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Introduction: In order to promote sugarcane pre-cut seed good seed and

goodmethod planting technology, we combine the development of sugarcane

pre-cut seed intelligent 0p99oposeed cutting machine to realize the accurate

and fast identification and cutting of sugarcane stem nodes.

Methods: In this paper, we proposed an algorithm to improve YOLOv4-Tiny for

sugarcane stem node recognition. Based on the original YOLOv4-Tiny

network, the three maximum pooling layers of the original YOLOv4-tiny

network were replaced with SPP (Spatial Pyramid Pooling) modules, which

fuse the local and global features of the images and enhance the accurate

localization ability of the network. And a 1×1 convolution module was added to

each feature layer to reduce the parameters of the network and improve the

prediction speed of the network.

Results:On the sugarcane dataset, compared with the Faster-RCNN algorithm

and YOLOv4 algorithm, the improved algorithm yielded an mean accuracy

precision (MAP) of 99.11%, a detection accuracy of 97.07%, and a transmission

frame per second (fps) of 30, which can quickly and accurately detect and

identify sugarcane stem nodes.

Discussion: In this paper, the improved algorithm is deployed in the sugarcane

stem node fast identification and dynamic cutting system to achieve accurate

and fast sugarcane stem node identification and cutting in real time. It improves

the seed cutting quality and cutting efficiency and reduces the labor intensity.

KEYWORDS

sugarcane seed cutting, enhanced YOLOv4-Tiny, sugarcane stem node, identification
system, cutting system
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1 Introduction

Sugarcane is one of the important sources of sugar and

production fuel (Zhenfeng et al, 2022), which is crucial to secure

people’s livelihood. Most of the existing sugarcane seeders are real-

time cane feeding type seeding, which requires pre-cutting of

sugarcane stems and nodes. The existing manual seed cutting

method not only has low seed cutting quality and high cane bud

loss, but also has high labor intensity (Figure 1) and low production

efficiency. Therefore, the development of intelligent sugarcane pre-

cutting machinery and equipment is of great significance to

improve the efficiency of sugarcane production.

The key to achieve automatic seed cutting of sugarcane is to

identify the location of the stem nodes of sugarcane. In recent

years, many scholars have explored the use of digital image

processing techniques to identify the stem nodes of sugarcane.

For example (Yiqi et al., 2017), in order to realize the automatic

cutting of single bud segment of sugarcane, the average grayscale

of sugarcane image is calculated on HSV color space for the mean

filtered processed sugarcane image, and the position of the

maximum grayscale value is considered as the stem node

position. Zhang et al. extracted stem node features based on

hyperspectral imaging and identified stem nodes, obtaining a

high accuracy rate (Weizheng et al., 2017). However, this

method requires expensive hyperspectral data acquisition

equipment and is not suitable for field use. Shi et al. proposed a

machine vision-based stem node recognition method to solve the

problem of sugarcane species diversity (Changyou et al., 2019).

This algorithm can accurately identify the stem nodes of diverse

types of sugarcane under different background conditions.

However, too complex sugarcane images can also reduce the

stem node recognition rate. Yang Rui et al. proposed a method for

simultaneous recognition of multiple stem nodes of sugarcane

based on the characteristic of obvious color change of leaf marks

above and below the stem nodes, which improved the detection

efficiency. However, when the degree of color variation of wax

powder at a certain place is similar to that of the stem epidermis,

the wax powder will be mistaken for sugarcane nodes (Rui et al.,

2020). In order to achieve damage-proof budding and automatic

cutting of single bud segments of sugarcane, Yang Changhui et al.
Frontiers in Plant Science 02
used leaf marker features to identify sugarcane nodes and

constructed a feature vector describing the sugarcane image

(Changhui et al. (2019). The locations of all stem nodes in the

sugarcane image were searched by defining the values of vector

elements at the sugarcane nodes and the distance between the

sugarcane nodes. This machine vision-based sugarcane cutting

system can achieve a recognition rate of 93% and the average

recognition time is only 0.539 s. However, in reality, many black

or white powders are attached to the surface of sugarcane, which

can cause great interference to the processed images. Identification

of sugarcane nodes using images may also suffer from limited

speed, low recognition efficiency and high cost, making it difficult

to be applied in a practical production environment.

