vegetation indexes on yield estimation

In the PFI experiment that was conducted, the importance of

the four features used in the modeling could be ranked as SR >
Frontiers in Plant Science 10
NDWI > EVI > REP. The shuffled vegetation index SR produced

the largest loss of 0.4783, followed by a loss of 0.4492 for the

NDWI, 0.2385 for the EVI, and 0.2371 for the REP. A larger loss

value indicates a greater contribution to the results. The large SR

contribution is due to the high correlation between the ratio of

the red band to the NIR wavelength bands and the leaf area

index, which is a good measure of the crop growth (Jordan,

1969). The NDWI indicates the amount of biostructural water

contained in a crop, so the large contribution made by the

NDWI indicates that water has a great influence on the

accumulation of organic matter in a crop (Gao, 1996). The

EVI, which is a greenness vegetation index, had less effect on the

results, which may be related to the instability of the blue band

due to residual atmospheric effects. The poor performance of the

REP vegetation index in the modeling may be due to the fact that
FIGURE 5

(A) Details of the observed distribution of the winter wheat yield. Details of the modeled distribution based on (B) 10-m Sentinel-2, (C) 30-m
ZY-1 02D, and (D) 30-m Sentinel-2 data. The modeled yield distribution based on (E) 10-m Sentinel-2, (F) 30-m ZY-1 02D, and (G) 30-m
Sentinel-2 data.
B CA

FIGURE 6

Comparison between estimates of the winter wheat yield based on (A) 10-m Sentinel-2, (B) 30-m ZY-1 02D, and (C) 30-m Sentinel-2 data.
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the spatial resolution of the red-edge bands in Sentinel-2 is 20 m,

which does not match the spatial resolution of the yield data.

However, the vegetation indices we selected were based on

anthropogenic experience about spectral information; other

vegetation indices such as Green Leaf Area Index (Duchemin

et al., 2008), Crop Water Stress Index (Ghaemi et al., 2016)

should also be considered. We can combine empirical and

statistical methods in the selection of vegetation indices.

In most previous studies, each feature was input to a model

individually to retrain the model (Cai et al., 2019). This seems an

intuitive approach; however, it is not appropriate if we are

interested in the feature importance of the model where all

features are trained together instead of one by one. Zhang et al.

(2021) evaluated six typical VIs separately for their abilities to

predict maize yield using the three approaches. Compared the

feature importance rank in Zhang et al. (2021), the advantage of

the PFI method that we used in this study is that it outputs the

performance of each feature when all of the features are input to

the model together, and all interactions with other features are

automatically considered. We analyzed the spectral information

in combination with the environmental stresses of the crop, and

the ranking results reflected the most important factors for

wheat growth, so as to provide a reference for practical

agricultural management: in conducting winter wheat farming,

we need to focus on natural conditions such as tillage density,

which is related to the leaf area index, and the amount of

irrigation, which is closely related to the water within the

winter wheat plant. However, besides PFI, more and more

methods have recently been proposed to help users interpret

the predictions of complex models, such as a unified framework

for interpreting predictions named SHapley Additive

exPlanations (Lundberg and Lee, 2017), and further research

should be targeted towards to the comparison among multiple

feature importance rank methods.

From the analysis of the correlation between the different

vegetation indices and the yield based on the band-by-band

combination method, we determined which bands had the

strongest positive and negative correlations with the three

different vegetation indices (see Table 3). Of the 13203

combinations calculated for the NDSI, the largest correlation

with the yield was for the wavelength range 516–765 nm. This

lies in the visible and NIR region and was negatively correlated

with the yield with a correlation coefficient of –0.7413. For the

SSI, the best combination was 671–679 nm, which was
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negatively correlated with the yield with a correlation

coefficient of –0.7559. For the RSI, the strongest correlation

was for the combination 1779–2216 nm, which was positively

correlated with the yield with a correlation coefficient of 0.7539.

The correlation between bands combination and yield is

consistent with (Marshall et al., 2022). These three customized

vegetation indices were then adopted as three features for input

to the hyperspectral data model. The correlation coefficients

shown in Table 3 all pass the significance test of P-value< 0.001.

Importantly, from the values of the correlation between the

vegetation indexes and the yield (see Figure 7), it was found

that the combinations of visible and NIR bands were

negatively correlated with the yield, whereas there was a

positive correlation between the shortwave infrared

narrowband combinations and the yield. And can be seen

from Table 3, the difference between the most positively

correlated shortwave infrared narrowband combination and

the most negatively correlated visible–NIR band combination

is almost negligible (between 0.5% and 5%), which indicates that

both combinations can provide equally important information

for yield estimates. The combinations of bands around the

maximum value in Figure 7 can almost play the same role as

the chosen bands (see Table 3) and can also be used to build the

yield estimation model when the requirements are not too strict.

This conclusion confirmed the results reported in the previous

studies choosing the visible and NIR bands to compute VIs (Jin

et al., 2017) for yield prediction to various crops. Kong et al.

(2022) used the band-by-band combination method between

450-950 nm to construct new vegetation index, and analyzed the

correlation of them with LAI. In our work, we expanded

band range to full bands following the recommendation

of Marshall et al., 2022 to get a comprehensive use of

hyperspectral information.

