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Introduction: Fruit detection is one of the key functions of an automatic

picking robot, but fruit detection accuracy is seriously decreased when fruits

are against a disordered background and in the shade of other objects, as is

commmon in a complex orchard environment.

Methods: Here, an effective mode based on YOLOv5, namely YOLO-P, was

proposed to detect pears quickly and accurately. Shuffle block was used to replace

the Conv, Batch Norm, SiLU (CBS) structure of the second and third stages in the

YOLOv5 backbone, while the inverted shuffle block was designed to replace the

fourth stage’s CBS structure. The new backbone could extract features of pears from

a long distancemore efficiently. A convolutional block attentionmodule (CBAM) was

inserted into the reconstructed backbone to improve the robot’s ability to capture

pears’ key features. Hard-Swish was used to replace the activation functions in other

CBS structures in the whole YOLOv5 network. A weighted confidence loss function

was designed to enhance the detection effect of small targets.

Result: At last, model comparison experiments, ablation experiments, and daytime

and nighttime pear detection experiments were carried out. In the model

comparison experiments, the detection effect of YOLO-P was better than other

lightweight networks. The results showed that themodule’s average precision (AP)

was 97.6%, which was 1.8% higher than the precision of the original YOLOv5s. The

model volume had been compressed by 39.4%, from 13.7MB to only 8.3MB.

Ablation experiments verified the effectiveness of the proposed method. In the

daytime and nighttime pear detection experiments, an embedded industrial

computer was used to test the performance of YOLO-P against backgrounds of

different complexities and when fruits are in different degrees of shade.

Discussion: The results showed that YOLO-P achieved the highest F1 score

(96.1%) and frames per second (FPS) (32 FPS). It was sufficient for the picking

robot to quickly and accurately detect pears in orchards. The proposedmethod

can quickly and accurately detect pears in unstructured environments. YOLO-P

provides support for automated pear picking and can be a reference for other

types of fruit detection in similar environments.
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1 Introduction

Pears are a common fruit which have rich nutrition and

good taste. China grows the most pear trees, with a pear tree

planting area that accounts for 67.30% of the global total pear

tree planting area (Food and Agriculture Organization of the

United Nations, 2022). However, the continuous loss of

agricultural labor in recent years has led to a substantial

increase in the cost of manual picking. The problem became

more prominent after the COVID-19 pandemic (Nawaz et al.,

2021). Therefore, efficient picking machines are a current

research focus and an area of importance in orchard

intelligence. Automated picking can increase the income of

fruit farmers and promote economic development (Galvan

et al., 2022).

Fruit detection is one of the most important steps for

orchard picking robots working autonomously. At present,

some scholars have used machine learning methods, especially

based on color features, to detect fruits which are significantly

different from the background color. For example, Si et al. (2010)

proposed a method based on the red–green differential

separation which used the contour formed by the shape of

fruit to segment the red apple and green background. But this

method is no longer effective when the target is similar to the

background color, because some fruits (like some varieties of

apples and mangoes) are green even when they are ripe. Xiang

et al. (2012) used the curvature of overlapping tomato boundary

lines to detect shaded tomatoes, but the accuracy for large

shaded areas was only 76.9%. Compared with the deep

learning technology that has developed rapidly in recent years,

traditional machine learning methods exposed more limitations,

such as low speed, low detection accuracy, and poor universality.

Also, the designed algorithm can detect only a single target. As

far as computers are concerned, the low-level features that

machine learning uses are difficult to extract deep semantic

information (Arrieta et al., 2020), making it unsuitable for online

equipment and fruit detection in the complex and changeable

environment of orchards.

Deep learning technology has been widely used in target

detection in orchards. Object detection based on deep learning is

mainly divided into a two-stage algorithm and a one-stage

algorithm. Two-stage algorithms have been extensively studied

due to high accuracy in the field of agriculture. Zhang et al.

(2020) developed a detection system for apples and branches

based on VGG-19 and Faster R-CNN for the vibration harvest.

The mean average precision (mAP) for detecting apples was

82.4% and the fitting degree to the branches and trunks was over

90%. Tu et al. (2020) used a red, green, blue plus depth (RGB-D)

camera to obtain the red, green, blue (RGB) image and depth

information of passion fruit and combine them. A multi-scale-

based Faster Region-based Convolutional Neural Network (R-

CNN) network (MS-FRCNN) was proposed, which achieved an

F1 score of 90.9%. Yan et al. (2019) improved the Region of
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interest (ROI) pooling layer of Faster R-CNN and combined

VGG16 to detect 11 types of Rosa roxbunghii with different

shapes; an average precision of 92.01% was obtained. The

accuracy of two-stage detection is high. However, the huge

number of parameters leads to increased computation costs

and decreased detection speeds, which make it difficult to

apply to online detection tasks.

The one-stage detection algorithm can greatly improve

detection speed while maintaining detection accuracy because

there is no process of generating candidate regions. Peng et al.

(2018) used ResNet-101 to improve Single shot detector (SSD)

for four kinds of fruit detection: citrus, apple, orange, and lychee.