With the rapid development of deep learning, many neural

network algorithms are applied to the recognition of agricultural

products with good results (Aichen et al., 2019; Shangping et al.,

2019; Shiping et al., 2020; Xu et al., 2021; Arunabha M and

Bhaduri, 2022; Masum et al., 2022). Neural network recognition

algorithms use two-stage and one-stage strategies. To improve

recognition accuracy, two-stage neural networks are usually used

to recognize agricultural products (Aichen et al., 2020; Chen

et al., 2020; Fangfang et al., 2020; Subramanian and Selvi, 2021;

Shenglian et al., 2022). Jia et al. proposed a mask region

convolutional neural network (Mask R-CNN) based picking

robot vision detector model with an accuracy of 97.31% and a

recall rate of 95.70% (Weikuan et al., 2020). To improve the

speed of target recognition, researchers often use single-stage

neural networks to identify agricultural products (Dihua et al.,

2020; Xiaoyu et al., 2021; Xuelong et al., 2021). Shi et al.

proposed a generalized attribute method for pruned detection

networks that can be easily fine-tuned to accurately detect

mangoes in real time (Rui et al., 2020), reducing the

computational effort of pruning detection networks by 68.7%

while improving accuracy by 0.4% compared to unpruned fine-

tuned networks. With the refinement of deep learning methods,

researchers began to apply them to sugarcane detection. Song

et al. proposed a convolutional neural network for sugarcane

bud classification that can classify buds into good and bad buds

(Huaning et al., 2021). Chen et al. proposed a deep learning-

based target detection algorithm to achieve accurate
FIGURE 1

Domestic sugarcane cutting method.
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identification of sugarcane stem nodes under the data expansion

and lighting condition in different time periods (Wen et al.,

2021). These algorithms mentioned above are based on the

conditions that the sugarcane stem nodes are normal and the

light intensity is good at the time of recognition. The accuracy of

the identification of sugarcane stem nodes will be affected when

they are broken or covered with soil, as well as when the light is

dim. Also, due to the limitation of equipment, these methods are

difficult to be used for real-time detection in the field.

These methods mentioned above have improved the

recognition accuracy of sugarcane stem node, but the following

problems are still unsolved: (1) After the sugarcane is harvested,

some of the stems and node are broken or covered with soil. How

to recognize such stem node is still a difficult problem; (2) At

present, in order to achieve high recognition rate of sugarcane stem

node in the natural environment, the model occupies large

memory and requires high computing power and memory of the

device, which is not applicable to embedded devices; (3) The

recognition efficiency is low and time-consuming. In order to

achieve accurate and fast real-time recognition and cutting of

sugarcane stem node, this paper designs a real-time sugarcane stem

node detection and recognition system based on the enhanced

YOLOv4-Tiny network model according to the sugarcane stem

node feature information. The enhanced YOLOv4-Tiny network

model structure is used to collect sugarcane stem node

information. The detection and recognition system transmits the

sugarcane information to the cutting system in real time to realize

the fast cutting of sugarcane stem node.
2 Related work

2.1 Sugarcane object

In this paper, sugarcane was studied by stripping the

sugarcane stem leaves leaving the sugarcane stem, which

consists of the internode area and the stem node area, as
Frontiers in Plant Science 03
shown in Figure 2. Sugarcane buds and leaf scars were found

in the sugarcane stem node, and only one bud was found in a

sugarcane stem node. The sugarcane buds were located on the

upper side of the stem leaf scars near the tip of the sugarcane,

and the sugarcane stem buds were not necessarily present when

the sugarcane stem node information was collected using the

monocular camera. The leaf scars surround the cane stem for

one week, and the leaf scars show up more clearly in the image.