The high degree of correlation between the visible–NIR band

combinations and the yield can be explained by the correlation

between the crop growth and the chlorophyll content (Acito

et al., 2022), which has also been demonstrated in previous

studies (Zhang et al., 2021). However, in most studies, only

bands in the range 500 to 900 nm have been used and most other

useful bands have been neglected (Zhang et al., 2018; Zhang

et al., 2021). In this study, we also found that the shortwave

infrared bands between 1000 and 2500 nm had a highly positive

correlation with the yield (see Figure 7), suggesting that

combinations of narrow shortwave infrared bands can provide
TABLE 3 Band combinations giving the highest correlations with the customized vegetation indices.

Band combination (nm) Correlation coefficient Band combination (nm) Correlation coefficient

NDSI 1375–1896 0.6946*** 516–765 -0.7413***

SSI 1408–1930 0.7506*** 671–679 -0.7559***

RSI 671–679 -0.7559*** 516–765 -0.7413***

***means the value is significant at the 0.001 level
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equally important information to that provided by visible–NIR

bands for crop yield estimation and that the use of the two types

of information might achieve even better results. In future

studies, experiments using the two types of bands should be

performed to determine the quantitative relationship with the

winter wheat yield.
3.4 Analysis of the models and other
factors affecting the yield

The results described above (see Figures 3, 4) show that the

LSTM model produced significantly better estimates of the

winter wheat yield than the other three models; these results

are consistent with those found by Zhang et al. (2021) and Lin

et al. (2020). Compared with machine learning models, deep

learning with complex neural network structures has the

advantage that it processes high-dimensional data that reflects

the growth and development of crops (Mu et al., 2019; Wang

et al., 2020). The LSTM can learn more time-dependent

information (Hochreiter and Schmidhuber, 1997). The data

input to the models consisted of series of monthly data that

can be used to explore various types of changes in crop growth,

including the yield and other related crop parameters (Haider

et al., 2019; Tian et al., 2021; Wang et al., 2022). The two tree

models (RF and GBDT) proved to be better than the SVR model

at estimating the yield, which also confirms the results reported

in a previous study (Lin et al., 2020). The LSTM neural network

provides an effective tool for building new data-driven models

for regional yield estimation. Neural network modeling

transforms raw input variables into high-level representations

through nonlinear activation and squashing functions, which

weakens the traceability and interpretability of the LSTM model

(Tian et al., 2021). You et al. (2017) add a DGP to Long Short

Term Memory (LSTM) network, and outperforming all the

competing approaches. Future work will examine the ability of

more advanced deep learning architectures (e.g., LSTM and its

variants) and more kinds of data (e.g., remote sensing data and
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climate information) to extract better multimodal information

for grain yield prediction. The introduction of an attention

mechanism to capture and interpret the contribution of each

time node in the time-series data to the models can be

considered; in combination with knowledge of the crop

phenological period, this could be used to make estimates of

pre-production early yields. In subsequent studies, the use of

transfer learning methods to improve the scalability of the model

could also be tried; this would be similar to a method of

predicting winter wheat FVC using deep transfer learning (Yu

et al., 2022).

Experiments were then performed in which the Sowing,

cultivation and irrigation were varied. It was found that the

winter wheat accumulated the most organic matter when the

seeding rate was set at 225 kg/ha (0.8 times the conventional

sowing rate), rotational tillage was adopted, variable amounts of

fertilizer were used, and the amount of irrigation was set at

60 mm (see Figure 8). It was also found that a high sowing

density leads to a lower yield, probably due to the intense

competition between water, fertilizer, and light making the

plant less biologically productive and causing lodging (Chen

et al., 2022). Figure 8B shows that the choice of rotational tillage

as the tillage practice can maximize soil fertility: some studies

have shown that rotational tillage practices can increase the soil

porosity and improve the nutrient quality, thus increasing crop

yields (Nie et al., 2015). From Figure 8C it can be seen that the

use of variable fertilization promotes yield improvement because

it meets the nitrogen demand of winter wheat throughout the

growing season and allows the crop to maintain a more

reasonable canopy structure for photosynthesis even after

flowering (Jiang et al., 2015). Figure 8D shows that the greater

the amount of irrigation, the more water is absorbed by the crop

due to osmotic pressure regulation; this increases the soil water

storage and improves the drought tolerance of the wheat and the

yield. The above meteorological variables are closely related to

the crop growth process and directly affect the yield. Currently,

as chemical fertilizer prices are rising sharply and many places

are experiencing water shortages, advanced studies that will lead
B CA

FIGURE 7

Heatmap showing the correlation between (A) the NDSIs, (B) RSIs, and (C) SSIs and the yield. The green triangles represent the selected band
combinations (thickened in Table 3); in each case, the green circle represents the other band combination listed in Table 3.
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to the application of precise amounts of fertilizer and irrigation

so that planting costs and environmental pollution can be

reduced and high yields of wheat achieved are research

priorities (Carberry et al., 2013). Our study quantitatively

explored the effect of environmental conditions on the winter

wheat yield, and the results provide data that are important to

the cultivation of winter wheat in northern China.