Compared with the original SSD, the average accuracy increased

by 3.15%, and performance improved in shaded conditions. The

“You Only Look Once” (Redmon et al., 2016; Redmon and

Farhadi, 2017; Redmon and Farhadi, 2018; and Bochkovskiy

et al., 2020) series of algorithms was born in 2015. This series has

reached its fifth iteration and shows the trend and potential of

continuous updating and strengthening. Due to the continuous

integration of the latest network optimization tricks, both speed

and accuracy can be maintained at a high level. The YOLO

algorithm is considered to be one of the most successful one-

stage detection networks. Bresilla et al., 2019 established an apple

detection model based on YOLOv2. By adding computer-drawn

images to assist training, the author found that synthesized

images can reduce the position loss of the network and better

locate the target. Pear detection was performed by transfer

learning and the model achieved an F1 score of 0.87%. Liu

et al. (2022) improved YOLOv3 to detect pineapples and

calculated the 3D coordinates based on binocular vision

cameras. The average precision (AP) value of fruit detection

was 97.55% and the average relative error of binocular camera

positioning was 24.4 mm. Xu et al. (2020) improved the

backbone of YOLOv3, modified the batch normalization layer

to group normalization, and used Soft-NMS to replace the

original network management system (NMS) bounding box

filter. The author proposed an image enhancement method to

improve backlit images. The model finally got an F1 score of

97.7%. Parico and Ahamed (2021) improved YOLOv4, realizing

fruit counting through a unique identity document (ID) method,

which could meet the requirements of online operation. Zheng

et al. (2022) used the improved YOLOv4 to detect tomatoes in a

natural environment, and accuracy was improved by 1.52%

compared with the original model. Jiang et al. (2022)

integrated a non-local attention module and a convolutional

block attention module (CBAM) into YOLOv4 to detect growing

apples. Improved extraction ability of advanced features and

perception of regions of interest. The test achieved an AP of

97.2%. Lu et al. (2022) used the improved YOLOv4 to calculate

the number and the size of fruits on the whole apple tree. The

network had the highest detection rate during fruit picking. This

research enhanced the management ability of fruit trees. Zhang

et al. (2022) proposed real-time strawberry detection network
frontiersin.org
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(RTSD-Net) by improving YOLOv4-tiny’s cross stage partial

network (CSPNet). The detection of strawberries with the

embedded system Jetson Nano had a detection speed of 25.2

FPS; hence, the real-time performance of the network was good.

Chen et al. (2022) used YOLOv5 to detect citrus fruits and

proposed a citrus ripeness detection algorithm that combined

visual saliency with residual network (RESNet)-34. The accuracy

of the model could reach 95.07%. Yan et al. (2021) used an

improved YOLOv5 to detect apples and judge whether the fruit

could be grasped by the picking machine. The model obtained a

mAP of 86.75% and an F1 score of 87.49%. Yao et al. (2021)

improved YOLOv5 by adding a small object detection layer,

inserting a squeeze and excitation (SE) layer, and using a

complete intersection over union (CIoU) loss function. The

model achieved a mAP of 94.7% in an experiment detecting

kiwifruit defects. Sozzi et al. (2022) utilized multiple networks to

detect white grapes under different lighting conditions, against

different backgrounds, and at different growth stages. The F1

score of YOLOv5x in the experiment was 0.76% and the

detection speed was 31 FPS. Summarizing the above studies,

using a one-stage algorithm such as YOLOv5 has become the

most common method of fruit detection. However, the detection

speed and accuracy of the network is still one of the problems to

be solved urgently, and the existing research rarely considers the

complex natural environment of the orchard.

YOLOv5 can achieve good results in datasets such as

PASCAL VOC (Everingham et al., 2015) and COCO (Lin

et al., 2014). However, for detection tasks in agriculture, the

complete YOLOv5 network produces more performance

redundancy. Even the light version of YOLOv5s struggles to

achieve satisfactory results in orchards. At the same time, the

background in orchards can be complex and fruits are easily

shaded by other objects. The nighttime environment also has a

significant impact on the effectiveness of detection. The existing
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YOLOv5 algorithm is facing great challenges, especially in low-

performance devices, such as industrial computers, in online

detection. Therefore, the purpose of this research was to design

the YOLO-P network for fast and efficient detection of pears

against complex backgrounds, in shade and during night

picking. This method was based on YOLOv5. We designed a

new module, named an inverted shuffle block, which can be

applied in deeper layers to solve the problem of small targets

missing in detection. We replaced some of the CBS structure in

the YOLOv5 backbone with a shuffle block and an inverted

shuffle block to form a new backbone. A CBAM was inserted

into the new backbone to improve the ability to capture key

features of pears. In addition, the activation functions in the

remaining CBS of the entire network were replaced by Hard-

Swish to improve the running speed. The detection effect of this

method had been verified under different degrees of shade and

background complexity during daytime and nighttime. YOLO-P

can be used for fast and accurate detection of pears in orchards

and can a references for other types of fruit detection in

similar environments.
2 Pear detection framework

As one of the most mature, stable, and effective target

detection algorithms currently available, YOLOv5 consists of

three main parts: a backbone network, neck network, and

classifier. The backbone is cross stage partial (CSP)-

DarkNet53, which is used to extract different scale feature

information from images. The neck network is path

aggregation network (PANet) (Liu et al., 2018) with feature

pyramid network (FPN), which is used to fuse feature

information. The classifier outputs bounding boxes of large,

medium, and small scales to complete the target detection. The
FIGURE 1

The network structure of YOLO-P.
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YOLO-P method proposed in this paper is based on YOLOv5

and the structure is shown in Figure 1. The CBS structure in the

second and third stages of the YOLOv5 backbone were replaced

with a shuffle block. An inverted shuffle block was designed and

used to replace the CBS structure of the fourth stage. This new

backbone could extract features of distant pears in images more

efficiently. CBAM was inserted in the new backbone to improve

the important information perception capability of pears. The

sigmoid linear unit (SiLU) activation function in the rest of the

CBS structure was replaced with Hard-Swish to improve the

running speed of the network. A weighted confidence loss

function was designed to strengthen the detection effect of

small targets. The details of the improvements are

described below.
2.1 Backbone network

Ma et al. (2018) proposed that making the input and output

feature maps equal, reducing convolution and element-wise

operations, and integrating the network structure would help

improve the inference speed of the network. Tan and Le (2020)

suggested that increasing the depth of the network could result

in richer features but may cause gradients to disappear.