The equipment designed in this paper can be used to cut the

sugarcane stem node into segments, with only one stem node per

segment and a 5-cm-long internode on each side of the stem

node to provide nutrients to the sugarcane seed later.
2.2 System overall scheme

To meet the seed cutting requirements, the design of the seed

cutting device is outlined in Figure 3; Wang et al., 2022, which

includes the cane stem node target detection system and the cane

stem node cutting system; the cane stem node target detection

system is mainly composed of monocular camera, Industrial

Personal Computer(IPC), switching power supply, etc.; the cane

stem node cutting system is mainly composed of self-tensioning

conveying mechanism, reciprocating crank slider transfer

mechanism and high-speed rotary cutting mechanism, which

complete the processes of conveying and cutting of

cane respectively.

The basic principle of the system can be described as follows:

when the sugarcane section cutting system works, the seed cane

is put into the feeding guide and pushed inward until it is bitten

by the upper and lower rollers, at which time the STM32

microcontroller controls the stepper motor1 to drive the

rollers to transport the seed cane inward. When the sugarcane

stems reach the lower end of the monocular camera, the camera

acquires the sugarcane stems and extracts the information of

sugarcane stems after processing and matches the extracted

stems with the sample training library and then carries out
FIGURE 2

Description of sugarcane seed cutting requirements.
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segment detection and calibration to generate the target

detection frame, and then passes the distance information of

the adjacent target detection frame to the STM32

microcontroller through CAN communication. The STM32

microcontroller converts the distance information into a

certain number of pulses of stepper motor 1, stops when

stepper motor 1 rotates the corresponding number of pulses,

and controls stepper motor 2 to rotate once to drive the cutting

mechanism to reciprocate once to complete the cutting action.

In this process, the DC brushless motor always drives the

circular saw blade to maintain a high-speed rotation. The cut

sugarcane stem node slides down the discharge guide into the

collection frame.
2.3 Image recognition system

On the sugarcane machine stand at Anhui Agricultural

University’s Mechanical and Electrical Engineering Park, a

monocular camera of type MV-SUA502C/M-T was used to

acquire sugarcane stem node images of size 1280 × 960 with

white as the background. The monocular camera has a lens focal
Frontiers in Plant Science 04
length of 8mm, a maximum resolution of 2592×1944, and a lens-

to-cane height distance of 500mm (Figure 4). PyCharm2020.3

was used for image processing, and black-skinned sugarcane was

used as the test material. A total of 3000 images were collected

from sugarcane under different conditions such as different light,

with soil and stem node damage. The images captured by the

monocular camera are uploaded to the target detection system,

and the cutting information is transmitted to the cutting system

after a series of operations such as calibration, identification, and

detection. The model used in this study is based on an enhanced

version of YOLOv4-Tiny, which can accurately and quickly

identify and locate sugarcane stem nodes, ensuring the quality

and efficiency of seed cutting.
2.4 Dataset production

In order to enrich the image dataset, better extract the

sugarcane stem node features and improve the generalization

ability of the model, OpenCV was used to augment the data of

the original sugarcane dataset. The rotation angle is randomly

taken as 45° and 135°, and the original image is randomly
FIGURE 3

Design overview of seed cutting mechanism. (A) Sugarcane cutting device (B) Identification system (C) Cutting system.
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mirrored flipped, horizontally flipped and vertically flipped,

cropped and scaled to extend the dataset. The data are

enhanced by image processing techniques such as adjusting

saturation and hue, histogram equalization, and median

filtering. The final dataset has a total of 15,000 images. (Figure 5).