Meanwhile, from the above experimental results, it can be

seen that crop management statistics have a strong correlation

with the crop yield and can be used to indicate yield changes.

Management statistics models are included in crop environment

models, which can be used in crop yield estimation by

establishing a correlation between the crop management

statistics and crop yields (Guarin and Asseng, 2022). The most

commonly used statistical management model is the systemic

integrated factor forecasting method developed by Chen (1992).

This forecasting method predicts the annual grain yield by

building a systematic model between statistical factors

(irrigation, fertilizer usage, and mechanical inputs) and the

crop yield. Besides management statistics models, crop

environment models (Launay and Guerif, 2005) also include

agrometeorological models and agronomic yield estimation

models – the former use integral regression models based on

meteorological factors and yields (O'Neal et al., 2002), and the

latter mainly establish relationships between crop growth

conditions and crop yield components, thus allowing them to

predict crop yields. Predictions of wheat yields based on

management statistics, meteorological data, and crop growth

conditions can be highly accurate; however, these models do not

apply to large areas and the values of the parameters are difficult

to determine. Using satellite remote sensing, crop information

can be acquired repeatedly over large areas at a relatively low

cost. The combination of remote sensing data with crop growth

dynamics models to predict yields has shown promise, and

several studies (Cao et al., 2020; Zhang et al., 2021; Beyene

et al., 2022) have shown that combining remote sensing and

other factors can improve the accuracy of yield estimates. The
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previous studies demonstrate the tremendouspotential of remote

sensing data-based crop yield prediction when employing a

multimodal data fusion and deep neural network approach.

Maimaitijiang et al. (2020) verified that multimodal data

fusion yielded superior performance for yield prediction over

single sensor data, regardless of modeling methods. Therefore, in

addition to being adaptable to different remote sensing data-VIs,

within-field, multi-field, and regional applications require grain

yield models to cope with variation and heterogeneity in space

caused by differences in soil, irrigation, fertilization and other

field conditions that affect plant growth (Maimaitijiang et al.,

2020). For example, Su et al (2017) integrated geographical data

from the weather station in China and the SVR method to

estimate crop growth at various stages. In subsequent research,

we plan to collect multiple types of data, including

meteorological data and crop management statistics, and

combine these with remote sensing data to produced more

accurate winter wheat yield estimates.

However, there remain challenges to fully understanding

changes in winter wheat yields that arise from a lack of

understanding of the mechanisms involved or a lack of data. If

fused or integrated data with a high temporal, spatial, and

spectral resolution (Cao et al., 2020) can be obtained,

transferring our proposed model to a larger study area can be

considered. In this study, we found that an increase in either the

spectral or spatial resolution leads to an increase in the

estimation accuracy (Figure 4). Acito et al. (2022) deals with

the problem of improving the spatial resolution of hyperspectral

data from the PRISMA mission and provides a superresolved

image with a spatial resolution of 10 m and the same spectral

resolution as the PRISMA hyperspectral sensor. In future,

following the work by Acito et al. (2022), In future, we also

hope to use fused ZY-1 02D and Sentinel-2 data for yield

estimation to explore how temporally, spectrally, and spatially

rich data perform, in a similar way to how the fusion of ZY-1

02D and multispectral data has been used for land classification

(Sun et al., 2020a). Compared with yield estimation models on
B CA D

FIGURE 8

The winter wheat yield plotted against different planting management variables: (A) seeding rate, (B) farming method (Subsoiling-Tillage-
Rotatillage-Rototilling), (C) the rate of fertilizer application, and (D) the amount of irrigation.
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county scale (Sun et al., 2020b), the yield estimation models that

we developed in this study all apply at the pixel scale and may be

less applicable at the larger scale of experimental fields. In

subsequent studies, we will collect yield data from a large

number of counties and cities, compare agricultural fields in

their natural state with small experimental fields under human

management, and explore the performance of the yield

estimation models over spatially heterogeneous large plots.

Furthermore, the approach can be tested for different crop

types at different development stages and environmental

conditions to evaluate the robustness.
4 Conclusion

In this paper, based on Sentinel-2 and ZY-1 02D remote

sensing imagery and using the LSTM, RF, GBDT, SVR machine

learning methods, we aimed to find the most suitable model,

data source, and combination of spectral bands for making

estimates of winter wheat yields. It was found that, of these

four models, the LSTM model outperformed the SVR, RF, and

GBDT models in learning the temporal relationship between the

satellite data and the winter wheat yield, giving a value of R2 of

0.93. After band selection, the 30-m ZY-1 02D hyperspectral

data produced better results than the 30-m multispectral

Sentinel-2 data and captured 5% more of the yield variation.

However, the most accurate yield estimates were obtained using

the data with the highest resolution – the 10-m Sentinel-2 data –

for which R2 was 0.91. In addition, it was found that the

greenness vegetation index, SR, had the greatest effect on the

yield estimates, followed by the water index, NDWI. For the

hyperspectral data, the combinations of visible and NIR bands

were usually negatively correlated with the yield, whereas the

linear combinations of narrow shortwave infrared bands were

mostly positively correlated with the yield. Our results also show

the strong correlation between crop management statistics and

yield and suggest the combination of management statistics data

and remote sensing data.