Increasing the width of the network results in finer-grained

features, but it may fail to learn deep features. Therefore, it is

necessary to balance the depth and width of the network to

achieve the best results. Figure 2 shows the backbone of YOLO-

P, built following the above lightweight network design

principles, and lists the size of the output feature map

(C×H×W). The input image size of the network is

3 × 640 × 640. The first stage is downsampling through two

convolutional layers to obtain a feature map with a size of

64 × 160 × 160. The second and third stages use the shuffle block

to extract features in the middle and shallow layers and

downsample twice to obtain a feature map with a size of

256 × 40 × 40. The fourth stage uses the inverted shuffle block

to extract features in deeper layers of the network and

downsamples to obtain a 512 × 20 ×20 feature map. The fifth

stage uses the improved spatial pyramid polling (SPPF) module
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in the deepest layer of the network to fuse the receptive field

information of different scales. Finally, the SPPF output of the

fifth stage and the output after the third and fourth stages’

CBAMs are sent to the neck network of YOLO-P.

2.1.1 Feature extraction
The CSP-DarkNet53 of the YOLOv5 backbone uses a large

number of CBS (Conv, Batch Norm, SiLU) structures which are

suitable for target detection of complex features. However, this

combination occupies a large amount of computation, and it is

difficult for the application to run online in embedded devices.

Therefore, this part needed to be optimized first. Xie et al. (2017)

proposed the concept of group convolution in ResNeXt, which

can effectively reduce the computational load of the network, as

shown in Figure 3A. But there was no information exchange

between groups and reduced the feature extraction ability. Based

on the idea of group convolution, Ma et al. (2018) proposed a

lightweight neural network ShuffleNetv2 that added channel

shuffle in shuffle block. Figure 3B shows the group convolution

process with channel shuffle. The channels between groups are

shuffled before output. The resulting information exchange

enables feature extraction to be done more efficiently.

2.1.1.1 Shuffle block

The shuffle block includes two cases where the stride is 1 and

2, respectively, as shown in Figure 4. First, the input feature

matrix channels was divided into two groups by channel split

and pass through two branches. If stride was 1, a residual

structure containing 1×1Conv, 3×3DwConv and 1×1Conv in

one branch was performed. If stride was 2 (downsampling), an

additional 3×3DwConv and a 1×1Conv on the other branch was

performed. The two branches were concatenated and the feature

map was outputted through channel shuffle.
2.1.1.2 Inverted shuffle block

The residual structure in CSP-DarkNet53 is shown in

Figure 5A. First, increases the dimension of the feature map

increased and the dimension was reduced to extract features.

However, there could be more zeros in the convolution kernel’s
FIGURE 2

YOLO-P’s backbone. k is convolutional kernel size, s is stride, and n is the number of module’s repetitions. Unspecified k is 3, s is 1, and n is 1.
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parameter of deeper layers. Directly increasing dimension brings

difficulties to deep layers’ feature extraction. In MobileNet

(Howard et al., 2017), an inverted residual structure that first

reduced the dimension of the feature map and then increased the

dimension was proposed to extract more information, as shown

in Figure 5B. Inspired by lightweight networks such as

ShuffleNet and MobileNet, this study designed the inverted

shuffle block used in deeper layers of network (the fourth

stage of backbone), as shown in Figures 5C, D. The reversed

structure made it easier to extract features from small objects. It

was similar to shuffle block, but the residual structure of the

branch was changed to an inverted residual structure. Similarly,

if the stride was 2 (downsampling), an additional 3×3DwConv

and a PwConv on the branch of the inverted residual structure

was performed. The two branches were concatenated together

and output the feature map was outputted through

channel shuffle.
Frontiers in Plant Science 05
2.1.2 Attention module
Attention mechanism is a way to reinforce important

information and suppress secondary information in a neural

network. Application in the field of image object detection had

proved attention mechanism’s effectiveness. The CBAM is a

lightweight soft attention module that is divided into channel

and spatial parts (Woo et al., 2018). The channel attention

module (CAM) when the inputs were C × H × W is shown in

Figure 6A. We then performed global average pooling (GAP)

and global maximum pooling (GMP) to the feature map in order

to obtain two C × 1 × 1 feature matrices and send them to a

multi-layer perceptron which has two layers. This was then

summed and activated to get the channel attention vector. CAM

focuses on what is in the feature map. The Spatial Attention

Module (SAM) is shown in Figure 6B; we then performed GAP

and GMP on the channel dimensions of the feature map to

obtain a 2 × H × W feature matrix, then a 7 × 7 convolutional
A B

FIGURE 4

(A) Shuffle Block (s=1); (B) Shuffle Block (s=2). a * b means the width and height of the convolution kernel.
A B

FIGURE 3

(A) Group Convolution; (B) Group Convolution with Channel Shuffle.
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layer and activation to get a 1 × H × W spatial attention vector.

The purpose of SAM is to more prominently express the

characteristics of key regions. Each pixel of the feature map

generates a weighted mask and outputs it, which reinforces

where the key target is. Figure 6C shows CBAM. The channel

attention vector obtained by CAM was first multiplied with

input feature map. Then the resulting feature map was
Frontiers in Plant Science 06
multiplied by spatial attention matrix obtained by SAM.

Finally, the output of CBAM is obtained through the residual

structure. The sequence of using CAM and then SAM to correct

the feature maps was based on the characteristics of the human

cerebral cortex, Woo et al. (2018) experiments also verified this.

