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Photosynthesis is the key physiological activity in the process of crop growth and

plays an irreplaceable role in carbon assimilation and yield formation. This study

extracted rice (Oryza sativa L.) canopy reflectance based on the UAV multispectral

images and analyzed the correlation between 25 vegetation indices (VIs), three

textural indices (TIs), and net photosynthetic rate (Pn) at different growth stages.

Linear regression (LR), support vector regression (SVR), gradient boosting decision

tree (GBDT), random forest (RF), and multilayer perceptron neural network (MLP)

models were employed for Pn estimation, and the modeling accuracy was

compared under the input condition of VIs, VIs combined with TIs, and fusion of

VIs and TIs with plant height (PH) and SPAD. The results showed that VIs and TIs

generally had the relatively best correlation with Pn at the jointing–booting stage

and the number of VIs with significant correlation (p< 0.05) was the largest.

Therefore, the employed models could achieve the highest overall accuracy

[coefficient of determination (R2) of 0.383–0.938]. However, as the growth stage

progressed, the correlation gradually weakened and resulted in accuracy decrease

(R2 of 0.258–0.928 and 0.125–0.863 at the heading–flowering and ripening

stages, respectively). Among the tested models, GBDT and RF models could

attain the best performance based on only VIs input (with R2 ranging from 0.863

to 0.938 and from 0.815 to 0.872, respectively). Furthermore, the fusion input of

VIs, TIs with PH, and SPAD could more effectively improve the model accuracy (R2

increased by 0.049–0.249, 0.063–0.470, and 0.113–0.471, respectively, for three

growth stages) compared with the input combination of VIs and TIs (R2 increased

by 0.015–0.090, 0.001–0.139, and 0.023–0.114). Therefore, the GBDT and RF

model with fused input could be highly recommended for rice Pn estimation and

the methods could also provide reference for Pn monitoring and further yield

prediction at field scale.

KEYWORDS

UAVmultispectral remote sensing, rice canopy, net photosynthetic rate, vegetation index,
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1 Introduction

Photosynthesis is one of the most crucial parts of the global

carbon and energy cycle (Reichstein et al., 2013; A Ivlev, 2017). The

crop photosynthesis activities assimilate carbon dioxide (CO2) and

water (H2O) by using light energy to form organic matter and,

therefore, are a key determinant of food production and security

(Reich and Amundson, 1985; Long et al., 2006). Net photosynthetic

rate (Pn) is the value of the total photosynthetic rate minus the

respiration rate, which directly refers to the organic matter

accumulated. Although researchers have gradually deepened the

understanding of photosynthesis based on cell-scale gas exchange,

current methods and equipment developed based on these theories

are still mainly focused on the leaf level, which is time-consuming and

has a poor representation (Stinziano et al., 2019). It is scientific to use

large canopy photosynthesis and transpiration measurement system

(CAPTS) (Song et al., 2016) to observe photosynthesis at the canopy

scale, but the investment is too expensive to be popularized in

regional-scale monitoring.

The mobile high-throughput phenotyping platforms (HTPPs)

(Deery et al., 2014; Li et al., 2014) with RGB, fluorescence,

hyperspectral, thermal, 3D laser, and computed tomography (CT)

imaging sensors provide a non-destructive method for rapid crop

phenotypic acquisition. In particular, a high-spectral-resolution

spectroradiometer (Aguirre-Gomez et al., 2001; Meroni and

Colombo, 2006) (most Fieldspec 4 or 4pro, Analytical Spectral

Devices, ASD, Boulder, CO, USA) is the most physical and effective

equipment for photosynthesis monitoring on the ground. The

sensitive band reflectance or vegetation indices (VIs), generally

including 2 or more band reflectance, was commonly used to

establish a linear or nonlinear relationship with crop physiological

and biochemical parameters. Qiu et al. (2015) comprehensively

analyzed the correlation between main photosynthetic, fluorescence

parameters and hyperspectral data in ear position leaves of maize and

found that Dl699 had the best correlation with Pn. Sun et al. (2016)

introduced wavelet analysis (WA) to select the sensitive bands of

hyperspectral for estimating Pn of winter wheat on the leaf scale and

found that the models based on WA were more accurate than the VIs

method. Fu et al. (2019) constructed a stacking framework for

retrieving the maximum carboxylation rate of Rubisco (Vc,max) and

the maximum electron transport rate supporting RuBP regeneration

(Jmax) in the photosynthesis parameters of tobacco based on canopy

hyperspectral reflectance, which further improve model accuracy

compared with the basic models. Based on the advantages of

ground platform on high-resolution continuous spectrum and

texture features, the above research could provide practical and

accurate estimation of photosynthetic parameters. However, the

photosynthetic monitoring in the actual production field could

hardly be represented due to environmental factors and the use of

various equipment requires expertise.