In future work, we will consider the application of the

modeling to a larger study area and evaluate the performance

of fused Sentinel-2 and ZY-1 02D data. Approaches that

incorporate migration learning will also be considered.
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Betbeder, J., Rémy, F., and Baup, F. (2016). “Assimilation of LAI and dry
biomass data from optical and SAR images into an agro-meteorological model to
estimate soybean yield,” in IEEE J Sel Top Appl Earth Obs Remote Sens. 9. 1–14.
doi: 10.1109/JSTARS.2016. 2541169

Beyene, A. N., Zeng, H., Wu, B., Zhu, L., Gebremicael, T. G., Zhang, M., et al.
(2022). Coupling remote sensing and crop growth model to estimate national wheat
yield in Ethiopia. Big Earth Data. 6 (1), 18–35. doi: 10.1080/20964471.2020.1837529

Breiman, L. (2001). Random forests. Mach. Learn. 45, 5–32. doi: 10.1023/
A:1010933404324
frontiersin.org

https://doi.org/10.1109/JSTARS.2021. 3132135
https://doi.org/10.48550/arXiv.1610.01644
https://doi.org/10.1109/JSTARS.2016. 2541169
https://doi.org/10.1080/20964471.2020.1837529
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.3389/fpls.2022.1090970
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Cheng et al. 10.3389/fpls.2022.1090970
Cai, Y., Guan, K., Lobell, D., Potgieter, A. B., Wang, S., Peng, J., et al. (2019).
Integrating satellite and climate data to predict wheat yield in Australia using
machine learning approaches. Agric. For. Meteorol. 274, 144–159. doi: 10.1016/
j.agrformet.2019.03.010

Cao, J., Zhang, Z., Luo, Y., Zhang, L., Zhang, J., Li, Z., et al. (2021). Wheat yield
predictions at a county and field scale with deep learning, machine learning, and
google earth engine. Eur. J. Agron. 123, 126204. doi: 10.1016/j.eja.2020.126204

Cao, J., Zhang, Z., Tao, F., Zhang, L., Luo, Y., Han, J., et al. (2020). Identifying the
contributions of multi-source data for winter wheat yield prediction in China.
Remote Sens. 12 (5), 750. doi: 10.3390/rs12050750

Carberry, P. S., Liang, W., Twomlow, S., Holzworth, D. P., Dimes, J. P.,
McClelland, T., et al. (2013). Scope for improved eco-efficiency varies among
diverse cropping systems. PNAS. 10 (21), 8381–8386. doi: 10.1073/
pnas.1208050110

Chen, X. (1992). National grain production forecast research. Bull. Chin. Acad.
Sci. 4, 330–333.

Chen, M., Liang, X., Li, L., Zhang, L., Chen, G., Wu, J., et al. (2022). Effects of
planting densities on grain filling and grain yield of uniformly sown winter wheat.
Xinjiang Agric. Sci. 59 (6), 1338–1346. doi: 10.6048/j.issn.1001-4330.2022.06.005

Cunha, R. L. F., and Silva, B. (2020). “Estimating crop yields with remote sensing
and deep learning,” in 2020 IEEE Latin American GRSS & ISPRS Remote Sensing
Conference (LAGIRS) (Piscataway, NJ: IEEE). 59–64. doi: 10.5194/isprs-annals-IV-
3-W2-2020-59-2020

Duchemin, B., Maisongrande, P., Boulet, G., and Benhadj, I. (2008). A simple
algorithm for yield estimates: Evaluation for semi-arid irrigated winter wheat
monitored with green leaf area index. Environ. Model. Software 23, 876–892. doi:
10.1016/j.envsoft.2007.10.003

Feng, Q., and Wu, S. (2006). Processing in crop yield estimating by remote
sensing in China. World Sci-Tech R&D. 28 (3), 32–36. doi: 10.3969/j.issn.1006-
6055.2006.03.006

Fisher, A., Rudin, C., and Dominici, F. (2019). All models are wrong, but many
are useful: Learning a variable’s importance by studying an entire class of
prediction models simultaneously. J. Mach. Learn Res. 20, 1–81. doi: 10.48550/
arXiv.1801. 01489

Gao, B. C. (1996). NDWI a normalized difference water index for remote sensing
of vegetation liquid water from space. Remote Sens. Environ. 58, 257–266. doi:
10.1016/S0034-4257(96)00067-3

Ghaemi, A., Moazed, H., Rafie Rafiee, M., and Broomand Nasab, S. (2016).
Determining CWSI to estimate eggplant evapotranspiration and yield under
greenhouse and outdoor conditions. Iran Agric. Res. 34, 49–60. doi: 10.1109/
JSTARS.2016. 2541169

Guarin, J. R., and Asseng, S. (2022). Improving wheat production and breeding
strategies using crop models. Wheat Improvement 573–591. doi: 10.1007/978-3-
030-90673-3_31