We applied CBAM to the second, third, and fourth stages of

YOLO-P’s backbone. Following experiments by Park et al.
A

B

C

FIGURE 6

Schematic diagram of the CBAM structure in YOLO-P. (A) Channel Attention Module (CAM) (B) Spatial Attention Module (SAM) (C) Convolutional
Block Attention Module (CBAM).
DA B C

FIGURE 5

(A) Residual Block; (B) Inverted Residual Block; (C) Inverted Shuffle Block (s=1); (D) Inverted Shuffle Block (s=2). a * b means the width and
height of the convolution kernel.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1089454
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sun et al. 10.3389/fpls.2022.1089454
(2018), we inserted the attention module at the bottleneck of the

network, i.e., before the downsampling layer. We then connected

the output of CBAM to the neck network of YOLO-P for better

feature fusion.
2.2 Activation function

The activation function of the network was mainly improved

in two aspects. First was to replace the SiLU activation function

for all CBS structures in YOLOv5 with Hard-Swish, and the

second was to use the linear activation function for the last

convolution layer in the inverted shuffle block.

First, all CBS structures in YOLOv5 used SiLU as an

activation function. For the network applied to embedded

devices, obviously the linear activation function could make

the network faster. Hard-Swish (Howard et al., 2019) activation

function was bounded up and down. The non-monotonic and

piecewise linear characteristics reduced the amount of

calculation. It was beneficial to eliminate saturation and make

the feature expression ability better. All Conv, Batch Norm,

Hard-swish (CBH) structures in YOLO-P’s backbone and neck

network used Hard-Swish as an activation function. Equation

(1) is the Hard-Swish expression where xin represents the input

of the activation function. Second, ReLU was used as an

activation function after most convolutional layers in the

original shuffle block. However, due to the inverted residual

structure of the inverted shuffle block, first an increase in

dimension and then a reduction in dimension made the final

output a low-dimensional feature vector. Although ReLU can

better express high-dimensional features, it has serious loss of

low-dimensional feature information (Sandler et al., 2018). In

order to ensure the feature information was not lost and to better

match the complete output of the inverted residual, each branch

of the last convolutional layer of inverted shuffle block’s used a

linear activation function.

Hard-SwishðxinÞ ¼xin
ReLU6ðxin + 3)

6
(1)

ReLU6ðxinÞ ¼min (max (xin, 0), 6) (2)
2.3 Loss function

Since the detection target type of the model was only pear,

we did not set the class loss. The loss function of YOLO-P

consists of confidence loss and location loss. Equation 3 shows

confidence loss which was used to measure the probability that

the predicted bounding box contained the real target. It was

calculated by using binary cross entropy (BCE). In In Equations

3 and 4, I is the intersection area of the ground-truth box and

predicted bounding box, U is the area of the union, Ci is the
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prediction confidence, N is the total number of samples, and spl

represents all samples. According to the structure of the YOLO-

P predictor, different weights K1, K2, and K3 are adopted on the

three prediction layers of small, medium, and large to strengthen

the targets’ detection ability of different scales. The confidence

loss is shown in Equation 5. Since pears with a greater distance

(small objects on the image) are more difficult to detect, we took

K1, K2, and K3 as 6.0, 1.0, and 0.5 in YOLO-P, respectively.

L
0
conf = −

o
i∈spl

(
I
U
ln (C

0
i) + (1 −

I
U
) ln (1 − C

0
i))

N
(3)

C
0
i = sigmoidðCi) (4)

Lconf = 6:0 · Lsmall
conf + 1:0 · Lmedium

conf + 0:5 · Llargeconf (5)

The location loss measures the location error between

predicted bounding box and ground-truth box. Zheng et al.

(2020) pointed out that the regression loss of bounding box

should take the overlapping area, the distance between center

points of the box, and the aspect ratio into account. In this study,

we used CIoU loss as the location loss of YOLO-P, as shown in

Equations 6–8, where wgt and bgt are the length and width of

ground-truth box, wp and bp are the length and width of the

predicted bounding box, d is the Euclidean distance between the

predicted box and the ground-truth box, and c is the diagonal

distance of the union of the predicted box and the ground-truth

box. The CIoU loss can directly minimize the distance between

two boxes (Zheng et al., 2020), so it has a faster convergence rate.

Lloc = 1 − (
I
U

− (
d2

c2
+ av)) (6)

a =
v

(1 − I
U ) + v

(7)

v =
4
p
( arctan

wgt

bgt
− arctan

wp

bp
)2 (8)

Combined with confidence loss and location loss, the loss

function of YOLO-P is shown in Equation 9.

Loss = Lconf + Lloc (9)
3 Experiments

3.1 Dataset

Images required for the experiment were collected at a pear

planting base located in Gaochun District, Nanjing City, Jiangsu

Province, China. In this research, Akidzuki pears were used as

detection targets. In August 2022, images were captured using a
frontiersin.org
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Sony FDR-AX60 4K camera with a sensor type of 1/2.5 stacked

complementary metal-oxide-semiconductor (CMOS), and a

total of 533 images containing Akidzuki pears were captured

as training samples while 118 images different from the training

samples were taken for model testing. In addition to normal

daytime lighting, the dataset also contained samples at night.

The images at night were taken with the aid of a 1000 lm light

source. Images contained shaded pears and complex

backgrounds. We used ImageLabel to annotate images and

perform data augmentation by randomly selecting three of the

following augmentation strategies: (1) 50% probability of

horizontal mirror flip, (2) 50% probability of vertical mirror

flip, (3) random scaling 80–95%, (4) random brightness

adjustment to 35–150%, (5) randomly added Gaussian blur, or

(6) randomly added Gaussian noise. The images that could not

be used for training were eliminated, and the training dataset

was finally expanded to 5257 images. The expanded image

inherited the previous annotations with 55496 labels in total.