To ensure the correspondence between labels and data and

the uniform distribution of the dataset, the enhanced dataset is

randomly divided into a training set and a test set in the ratio of

9:1. The final data set was stored in the format of PASCAL VOC

dataset, with 13499 samples in the training set and 1501 samples

in the test set. The training set samples include 10,147 normal

sugarcane stem node images, 1,552 broken sugarcane stem node

images and 1,800 muddy sugarcane stem node images. The final

dataset is shown in Table 1.
Frontiers in Plant Science 05
2.5 Model improvements

2.5.1 Enhanced YOLOv4-Tiny model structure
In agriculture, since the target detection system is limited by

the mobile platform, the size of the algorithm is usually limited

and the detection speed is restricted in order to meet the real-

time detection demand. To solve this problem, we found that

YOLOv4-Tiny has only one-tenth of the training parameters of

YOLOv4 and the model is loaded faster, while the measured

speed is about 22fps, which is suitable for field detection. Of

course fewer parameters and faster speed are traded for

accuracy. In order to improve the accuracy, we improved the

YOLOv4-Tiny model.

The new model uses the same data enhancement method as

YOLOv4 on the input side, which increases the training data,

improves the generalization ability of the model, and avoids

model overfitting (Fu et al., 2021). The enhanced YOLOv4-Tiny

uses the CSPDarknet53 (Figure 6) as the backbone feature

extraction network. The feature extraction network consists of

a CBMmodule, two CBL modules and three CSPn modules. The

CBM module consists of convolution, batch normalization and

the Mish activation function, where the Mish function has better

prediction accuracy than the Leaky_ReLU function. The CBL

module is the same as YOLOv4-Tiny, consisting of convolution,

batch normalization and the Leaky_ ReLU function. The

improved model uses the Mish activation function only in the

first step of Backbone logic calculation, and the Leaky_ReLU

activation function is still used later in the network, preserving

the detection speed advantage of YOLOv4-Tiny and improving

the detection accuracy. To obtain faster detection speed, the

CSPn structure is added to the model. This structure is borrowed

from the CSPNet structure and consists of an all-zero padding,
D

A B

C

FIGURE 5

Sugarcane samples. (A) Images captured with normal lighting (B) Images taken under dark light (C) Image of sugarcane with dirt (D) Image of
stem node damage.
FIGURE 4

Schematic diagram of image acquisition.
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three convolutional layers, and n Res unint modules Concat. It

solves the problem of requiring a large number of inference

calculations, reducing the computation by 20% and reducing the

memory footprint while maintaining the same or even higher

accuracy, allowing the model to be applied to embedded devices.

In the field of target detection, for better extraction of fusion

features, usually in the Backbone and output layers, some layers

are inserted, and this part is called Neck. It is equivalent to the

neck of the target detection network and is also very critical.

Different from the original FPN network of YOLOv4-Tiny, in

the Neck part of this paper, the original PANet structure with the

same number of channels is chosen to be used in order to

optimize the memory access and usage, while the cat operation

of the original network is reduced to an add operation. Also, a

bottom-up spatial pyramid pooling (SPP) is added behind the

FPN layer. SPP uses 1×1, 5×5, 9×9, and 13×13 maximum

pooling for multi-scale fusion. It performs a direct fixed-size

pooling of feature maps of arbitrary size to obtain a fixed number

of features. Each pooled feature is then combined to obtain a

fixed number of features of fixed length (the dimensionality of

the feature map is fixed), which can then be fed into the fully

connected layer for training the network. In this way, the FPN

layer conveys strong semantic features (High-Level features)

from the top down, while the feature pyramid conveys shallow

features (Low-Level features) from the bottom up. The

aggregation of parameters from different backbone layers to

different detection layers further improves the feature extraction
Frontiers in Plant Science 06
capability and improves the recognition of broken and mud-

stained sugarcane stems and nodes.

2.5.2 Evaluation index
In order to accurately assess the performance of the model,

Precision, Recall and Average Precision are used as the

evaluation metrics for sugarcane stem node identification.