Guo, J., Ren, H., Zheng, Y., Nie, J., Chen, S., Sun, Y., et al. (2019). Identify urban
area from remote sensing image using deep learning method. IGRSS., 7407–7410.
doi: 10.1109/IGARSS.2019.8898874

Haider, S., Naqvi, S., Akram, T., Umar, G., Shahzad, A., Sial, M., et al. (2019).
LSTM neural network based forecasting model for wheat production in Pakistan.
Agronomy. 9 (2), 72. doi: 10.3390/agronomy9020072

Han, D., Wang, P., Tansey, K., Liu, J., Zhang, Y., Tian, H., et al. (2022).
Integrating an attention-based deep learning framework and the SAFY-V model
for winter wheat yield estimation using time series SAR and optical data. Comput.
Electron Agric. 201, 107334. doi: 10.1016/j.compag.2022.107334

He, Z., and He, J. (2013). Estimation of winter wheat yield based on the NOAA −
NDVI data. J. Arid Environ. 27 (5), 46–52. doi: 10.13448/j.cnki.jalre. 2013.05.008

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural
Comput. 9, 1735–1780. doi: 10.1162/neco.1997.9.8.1735

Horler, D. N. H., Dockray, M., and Barber, J. (1983). The red edge of plant leaf
reflectance. Int. J. Remote Sens. 4 (2), 273–288. doi: 10.1080/01431168308948546

Huang, H., Huang, J., Feng, Q., Liu, J., Li, X., Wang, X., et al. (2022). Developing
a dual-stream deep-learning neural network model for improving county-level
winter wheat yield estimates in China. Remote Sens. 14 (20), 5280. doi: 10.3390/
rs14205280

Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Ferreira, L. G.
(2002). Overview of the radiometric and biophysical performance of the MODIS
vegetation indices. Remote Sens Environ. 83, 195–213. doi: 10.1016/S0034-4257(02)
00096-2

Jägermeyr, J., Müller, C., Ruane, A., Elliott, J., Balkovic, J., Castilo, O., et al.
(2021). Climate impacts on global agriculture emerge earlier in new generation of
climate and crop models. Nat. Food. 2, 1–13. doi: 10.1038/s43016-021-00400-y

Jiang, A., Gao, J., Guan, J., and Wang, Z. (2015). Effects of variable nitrogen
application on character of light radiation and yield in canopy of winter wheat after
Frontiers in Plant Science 15
anthesis. Southwest China J. Agric. Sci. 28 (1), 255–259. doi: 10.16213/
j.cnki.scjas.2015.01.048

Jiang, Z., and Huete, A. R. (2010). Linearization of NDVI based on its
relationship with vegetation fraction. Photogramm. Eng. Rem. S. 76 (8), 965–975.
doi: 10.14358/PERS.76.8.965

Jin, Z., Azzari, G., and Lobell, D. B. (2017). Improving the accuracy of satellite-
based high-resolution yield estimation: A test of multiple scalable approaches.
Agric. For. Meteorol. 247, 207–220. doi: 10.1016/j.agrformet. 2017.08.001

Jordan, C. F. (1969). Derivation of leaf-area index from quality of light on the
forest floor. Ecology. 50 (4), 663–666. doi: 10.2307/1936256

Kamir, E., Waldner, F., and Hochman, Z. (2020). Estimating wheat yields in
Australia using climate records, satellite image time series and machine learning
methods. ISPRS J. Photogramm. Remote Sens. 160, 124–135.

Khaki, S., Pham, H., and Wang, L. (2021). Simultaneous corn and soybean yield
prediction from remote sensing data using deep transfer learning. Sci. Rep. 11,
11132. doi: 10.1038/s41598-021-89779-z

Kong, Y., Wang, L., Feng, H., Xu, Y., Liang, L., Xu, L., et al. (2022). Leaf area
index estimation based on UAV hyperspectral band selection. Spectrosc Spect Anal.
42 (3), 933–939.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “ImageNet classification
with deep convolutional neural networks,” in NIPS(Lake Tahoe, Nevada, USA:
ACM), 1097–1105.

Launay, M., and Guerif, M. (2005). Assimilating remote sensing data into a crop
model to improve predictive performance for spatial applications. Agric. Ecosyst.
Environ. 111, 321–339. doi: 10.1016/j.agee.2005.06.005

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature. 521, 436–
444. doi: 10.1038/nature14539

Lin, T., Zhong, R., Wang, Y., Xu, J., Jiang, H., Xu, J., et al. (2020). DeepCropNet:
a deep spatial-temporal learning framework for county-level corn yield estimation.
Environ. Res. Lett. 15 (3). doi: 10.1088/1748-9326/ab66cb

Lundberg, S., and Lee, S. (2017). A unified approach to interpreting model
predictions. doi: 10.48550/arXiv.1705.07874

Lu, H., Zhang, M., Liu, Y., and Ma, S. (2017). Convolution neural network
feature importance analysis and feature selection enhanced model. J. Software 28
(11), 2879–2890.