According to the ratio of 8 : 2, the dataset was divided into a

training set and a validation set, which had 4206 and 1051

images, respectively. All images were stored in JPG format. The

details of the dataset are shown in Table 1.

The difference in the distance between the camera and the

pear will result in different scales of the collected images. The

further the distance, the smaller the target. At this time, most

areas of the image will be covered by useless background and

increase the image’s background complexity. The disordered

background in the orchard makes it more challenging for the

model to detect objects. Also, the number of smaller objects will

increase significantly. According to the distance between the

camera and the fruit, we divided the background of the image

into three cases: uncomplicated, moderately complicated, and

extremely complicated. Among them, the distance of 0.3–0.5 m

was set for uncomplicated, while 0.5–1 m for moderately

complicated, and farther than 1m for extremely complicated.

The pears on the fruit trees photographed by camera were

sometimes shaded by leaves or other objects, and there were also

cases where the pears might be shaded by each other. The shaded

target would bring difficulties to detection. In order to

specifically verify the reliability of YOLO-P in detecting such

targets, we proposed a method for calculating the pears’ shaded

degree. Ks was used to evaluate the degree of shade, which was

the ratio of the shaded area to the total area of the pear in images.

According to our previous experiments, it was extremely difficult

to detect when Ks was higher than 0.6, so only the case of Ks< 0.6

was considered in this study, as shown in Table 2.
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3.2 Experimental environment and
parameters

Training of YOLO-P was carried out in a Windows 10

environment. The graphics processing unit (GPU) was Nvidia

GeForce RTX 3060, the central processing unit (CPU) was AMD

Ryzen 7 5800, and the memory was 32 GB. We used the

Pytorch1.8.1 framework, CUDA 11.1 computing platform and

CUDNN 8.1 deep neural network acceleration library.

The momentum decay and weight decay of all models

during training were designed to be 0.9 and 0.0005,

respectively, and the initial learning rate was 0.01. At the same

time, the cosine annealing algorithm was used to optimize the

learning rate. We used three rounds of epoch to warmup in

order to stabilize the early training model. The warmup

momentum was 0.8 and the batch size was set to 32. We used

Adam as the optimizer with 500 training epochs. To prevent

overfitting, the model would automatically stop training if there

was no accuracy improvement in the last 50 training epochs.
3.3 Evaluation indicators

A variety of indicators could be used to evaluate the quality

of the model in different experimental contexts, such as precision

(P), recall (R), F1 score, AP, mAP, FPS, FLOPs, model volume,

etc. The higher the P, R, F1 score, and AP, the more reliable the

model would be. Their computation consists of true positives

(TP), false positives (FP), and false negatives (FN), as shown in

Equations 10-13 respectively. The intersection over union (IoU)

threshold in AP took 0.5 (AP@0.5). It is worth mentioning that

there was only one category of pears in this study, so AP and

mAP were equal.

P =
TP

TP + FP
(10)

R =
TP

TP + FN
(11)

F1 =
2PR
P + R

(12)

AP =
Z 1

0
P(R)dR (13)
TABLE 1 Details of the pear image dataset.

Uncomplicated
background

Moderately complex
background

Extremely complex
background Daytime Nighttime Total

images

Number of
images

1209 1630 2418 3680 1577 5257
f
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Model volume refers to the size of weight file obtained after

training. FPS refers to the number of images the model can

process per second. FLOPs is the total floating-point operations

of the model, as shown in Equation (14), where N represents all

convolutional layers, Li and Ci are the output feature layer size

and number of channels of the current layer, respectively, Ki is

the number of convolution kernels of the current layer, and Ci-1

is the number of input channels of the current layer. Like the

model volume, the higher the FLOPs and the more complex the

model, the slower the operation speed and the lower the FPS.

FLOPs ¼ o
i∈½1,N�

L2i � K2
i � Ci � Ci−1 (14)
3.4 Experiments results

3.4.1 Model comparison experiments
Since YOLO-P is a one-stage model, the purpose is to run at

high speed on low-performance devices, so it is not meaningful

to compare with the two-stage model. We selected several

mainstream lightweight networks including RegNet,

MobileNetv3, and EfficientNetv2 to compare with YOLO-P.

RegNet (Radosavovic et al., 2020) optimized design space of

the network to obtain optimal solution. MobileNetv3 (Howard

et al., 2019) added squeeze excitation attention to the inverted

residual module, and reduced the amount of computation

without losing accuracy by improving the structure of the last

stage. EfficientNetv2 (Tan and Le, 2021) improved feature

extraction efficiency by introducing Fused-MBConv. In order

to make the model volume more similar to YOLO-P, we replaced

the backbone of YOLOv5s with the above three networks. At the

same time, the classic YOLOv5s model was used for comparison.
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In the model comparison experiments of this section, we selected

P, AP@0.5, FLOPs, and module volume as evaluation indicators.

The test results are shown in Table 3.

From the data in Table 3, it can be seen that YOLO-P

achieved the best AP in section’s experiments, which was 97.6%

and it was 1.8% higher than its original network. RegNet-YOLO

had the lowest AP. Although the FLOPs of YOLO-P was not the

lowest, we got the smallest model volume which was only

8.3 MB. Compared with YOLOv5s, it was 39.4% smaller.

MobileNet-YOLO had the lowest FLOPs of only 7.3 G, which

is related to the reduction of last stage in this network. Model

comparison experiments showed that the combination of shuffle

block and inverted shuffle block was reliable. The proposed

YOLO-P model could detect pears in orchards with a smaller

model volume and high accuracy.