Recall refers to the probability that the predicted outcome is

also a positive sample (including the predicted negative sample,

but the actual positive sample) among all the actual positive

sample outcomes; Average Precision refers to the area of the P-R

curve using different combinations of Precision and Recall

values. The larger the MAP value is, the better the model effect

is. the formula of Precision and Recall is:

Re call = TP
TP+FN (1)

Pr ecision = TP
TP+FP (2)

MAP =
Z 1

0
(PR)dR (3)

Where TP is the number of positive samples detected, i.e., the

number of stem node samples that were correctly detected; TN is

the number of negative samples detected, i.e., the other parts of the

cane that were not boxed; FN is the number of positive samples

detected as negative samples, i.e., the number of stem nodes that

were not detected; and FP is the number of negative samples

detected as positive samples, i.e., the other areas of the cane that

were detected as stem nodes. Recall and accuracy are based on a

threshold of 0.5, and both AP and F1 scores can be used to
FIGURE 6

Enhanced YOLOv4-Tiny network structure.
TABLE 1 Sugarcane sample quantity.

Dataset Normal sugarcane Damaged sugarcane Sugarcane with mud

Training set 10147 1552 1800

Test set 1128 173 200

Total number 11275 1725 2000
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evaluate the performance of the target detection model, with AP

being the area under the PR curve.
3 Results and discussion

3.1 Model training

The loss value is one of the metrics to measure the

effectiveness of model training. Theoretically, the smaller the

loss value is, the better the training effect of the model is. Figure 7

shows the loss curves during the training period, where different

colors represent different models. From Figure 7, it can be seen

that the model learns more efficiently and the training curve

converges faster in the initial stage of the training of the

sugarcane stem node detection model. After 750 iterations, the

model loss value of the enhanced YOLOv4-Tiny rapidly

converges to below 5.5 and becomes stable after 40,500

iterations. With further training, the slope of the training

curve gradually decreases. Throughout the training process,

Faster-RCNN tested higher loss values than other models. The

enhanced YOLOv4-Tiny loss curve is very close to YOLOv4, but

the fluctuations are smaller than YOLOv4. enhanced YOLOv4-

Tiny converges in a shorter time compared to YOLOv4. This is

because YOLOv4 has more convolutional layers of the network

and requires more time to learn. The enhanced YOLOv4-Tiny

network model decreases the training set loss (total loss) and test

loss (Val loss) as the number of iterations increases. Finally,

when the number of training iterations reaches about 40500, the

learning efficiency of the enhanced YOLOv4-Tiny model

gradually reaches saturation, and the total loss and test loss

values gradually converge, and the final loss value is stabilized at

about 2, which proves that the training results are good.
Frontiers in Plant Science 07
3.2 Model comparative analysis

To verify the effectiveness and advantage of the enhanced

YOLOv4-Tiny sugarcane detection network proposed in this

study for sugarcane target stem node recognition in complex

situations, the current representative target detection networks

Faster-RCNN and YOLO4 were trained with the same dataset

and training parameters for the model and tested on the test set

for comparison. Normal sugarcane, broken sugarcane and

sugarcane with soil are selected in the test set for comparative

recognition detection, and the results of the detection are

compared as shown in Figure 8.

From Figure 8, it can be seen that for sugarcane under

normal conditions, Faster-RCNN, YOLOv4 and the enhanced

YOLOv4-Tiny model proposed in this paper can identify all six

sugarcane stem node targets. Only Faster-RCNN could identify

all the six stem node targets of sugarcane with soil, and both

YOLOv4 and enhanced YOLOv4-Tiny had missed detection and

did not identify the stem node target closest to the root. In

identifying the fifth stem node from the left, the confidence level

of the YOLOv4 model is only 0.52 and that of the enhanced

YOLOv4-Tiny model is only 0.55, both very close to the

threshold. The model Faster-RCNN, on the other hand,

showed repeated marking in identifying the fourth stem node

from the left, incorrectly marking leaf scars and wax powder as

sugarcane stem node. In identifying the six stem node targets

with broken sugarcane node, the enhanced YOLOv4-Tiny target

detection network can identify all six stem node targets, and the

Faster-RCNN detection network can identify four of the six

sugarcane stem node targets. YOLOv4 performs the worst,

identifying only two of the six targets. Due to the small feature

area of the broken stem node, less information can be reflected in

the fixed area, and much feature information of the stem node
FIGURE 7

Model training loss value change trend diagram.
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has been lost after multiple down sampling during feature

extraction by the convolutional neural network, resulting in

the missed detection of stem targets. The enhanced YOLOv4-

Tiny also adds a bottom-up feature pyramid behind the FPN

layer, which contains two PAN structures. This allows parameter

aggregation of different detection layers from different backbone

layers to further improve the feature extraction capability.