Ma, L., Chen, X., Zhang, Q., Lin, J., Yin, C., Ma, Y., et al. (2022). Estimation of
nitrogen content based on the hyperspectral vegetation indexes of interannual
and multi-temporal in cotton. Agronomy 12 (6), 1319. doi: 10.3390/
agronomy12061319

Maimaitijiang, M., Sagan, V., Sidike, P., Hartling, S., Esposito, F., and Fritschi, F.
B. (2020). Soybean yield prediction from UAV using multimodal data fusion and
deep learning. Remote Sens Environ. 237, 111599. doi: 10.1016/j.rse.2019.111599

Marshall, M., Belgiu, M., Boschetti, M., Pepe, M., Stein, A., and Nelson, A.
(2022). Field-level crop yield estimation with PRISMA and sentinel-2. ISPRS J.
Photogramm. Remote Sens. 187, 191–210. doi: 10.1016/j.isprsjprs.2022.03.008

Mawani, M., and Li, C. (2020). Coronavirus disease (COVID-19); lessons learnt
from international response and advice to the Georgia government. Innovation
(Camb). 1 (2), 100025. doi: 10.1016/j.xinn.2020.100025

Mitchell, R. N. (2021). Chang'E-5 reveals the moon's secrets to a longer life.
Innovation (Camb). 2 (4), 100177. doi: 10.1016/j.xinn.2021.100177

Mu, H., Zhou, L., Dang, X., and Yuan, B. (2019). Winter wheat yield estimation
from multitemporal remote sensing images based on convolutional neural
networks. in: 2019 10th International Workshop on the Analysis of
Multitemporal Remote Sensing Images (MultiTemp). 1-4. doi: 10.1109/Multi-
Temp.2019.8866918

Nie, L., Guo, L., Niu, H., Wei, J., Li, Z., and Ning, T. (2015). Effects of rotational
tillage on tilth soil structure and crop yield and quality in maize-wheat cropping
system. Acta Agronomica Sinica. 41 (3), 468. doi: 10.3724/SP.J.1006.2015.00468

O'Neal, M. R., Engel, B. A., Ess, D. R., and Frankenberger, J. R. (2002). Neural
network prediction of maize yield using alternative data coding algorithms. Biosyst.
Eng. 83, 31–45. doi: 10.1006/bioe.2002.0098

Peng, D., Huang, J., Li, C., Liu, L., Huang, W., Wang, F., et al. (2014). Modelling
paddy rice yield using MODIS data. Agric. For. Meteorol. 184, 107–116. doi:
10.1016/j.agrformet.2013.09.006

Peng, D., Huang, J., Sun, H., and Wang, F. (2010). County level rice yield
estimation based on combination of Terra and aqua MODIS EVIs. Chin. J. Rice
Science. 24 (5), 516–522. doi: 10.3969/j.issn.1001—7216.2010.05.012

Poria, S., Cambria., E., and Gelbukh., A. (2015). “Deep convolutional neural
network textual features and multiple kernel learning for utterance-level
multimodal sentiment analysis,” in EMNLP (Lisbon, Portugal), 2539–2544.
doi: 10.18653/v1/D15-1303

Qiao, M., He, X., Cheng, X., Li, P., Luo, H., Zhang, L., et al. (2021). Crop yield
prediction from multi-spectral, multi-temporal remotely sensed imagery using
frontiersin.org

https://doi.org/10.1016/j.agrformet.2019.03.010
https://doi.org/10.1016/j.agrformet.2019.03.010
https://doi.org/10.1016/j.eja.2020.126204
https://doi.org/10.3390/rs12050750
https://doi.org/10.1073/pnas.1208050110
https://doi.org/10.1073/pnas.1208050110
https://doi.org/10.6048/j.issn.1001-4330.2022.06.005
https://doi.org/10.5194/isprs-annals-IV-3-W2-2020-59-2020
https://doi.org/10.5194/isprs-annals-IV-3-W2-2020-59-2020
https://doi.org/10.1016/j.envsoft.2007.10.003
https://doi.org/10.3969/j.issn.1006- 6055.2006.03.006
https://doi.org/10.3969/j.issn.1006- 6055.2006.03.006
https://doi.org/10.48550/arXiv.1801. 01489
https://doi.org/10.48550/arXiv.1801. 01489
https://doi.org/10.1016/S0034-4257(96)00067-3
https://doi.org/10.1109/JSTARS.2016. 2541169
https://doi.org/10.1109/JSTARS.2016. 2541169
https://doi.org/10.1007/978-3-030-90673-3_31
https://doi.org/10.1007/978-3-030-90673-3_31
https://doi.org/10.1109/IGARSS.2019.8898874
https://doi.org/10.3390/agronomy9020072
https://doi.org/10.1016/j.compag.2022.107334
https://doi.org/10.13448/j.cnki.jalre. 2013.05.008
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1080/01431168308948546
https://doi.org/10.3390/rs14205280
https://doi.org/10.3390/rs14205280
https://doi.org/10.1016/S0034-4257(02)00096-2
https://doi.org/10.1016/S0034-4257(02)00096-2
https://doi.org/10.1038/s43016-021-00400-y
https://doi.org/10.16213/j.cnki.scjas.2015.01.048
https://doi.org/10.16213/j.cnki.scjas.2015.01.048
https://doi.org/10.14358/PERS.76.8.965
https://doi.org/10.1016/j.agrformet. 2017.08.001
https://doi.org/10.2307/1936256
https://doi.org/10.1038/s41598-021-89779-z
https://doi.org/10.1016/j.agee.2005.06.005
https://doi.org/10.1038/nature14539
https://doi.org/10.1088/1748-9326/ab66cb
https://doi.org/10.48550/arXiv.1705.07874
https://doi.org/10.3390/agronomy12061319
https://doi.org/10.3390/agronomy12061319
https://doi.org/10.1016/j.rse.2019.111599
https://doi.org/10.1016/j.isprsjprs.2022.03.008
https://doi.org/10.1016/j.xinn.2020.100025
https://doi.org/10.1016/j.xinn.2021.100177
https://doi.org/10.1109/Multi-Temp.2019.8866918
https://doi.org/10.1109/Multi-Temp.2019.8866918
https://doi.org/10.3724/SP.J.1006.2015.00468
https://doi.org/10.1006/bioe.2002.0098
https://doi.org/10.1016/j.agrformet.2013.09.006
https://doi.org/10.3969/j.issn.1001�7216.2010.05.012
https://doi.org/10.18653/v1/D15-1303
https://doi.org/10.3389/fpls.2022.1090970
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Cheng et al. 10.3389/fpls.2022.1090970
recurrent 3D convolutional neural networks. Int. J. Appl. Earth Obs Geoinf. 102,
102436. doi: 10.1016/j.jag.2021.102436