3.4.2 Ablation experiments
We conducted ablation experiments on YOLO-P and

discussed the performance improvement of YOLOv5s with

new modules and new structures. New operations included

shuffle block, inverted shuffle block, Hard-Swish activation

function used in CBH, and inserted CBAM. We designed four

sets of experiments in this section. In the T1 experiment, the four

CBS groups and their corresponding downsampling modules in

the YOLOv5s backbone network were replaced with shuffle

blocks. In the T2 experiment, the four CBS groups and their

corresponding downsampling modules in the YOLOv5s

backbone network were replaced with an inverted shuffle

block. The number of module repetitions in both T1 and T2

was the same as YOLO-P. In the T3 experiment, all four CBS

groups were replaced with the same shuffle block and inverted

shuffle block as YOLO-P. The T4 experiment used Hard-Swish

on the basis of the T3. Finally, full YOLO-P network was

CBAM’s insertion. In the model ablation experiments of this

section, we selected precision, AP0.5and FLOPs as evaluation

indicators: the test results are shown in Table 4.

It can be seen from Table 4 that only using a shuffle block or

an inverted shuffle block in the backbone was not as good as the

AP obtained by YOLOv5s, because the inverted structure is not

suitable for shallow networks. Also, the use of upsampling in

deep networks reduced the ability to detect small objects. We
TABLE 3 Results of model comparison experiments.

Precision (%) AP@0.5 (%) FLOPs (G) Model Volume (MB)

RegNet-YOLO 92.8 90.3 13.4 14.6

MobileNet-YOLO 95.4 95.2 7.3 9.2

EffiecientNet-YOLO 95.6 95.0 14.4 17.8

YOLOv5s 96.0 95.8 15.9 13.7

YOLO-P 98.1 97.6 10.1 8.3

Bold means the best score achieved in that category.
TABLE 2 Index of shaded pear’s degree in the dataset.

Evaluation indicators

Not shaded or slightly shaded 0≤Ks≤0.2

Medium shaded 0.2<Ks≤0.4

Serious shaded 0.4<Ks≤0.6
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used different structures in shallow and deep layers of the

network to deal with different sized targets. It would be easier

to detect targets with inconspicuous feature expressions by

combining the characteristics and advantages of the two

modules. The AP obtained by the T3 experiment was similar

to original network, which was only 0.1% higher than YOLOv5s.

However, due to the influence of the channel shuffle, the

calculation amount of model was reduced which made the

FLOPs reduce, and the detection speed was also be improved.

The model’s AP was improved by 0.6% after optimizing the SiLU

activation function to Hard-Swish. On this basis, the feature

extraction ability was further strengthened by inserting CBAM,

which made AP increase by 1.1%, reaching 97.6%. The

comparison of four sets of experiments above proved that the

proposed improved application is feasible in the pear

detection network.
3.4.3 Pear detection experiments
Pear detection experiments were carried out on an industrial

computer with limited computing resources in order to verify

the feasibility of YOLO-P online work. We chose the embedded

industrial computer of model DTB-3049-H310 produced by

Dongtintech. The operating environment was Ubuntu 18.04,

CPU was i7 9700 with 16 GB memory and it was without GPU.

Detection experiments considered many situations of an

intelligent picking robot in orchard. Different types of picking

machinery working at different distances resulted in different

degrees of background complexity. Dense foliage made pears

shaded. For efficiency purposes, picking should be done not only

during the daytime, but also at night. The experiment used 59

daytime and 57 nighttime pear images that different from the

training samples, with a total of 649 labels. Three models

(YOLOv5s, MobileNet-YOLO, YOLO-P) were selected in this

section’s experiments. The models’ detection abilities under

different background complexities and different degrees of

shaded were respectively studied. We set the confidence

threshold of the detection model to 0.4, i.e., confidence below

0.4 was not annotated in the image. The P, R, and F1 score were

calculated by counting TP, FP and FN. FPS of the model
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operation were recorded. The overall test results are shown in

Table 5. Pears that were detected by YOLO-P are shown

in Figure 7.

3.4.3.1 Experiments during daytime

There was sufficient sunlight during the daytime: pears were

easily detected when the background was not complicated (the

target was obvious) and the degree of shade was low. However,

the shade led to reduction of features or the image taken from a

long distance led to fewer pixels on the target which would

weaken the feature representation of pears. In this section,

detection experiments were carried out on pears in different

situations according to the proposed method of calculating

background complexity and shaded degree under sufficient

light during daytime.

First, experiments of different background complexities were

carried out. We measured the background complexity by the

distance between camera and pears. The F1 score obtained in

this section is shown in Table 6. The experiments images are

shown in Figure 8. Figures 8A–C are images of pears in

uncomplicated backgrounds. YOLO-P detected all objects

accurately. There were two false detections in YOLOv5s.

MobileNet-YOLO did not detect a pear that had been shaded

below. Figures 8D–F are images of pears in moderately complex

backgrounds. All three networks detected all targets, but both

YOLOv5s and MobileNet-YOLO mistakenly marked a dead leaf

as a pear. Figures 8G–I are images of pears in extremely complex

backgrounds. The environment of these images was relatively

harsh. There were 15 valid targets in the image and many pears

were seriously shaded. MobileNet-YOLO missed four targets.
TABLE 4 Results of ablation experiments.