Experiments show that the enhanced YOLOv4-Tiny performs

better for the detection of broken sugarcane stem node.

In the actual sugarcane cutting environment, sugarcane stem

node is often damaged and sticky due to the environment and

harvesting method, which makes detection and identification

difficult. The enhanced YOLOv4-Tiny target detection network

proposed in this paper can correctly identify the stem node

targets in the case of breakage with high recognition rate and can

also achieve 84.4% recognition rate for the stem node targets

with soil. In contrast, the Faster-RCNN and YOLOv4 detection

networks have a lower recognition rate for broken sugarcane

targets. The training results show that the enhanced YOLOv4-

Tiny is more accurate than the other two models in detecting

stem-node targets in different situations.

As can be seen in Figure 9, the enhanced YOLOv4-Tiny can

achieve a detection speed of 4.60 fps with the same CPU

computation, which is 13.5 times faster than Yolov4 and 115

times faster than Faster-RCNN. With the same GPU computing,

the enhanced YOLOv4-Tiny can achieve a detection speed of

29.02 fps, which is nearly 2 times faster than YOLOv4’s detection

speed and nearly 10 times faster than Faster-RCNN. The

enhanced YOLOv4-Tiny has significantly improved detection

speed compared to other models under CPU computing and

GPU computing, respectively, and also ensures detection

accuracy. The detection speed of the model is much higher

than that of the CPU under GPU computing, where the

detection speed of Faster-RCNN under GPU computing is
Frontiers in Plant Science 08
nearly 75 times faster than that of the CPU, and the detection

speed of YOLOv4 under GPU computing is 41 times faster than

that of the CPU. The speed of YOLOv4-Tiny is 29.02 frames/s

under GPU computing and 4.60 frames/s under CPU

computing, a difference of six times. Since the size of the

model proposed in this paper is only 48MB, the complexity of

the model is greatly reduced while ensuring the detection

accuracy, and the advantage of GPU computing is not

obvious. However, the GPU was initially designed to handle

the rendering of graphic images, using a large number of small

cores to operate simultaneously to speed up the operation. For

the same amount of time, the training error can be reduced to an

acceptable value with the GPU, while the training error remains

high with the CPU.

In this paper, the test results of the validation set were

statistically analyzed using the formula in Section 2.5.2, and the

results are shown in Table 2. The accuracy, detection speed and

MAP of the improved model are improved to different degrees.

The detection accuracy of the enhanced YOLOv4-Tiny model

reaches 97.07%, which is 35.89% higher than Faster-RCNN and

8.94% higher than YOLOv4. In terms of processing accuracy, the

dataset in this study is manually captured images. Therefore, the

background information is relatively simple. Under slightly

more complex background conditions, the accuracy may be

reduced. Similarly, the enhanced YOLOv4-Tiny model has a

higher MAP value of 99.11% than the Faster-RCNNmodel value

of 95.19% and the YOLOv4 model value of 90.73%. Along with

the increase in accuracy and MAP, the enhanced YOLOv4-Tiny

model also improves the average arithmetic speed. The average

arithmetic speed of the enhanced YOLOv4-Tiny is 30 frames/s,

which is twice that of YOLOv4 and 10 times that of Faster-

RCNN. This significantly improves the detection speed of the

model, which can recognize more stem node images and detect

more sugarcane the same time, greatly improving the work
A

B

C

FIGURE 8

Sugarcane target recognition under different models. (A) Faster RCNN (B) YOLOv4 (C) Enhanced YOLOv4-Tiny.
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efficiency. The enhanced YOLO4-Tiny model achieves 97.07%

detection accuracy and 98.46% recall, which is a very small

compared with 98.85% of Faster-RCNN and 98.62% recall of

YOLOv4. Based on the guaranteed accuracy, the complexity of

the model is an important factor affecting the detection speed.