Sellami, M. H., Albrizio, R., Colovic, M., Hamze, M., Cantore, V., Todorovic, M.,
et al. (2022). Selection of hyperspectral vegetation indices for monitoring yield and
physiological response in sweet maize under different water and nitrogen
availability. Agronomy 12 (2), 489. doi: 10.3390/agronomy12020489

Sharma, S., Rai, S., and Krishnan, N. C. (2020). Wheat crop yield prediction
using deep LSTM model. doi: 10.48550/arXiv.2011.01498

Sun, J., Lai, Z., Di, L., Sun, Z., Tao, J., and Shen, Y. (2020b). “Multilevel deep
learning network for county-level corn yield estimation in the US corn belt,” in IEEE J.
Sel. Top. Appl. Earth Obs. Remote Sens. 13. 5048–5060. doi: 10.1109/JSTARS.2020.
3019046

Sun, W., Ren, K., Xiao, C., Meng, X., and Yang, G. (2020a). Classification of
coastal wetlands based on hyperspectral and multispectral fusion data of ZY-1-02D
satellite. Spacecraft Engineering. 29 (6), 162–168. doi: 10.3969/j.issn.1673-
8748.2020.06.024

Su, Y., Xu, H., and Yan, L. (2017). Support vector machine-based open crop
model (SBOCM): Case of rice production in China. Saudi J. Biol. Sci. 24, 537–547.

Thorp, K. R., DeJonge, K. C., Kaleita, A. L., Batchelor, W. D., and Paz, J. O. J. C.
(2008). Methodology for the use of DSSAT models for precision agriculture
decision support. Comput. Electron Agric. 64, 276–285. doi: 10.1016/
j.compag.2008. 05.022

Tian, H., Wang, P., Tansey, K., Zhang, J., Zhang, S., and Li, H. (2021). An LSTM
neural network for improving wheat yield estimates by integrating remote sensing
data and meteorological data in the guanzhong plain, PR China. Agric. For.
Meteorol. 310, 108629. doi: 10.1016/j.agrformet.2021.108629

Wang, X., Huang, J., Feng, Q., and Yin, D. (2020). Winter wheat yield prediction at
county level and uncertainty analysis in main wheat-producing regions of China with
deep learning approaches. Remote Sens. 12 (11), 1744. doi: 10.3390/rs12111744

Wang, J., Si, H., Gao, Z., and Shi, L. (2022). Winter wheat yield prediction using
an LSTM model from MODIS LAI products. Agriculture 12, 1707. doi: 10.3390/
agriculture12101707

Weiss, M., Jacob, F., and Duveiller, G. (2020). Remote sensing for agricultural
applications: A meta-review. Remote Sens Environ. 236, 111402. doi: 10.1016/
j.rse.2019.111402
Frontiers in Plant Science 16
Xiao, L., Yang, W., Feng, M., Sun, H., and Wang, C. (2022). Development of
winter wheat yield estimation models based on hyperspectral vegetation. Chin. J.
Ecol. 41 (7), 1433–1440. doi: 10.13292/j.1000-4890. 202207.019

Xie, Y., and Huang, J. (2021). Integration of a crop growth model and deep
learning methods to improve satellite-based yield estimation of winter wheat in
Henan Province, China. Remote Sens. 13, 4372. doi: 10.3390/rs13214372

Xing, L., Li, X., Li, A., and Zhou, D. (2013). A comparative study on estimation
model for leaf area index of vegetation in marshes in honghe national nature
reserve based on hyperspectral and multispectral vegetation indices. Wetland Sci.
11 (3), 313–319. doi: 10.3969/j.issn.1672- 5948.2013.03.002