Shuffle Block Inverted Shuffle Block Hard-Swish CBAM Precision (%) AP@0.5 (%) FLOPs (G)

YOLOv5s 96.0 95.8 15.9

T1 √ 94.3 93.9 10.6

T2 √ 94.8 94.7 9.3

T3 √ √ 96.2 95.9 10.0

T4 √ √ √ 96.9 96.5 10.0

YOLO-P √ √ √ √ 98.1 97.6 10.1

Bold means the best score achieved in that category.
f

TABLE 5 Result of Akidzuki pear detection experiments.

Precision (%) F1 (%) FPS

MobileNet-YOLO 90.1 89.6 28

YOLOv5s 94.8 92.8 19

YOLO-P 97.3 96.1 32

Bold means the best score achieved in that category.
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YOLOv5s and YOLO-P both missed two targets, but YOLOv5s

had two false detections. It can be seen from the experiment in

this section that YOLO-P had strong anti-interference ability.

Although YOLOv5s could also detect targets accurately, it often

misidentified other objects such as dead leaves as pears due to

similar features. Even in the case of extremely complex

backgrounds and few pixels, YOLO-P hardly had false

detections and missed detections.

In the experiment of different degrees of shade, the degree

was measured by the shaded area of pears. The more severely

shaded, the more difficult feature expression of pears in the

image, and the more difficult to it was detect accurately. The F1

score obtained in this section is shown in Table 7. The

experimental images are shown in Figure 9. Figures 9A–C are

not shaded or slightly shaded pear images and Figures 9D–F are

medium-shaded pear images. As can be seen from the figure, all

three networks could detect the shaded pears, but YOLO-P
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always had the highest confidence in detecting shaded targets.

Figures 9G–I are serious-shaded pear images. Only MobileNet-

YOLO failed to detect serious shaded objects. YOLO-P was more

stable against shade problems during the day due to its

higher confidence.

3.4.3.2 Experiments during nighttime

The problem of nighttime detection is the presence of

shadows. Shadows are very similar in color to the background,

so shadows can also be considered as a form of detection.

Shadows may have pixel values very similar to the external

environment due to the uncertain lighting direction. The

boundaries between the outline of pear and the environment

become blurred. Therefore, detecting pears at night will be more

difficult than during the day. In this section, detecting

experiments were carried out under the illumination of an

auxiliary light source at night.
TABLE 6 F1 score (%) in different background complexities experiments during daytime.

Uncomplicated back-
ground Moderately complex background Extremely complex background Average

YOLOv5s 95.5 95.1 93.2 94.6

MobileNet-
YOLO

92.5 91.8 89.5 91.3

YOLO-P 96.9 96.6 95.5 96.3

Bold means the best score achieved in that category.
fro
FIGURE 7

The detecting effect of Akidzuki pear in complex environment.
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The F1 scores obtained by the experiments of different

background complexity at night are shown in Table 8. The

experiment images are shown in Figure 10. Figures 10A–C are

images of pears in an uncomplicated background. It can be seen

from the figure that MobileNet-YOLO missed a target. Both

YOLOv5s and YOLO-P detected each objects successfully. But

YOLOv5s had lower confidence and the location of the bounding

box was not accurate. Figures 10D–F are images of pears in

moderately complex backgrounds. The situation was similar to
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the previous group; although both YOLOv5s and YOLO-P

detected all targets, YOLO-P had significantly higher confidence.

Figures 10G–I are images of pears in extremely complex

background. Both YOLOv5s and YOLO-P had a false detection,

but they all detected a target in the middle of the image which was

interfered with by a more complex shadow, while MobileNet-

YOLO did not detect this target. The unclear edge of pears caused

by nighttime illumination is one of the important reasons that

affect the stability of the model. It can be concluded from the
TABLE 7 F1 score (%) in different shaded degrees experiments during daytime.

Not shaded or slightly shaded Medium shaded Serious shaded Average

YOLOv5s 94.8 94.3 94.2 94.4

MobileNet-YOLO 94.5 93.4 90.7 92.9

YOLO-P 97.2 96.6 96.4 96.7

Bold means the best score achieved in that category.
fro
D E

A B

F

G IH

C

FIGURE 8

From left to right are the detection effects of YOLOv5s, MobileNet-YOLO and YOLO-P. (A–C) Uncomplicated background; (D–F) Moderately
complex background; (G–I) Extremely complex background.
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experiments that the performance of YOLO-P is better than other

models in the complex background situation at night.

The F1 scores obtained by the experiments of different shade

degrees at night are shown in Table 9. The experiment images of

at night are shown in Figure 11. Figures 11A–C are not shaded
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or slightly shaded pear images. All three networks detected the

target accurately. Figures 11D–F are medium-shaded pear

images. YOLOv5s and YOLO-P detected all targets. Neither of

the two shaded fruits was successfully detected by MobileNet-

YOLO. Figures 11G–I are serious-shaded pear images. YOLOv5s
TABLE 8 F1 score (%) in different background complexities experiments during nighttime.

Uncomplicated back-
ground Moderately complex background Extremely complex background Average

YOLOv5s 92.8 92.5 88.9 91.4

MobileNet-
YOLO

87.3 86.8 86.4 86.8

YOLO-P 97.8 95.6 93.9 95.8

Bold means the best score achieved in that category.
fro
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FIGURE 9

From left to right are the detection effects of YOLOv5s, MobileNet-YOLO and YOLO-P. (A–C) No shaded or slightly shaded; (D–F) Medium
shaded; (G–I) Serious shaded.
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and YOLO-P detected all pears. But MobileNet-YOLO only

detected one of the two targets. Likewise, YOLO-P had the

highest confidence in this section’s experiment.