The complexity of the enhanced YOLOv4-Tiny model is greatly

reduced, and the size of the improved model is only 48MB,

which is much smaller than the 265MB of Faster-RCNN and

245MB of YOLOv4, and it is a lightweight detection network,

which is suitable for embedded development, and the model

inference speed also ensures the feasibility of real-time detection

and is suitable for agricultural platform. The results of the

experiments show that the enhanced YOLOv4-Tiny network

proposed in this paper with high accuracy and speed.

To clarify the predicted results of the 3 models for the

sugarcane categories under different scenarios, the values of

the indicators in the above table are represented using bar charts:

Combined analysis of the bar comparison graphs of the above

three model evaluation metrics, for Figure 10, the green region True

Positives refers to samples that are correctly detected by the model

and predicted to be positive classes with the intersection ratio

greater than the threshold; the red region False Positives refers to

false detections, which are predicted to be positive by the model, but

the intersection ratio is less than the threshold or incorrectly

classified. The larger the green area is relative to the red area, the
Frontiers in Plant Science 09
better the model detection is. Among the three models, for the same

number of targets, the Faster-RCNN target detection network

correctly detected the sugarcane target 8240 times and incorrectly

detected 5229 times, with a ratio of 1.57; the YOLOv4 detection

network correctly detected 8274 times and incorrectly detected

1170 times, with a ratio of 7.07; while the enhanced YOLOv4-Tiny

model proposed in this paper can correctly detect the cane 8267

times correctly and 566 times incorrectly, with a ratio as high as

14.61, which is much higher than the other two detection models.

The more correct detections and the fewer incorrect detections of

the detection network, the higher the detection accuracy of the

model, the lower the probability of wrong and missed detections,

and the model is more suitable for practical applications.

Figure 11 shows the false detection rate of the three target

detection networks for sugarcane stem node recognition, and this

value is an important detection index for detecting the effectiveness

of network determination, and the smaller the value is, the better

the detection is. In the histogram of the three target detection

networks, the false detection rate of the Faster-RCNN model and

the YOLOv4model is as high as 0.19, while the enhanced YOLOv4-

Tiny model has a false detection rate of only 0.04, which is one

order of magnitude better than the other two network models.

The experimental results showed that the overall detection of

sugarcane stem node was better for the faster detection model

Faster-RCNN, but its AP value of 90.73% was lower than that of
TABLE 2 Comprehensive comparison of different detection networks for sugarcane stem node detection.

Network Model Precision/% Recall/% Mean operation Rate/% Model size/MB MAP/%

Faster-RCNN 61.18 98.85 3 265 90.73

YOLOv4 88.13 98.62 15 245 95.19

Enhanced YOLOv4-Tiny 97.07 98.46 30 48 99.11
front
FIGURE 9

Recognition speed of sugarcane targets in different models under CPU and GPU.
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98.68% for Yolov4 and 99.19% for the enhanced YOLOv4-Tiny.

This difference was mainly in the poorer detection of broken stem

node, stem node under darker light and soil-stained stem node.

This may be due to the fact that Faster-RCNN does not build an

image feature pyramid, and the extracted feature MAPs are single-

layered and have smaller resolutions regardless of whether VGGNet

or ResNet is used. Therefore, the detection accuracy is lower for

broken stem node, stem node under darker lighting and stem node

stained with soil. Meanwhile, Faster-RCNN uses NMS (Non-

Maximum Suppression) for post-processing when RPN generates

Proposal in order to avoid overlapping candidate frames with

classification scores. In fact, the method is unfriendly to obscure

targets, especially sugarcane in harvesting, the stem node near the

roots tend to sticky soil, i.e., Proposal with two possible targets is

likely to be filtered out one, resulting in missed detection.

We strictly control the relevant parameters of the

experiments, use a uniform image size (608 × 608) as input,

and use a uniform training and test set for testing. The final

results are shown in Table 2 and Figure 12. Figure 12 shows the

PR curve for each model, which is a two-dimensional curve with

precision and recall as vertical and horizontal coordinates.