Yang, W., Nigon, T., Hao, Z., Dias Paiao, G., Fernández, F. G., Mulla, D., et al.
(2021). Estimation of corn yield based on hyperspectral imagery and convolutional
neural network. Comput. Electron Agric. 184, 106092. doi: 10.1016/
j.compag.2021.106092

You, J., Li, X., Low, M., Lobell, D., and Ermon, S. (2017). Deep Gaussian process
for crop yield prediction based on remote sensing data. Proc. AAAI Conf. Artif.
Intell. 31, 4559-4565. doi: 10.1609/aaai.v31i1.11172

Yu, R., Li, S., Zhang, B., and Zhang, H. (2022). “A deep transfer learning method
for estimating fractional vegetation cover of sentinel-2 multispectral images,” in
IEEE Geosci. Remote Sens. Lett. 19. 1–5. 10.1109/lgrs.2021.3125429

Zhang, B., Chen, Z., Peng, D., Benediktsson, J., Liu, B., Zou, L., et al. (2019).
Remotely sensed big data: Evolution in model development for information
extraction. Proc. IEEE. 107 (12), 2294–2301. doi: 10.1109/JPROC.2019.2948454

Zhang, B., Wu, Y., Zhao, B., Chanussot, J., Hong, D., Yao, J., et al. (2022).
“Progress and challenges in intelligent remote sensing satellite systems,” in IEEE J.
Sel. Top. Appl. Earth Obs. Remote Sens. 15. 1814–1822. doi: 10.1109/jstars.2022.
3148139

Zhang, C., Yang, G., Li, H., Tang, F., Liu, C., and Zhang, L. (2018). Remote
sensing inversion of leaf area index of winter wheat based on random forest
algorithm. Scientia Agricultura Sinica. 51 (5), 855–867. doi: 10.3864/j.issn.0578-
1752.2018.05.005

Zhang, L., Zhang, Z., Luo, Y., Cao, J., Xie, R., and Li, S. (2021). Integrating
satellite-derived climatic and vegetation indices to predict smallholder maize yield
using deep learning. Agric. For. Meteorol. 311, 108666. doi: 10.1016/
j.agrformet.2021.108666.
frontiersin.org

https://doi.org/10.1016/j.jag.2021.102436
https://doi.org/10.3390/agronomy12020489
https://doi.org/10.48550/arXiv.2011.01498
https://doi.org/10.1109/JSTARS.2020. 3019046
https://doi.org/10.1109/JSTARS.2020. 3019046
https://doi.org/10.3969/j.issn.1673- 8748.2020.06.024
https://doi.org/10.3969/j.issn.1673- 8748.2020.06.024
https://doi.org/10.1016/j.compag.2008. 05.022
https://doi.org/10.1016/j.compag.2008. 05.022
https://doi.org/10.1016/j.agrformet.2021.108629
https://doi.org/10.3390/rs12111744
https://doi.org/10.3390/agriculture12101707
https://doi.org/10.3390/agriculture12101707
https://doi.org/10.1016/j.rse.2019.111402
https://doi.org/10.1016/j.rse.2019.111402
https://doi.org/10.13292/j.1000-4890. 202207.019
https://doi.org/10.3390/rs13214372
https://doi.org/10.3969/j.issn.1672- 5948.2013.03.002
https://doi.org/10.1016/j.compag.2021.106092
https://doi.org/10.1016/j.compag.2021.106092
https://doi.org/10.1609/aaai.v31i1.11172
https://doi.org/10.1109/lgrs.2021.3125429
https://doi.org/10.1109/JPROC.2019.2948454
https://doi.org/10.1109/jstars.2022. 3148139
https://doi.org/10.1109/jstars.2022. 3148139
https://doi.org/10.3864/j.issn.0578- 1752.2018.05.005
https://doi.org/10.3864/j.issn.0578- 1752.2018.05.005
https://doi.org/10.1016/j.agrformet.2021.108666.
https://doi.org/10.1016/j.agrformet.2021.108666.
https://doi.org/10.3389/fpls.2022.1090970
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Wheat yield estimation using remote sensing data based on machine learning approaches
	1 Introduction
	2 Material and methods
	2.1 Study areas
	2.2 Datasets and processing
	2.2.1 Wheat yield data and auxiliary data
	2.2.2 Remote sensing data

	2.3 Methodology
	2.3.1 Feature selection and its importance
	2.3.1.1 Selection of the vegetation index
	2.3.1.2 Data preprocessing and calculation of vegetation indices
	2.3.1.3 Feature importance

	2.3.2 Hyperspectral band selection
	2.3.3 Establishment of the yield prediction models
	2.3.3.1 LSTM time-series DL model
	2.3.3.2 RF, GBDT, and SVR ML models



	3 Results and discussion
	3.1 Winter wheat yield predictions obtained using the different models
	3.2 Estimates of the winter wheat yield based on multispectral and hyperspectral data
	3.3 Effect of various spectral bands and vegetation indexes on yield estimation
	3.4 Analysis of the models and other factors affecting the yield

	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