It can be seen that YOLO-P could accurately detect pears in

various situations according to the above experiments. Although

YOLOv5s could also accurately detect most targets, there were
Frontiers in Plant Science 14
many false detections and lower confidence. Another weakness

is that YOLOv5s needs more computing resources. MobileNet-

YOLO was difficult to extract high-semantic features due to the

insufficient feature extraction ability. Therefore, there was a high

degree of missed detection which is especially evident in the case

of high complexity and seriously shaded. In summary, YOLO-P
TABLE 9 F1 score (%) in different shaded degrees experiments during nighttime.

Not shaded or slightly shaded Medium shaded Serious shaded Average

YOLOv5s 91.5 90.6 90.2 90.8

MobileNet-YOLO 89.2 86.9 85.7 87.3

YOLO-P 95.7 95.6 95.1 95.5

Bold means the best score achieved in that category.
fro
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FIGURE 10

From left to right are the detection effects of YOLOv5s, MobileNet-YOLO and YOLO-P. (A–C) Uncomplicated background; (D–F) Moderately
complex background; (G–I) Extremely complex background.
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had the best reliability in detecting pears in complex

environments. YOLO-P had the best reliability in detecting

pears under complex environments.
4 Discussion

Extensive research work has proved that building more

complex datasets is the key to further improving the accuracy

and robustness of deep learning models. For the automatic

picking work in orchards, there are different shade patterns and

backgrounds for each step the robot moves. Therefore, the scene it

sees is far more complex than the images used for training.

Although we collected as many complex images as possible, the

variety of shaded fruits is too numerous. If a similar pattern of

shaded fruits is not trained, the model will most likely be unable to
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recognize this object (although it looks remarkably easy to

recognize). In this study, only the case where the fruit was

shaded below 60% was considered. More diverse image data

should be obtained in future work to deal with the more

severely shaded fruit detection.

In experiments at night, we found that pixels in shadow-

covered locations might be very similar to the outside

environment, especially when the angle of the light source to the

target was uncertain. This is one of the most important barriers to

detecting pears at night. At present, some studies (Xu et al., 2020;

Wang et al., 2022) have proved that the use of image enhancement

can improve the accuracy of deep learning in harsh environments,

especially in low light. If the models use some kind of machine

learning method to preprocess the image and enhance the target

boundary then input to neural network for recognition, the night

detection ability of the model could be further improved.
D E

A B

F
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C

FIGURE 11

From left to right are the detection effects of YOLOv5s, MobileNet-YOLO and YOLO-P. (A–C) No shaded or slightly shaded; (D–F) Medium
shaded; (G–I) Serious shaded.
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Furthermore, only the detection of fully ripe pears was

investigated in this study. In practice, picking in orchards should

be done in batches. There may be cases that some pears are mature

and some are not. Therefore, the intelligent detection of fruit

ripeness is also one of the main research directions. Fruit ripeness

can be judged by directly detecting the appearance characteristics

(Chen et al., 2022). In addition, remote sensing can also be used for

detection. From a macro perspective, the leaves of pear trees will

become darker during the ripening season, and the fruits on pear

trees may also have different characteristics. Remote sensing

detection combined with deep learning may better judge fruit

ripeness, thereby helping intelligent picking in orchards.
5 Conclusions

The cost of manual picking has gradually increased with the

continuous loss of agricultural labor. In order to improve the

economic benefits of fruit farmers and the automation degree of

orchards, it is imperative to study the intelligent picking

technology. Accurate and fast fruit detection is one of the

most critical steps for orchard robot automatic picking. The

robustness of fruit detection in complex backgrounds and

shaded environments is a key factor affecting the work of

automated picking robots. This study aimed to improve the

accuracy and speed of fruit detection by improving the existing

methods. The results will improve the reliability of pear

detection in unstructured environments and enable it to be

applied to online detection tasks in an industrial computer.

Based on YOLOv5, we proposed a deep learning model

YOLO-P for detecting pears in complex orchard environments.

The research carried out the following design and

improvements. A new module named inverted shuffle block

was designed. The inverted shuffle block was used in deeper

networks. Combined with the shuffle block used in the shallow

networks, the backbone of YOLOv5 was reconstructed. The new

backbone had a good ability to detect small targets. The

activation function was replaced with Hard-Swish to reduce

the computational load of the network. CBAM was inserted to

improve the capture of key information. Finally, a weighted loss

function was designed to further improve the feature extraction

ability of small targets.

We used the Akidzuki pears as detection object of the model.

We compared YOLO-P with somemainstream lightweight models.

The detection effect of YOLO-P was significantly better than others.

Compared with the original YOLOv5s, AP increased from 1.8% to

97.6%, and the volume of the model was compressed by 39.4% to

only 8.3MB. Ablation experiments on YOLO-P demonstrated the

effectiveness of these improvements. In daytime and nighttime

Akidzuki pear detection experiments, we used an embedded

industrial computer to test the performance of the model under

different background complexities and different shade degrees. The

experimental results showed that YOLO-P achieved the highest F1
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score and FPS of 96.1% and 32, respectively which were 3.3% and

68.4% higher than YOLOv5s, respectively. The YOLO-P developed

in this paper can provide technical support for intelligent picking in

pear orchards, and can also provide a reference for other types of

fruit detection in complex environments.

In this research, we only considered the situation that the

degree of shade is less than 60%. In the real orchard environment,

there may be fruits that are more seriously shaded and difficult to

be detected. Efficiently obtain high-quality and more abundant

data to train models will be our next research goal. In detection at

night, border of the fruit may be similar to the environment due to

the lack of light. This is one of the reasons why the accuracy at

night is lower than that during the day. In follow-up research, we

will consider using image enhancement algorithms to further

improve the reliability of the model.
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