Intuitively, it can be seen that the curve area of the enhanced

YOLOv4-Tiny model and the YOLOv4 model is larger than that

of the Faster- RCNN target detection model, indicating that the
Frontiers in Plant Science 10
enhanced YOLOv4-Tiny model has higher average precision.

When the Recall values of the three models were less than 0.1,

the Precision values were maintained around 1.0, and the

differences were not significant. However, with the increase in

Recall value, the advantages of YOLOv4 and enhanced

YOLOv4-Tiny models are gradually obvious, and the Precision

values are very stable and do not change much.
3.3 Analysis of test results

Five black-skinned sugarcane were randomly selected from

each group, for a total of 10 groups. Among the selected

experimental sugarcane samples, the tops of sugarcane that

could not be used as seeds, some with clods of mud or stem

node already bearing damage were removed. The experiment

was conducted in a place with good light conditions to reduce

the effect of light on the experiment (Figure 13). The experiment

was conducted by recording the total number of stems and the

number of finished stems (divided into normal, damaged and

mud-blocked stems) in each group to obtain the actual cutting

rate, and the experimental results are shown in Table 3.

As can be seen from Table 3, the accuracy of the 10 groups of

experiments ranged from 96.25% to 100%, with an average
FIGURE 11

False detection rate of sugarcane stem segment recognition under different models.
FIGURE 10

Identification and detection effect of sugarcane stem segment under different models.
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accuracy of 98.64%. The enhanced model recognized 100% of

normal sugarcane stem node and missed cutting for both broken

sugarcane stem node and sugarcane stem node with mud lumps.

The experiments showed that there were two major reasons for

the occurrence of missed cuts.
Fron
(1) Sugarcane stem nodes are badly broken and the target

cannot be detected.

(2) Soil obscuring sugarcane stem nodes, or misidentifying

soil as stem nodes.
4 Conclusions and future research

In this study, an enhanced YOLOv4-Tiny model-based

sugarcane stem node recognition system is designed based on

the information of sugarcane stem node characteristics. The
tiers in Plant Science 11
stem node target detection system realizes the acquisition and

recognition of sugarcane stem node information by the device

through the enhanced YOLOv4-Tiny model structure. In this

paper, normal sugarcane stem nodes, broken sugarcane stem

nodes and sugarcane stem nodes with soil image datasets were

produced according to the actual operating environment in the

field, and tested using Faster-RCNN, YOLOv4, and enhanced

YOLOv4-Tiny models, respectively. The experimental results

show that, compared with the Faster-RCNN algorithm and

YOLOv4 algorithm, the enhanced YOLOv4-Tiny algorithm

yielded an average mean accuracy (mAP) of 99.11%, a

detection accuracy of 97.07%, and a transmission frame per

second (fps) of 30, which can detect and identify sugarcane stem

nodes quickly and accurately. After model training and

experimental testing, the enhanced YOLOv4-Tiny detection

model structure is better than Faster-RCNN and YOLOv4

deep learning models, and the results of this paper have

important application value for advancing the development of
FIGURE 12

Contrast experimental PR curve.
A B C

FIGURE 13

Sugarcane cutting test process. (A) Sugarcane conveying feed; (B) Sugarcane node calibration; (C) Sugarcane cutting.
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sugarcane pre-cut seeds and promoting the development of

sugarcane planting technology.

The model studied in this paper showed a missed detection

of sugarcane stem nodes with soil, and future work is needed to

improve the recognition accuracy of stem nodes with soil,

especially those near the roots. There is a need to test the

effect of lighting on the detection effect and to test the

accuracy of the model for recognizing sugarcane stem nodes

with different epidermal colors. In this paper, sugarcane stripped

of its stems and leaves is used as the research object, which

requires advance processing of sugarcane for de-stemming, and

the processing is labor-intensive and inefficient. In future work,

the sugarcane stem node recognition when the stems and leaves

are retained can be studied.
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