As a new near-ground remote sensing approach, unmanned aerial

vehicles (UAVs) (de Castro et al., 2021) can flexibly provide higher-

resolution and bigger-scale images by carrying different sensors (e.g.,

multispectral, hyperspectral, and thermal infrared cameras). It has

already been widely used in the inversion of physiological and

biochemical parameters such as plant height (PH) (Che et al.,
Frontiers in Plant Science 02
2020), leaf area index (LAI) (Chen et al., 2022b), nutrient states (Xu

et al., 2021), and aboveground biomass (Wang et al., 2022). Equipped

with hyperspectral imaging (HSI) sensors, Liu and Peng. (2020)

employed eight chlorophyll-related VIs for estimating maximum

Pn, and proposed a model based on chlorophyll index (CI) and

photosynthetically active radiation (PAR) for different rice varieties.

However, the water vapor in the field (especially the paddy field)

might have a great influence on the hyperspectral data. Additionally,

high price and tedious data processing process (e.g., noise processing,

dimension reduction, and spectral unmixing) have prevented the

commercial application of this method. Therefore, multispectral

sensors that can characterize key points (usually including blue,

green, red, red edge, and near-infrared bands) in crop canopy

spectra features are more commonly used for practical application

on UAV. Chen et al. (2018) established linear inversion models of

photosynthetic parameters at different time points in the cotton bud

stage based on UAV six-band multispectral images. However, cross-

growth stage comparison and regression model selection could be

done more comprehensively. Based on the relationship between VIs

constructed from UAV multispectral image and photosynthetic

parameters, Zhang et al. (2020a) explored the inversion method of

diurnal variation of photosynthesis in rice canopy combined with the

light response curve model and provided a method with physical basis

for gross primary productivity (GPP) inversion, while the scale effect

between 100-m UAV multispectral data and PAR monitoring data

from a single point on the ground should be further discussed. On the

other hand, the image obtained by UAV remote sensing has a higher

resolution than satellite remote sensing; thus, it has more detailed

texture features that can better reflect the difference in the set window

size. Therefore, textural indices (TIs) are commonly introduced with

VIs to improve the model accuracy. According to previous studies,

TIs have a good correlation with aboveground biomass (Sarker and

Nichol, 2011; Liu et al., 2019) and thus also have a good relationship

with the accumulated amount of canopy elements (Pimstein et al.,

2011; Lu et al., 2019; Zhang et al., 2021) (e.g., nitrogen, potassium, and

chlorophyll). Zheng et al. (2019) have found that the normalized

difference texture index (NDTI) is in good relationship with rice

biomass and the fusion of NDTI with VIs improved the accuracy of

biomass estimation. Similarly, Lu et al. (2021) and Zheng et al. (2020)

demonstrated that the fusion of TIs and multispectral VIs could

effectively improve the estimation of potassium accumulation and

nitrogen accumulation in rice. Since the accumulated organic matter

of photosynthesis can directly affect the basic growth indicators of rice

such as plant height, tiller number, and leaf area index, TIs could also

have untapped potential in Pn estimation.

For models employed in the inversion studies, linear regression or

nonlinear regression were commonly used to construct inverse

functions with definite expressions, but the accuracy is relatively

low and poor in portability (Wan et al., 2021). Machine learning

methods have been widely used in the regression and classification

issues and have been proven to be fast, accurate, and good at

generalization. WA (Bruce et al., 2002), partial least square

regression (PLSR) (Fu et al., 2022), and least absolute shrinkage and

selection operator (LASSO) (Yang and Bao, 2017) are usually used in

HSI studies to reduce the high-dimension hyperspectral data to a few

important components that are sensitive to the target parameters.
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Artificial neural network (ANN) (Liang et al., 2015), kernel-based

support vector machine regression (SVR) (Liang et al., 2016), and

random forest (RF) (Cheng et al., 2022) regression methods have been

most wildly employed to explore and fit the nonlinear relationship

between reflectance or VIs and inversion objects. Other machine

learning methods based on ANN, kernel function, and tree also have

great potential in this issue. Yang et al. (2022) built a Bayesian neural

network (BNN) model to predict potential maximum quantum yield

(Fv/Fm) and two other chlorophyll fluorometer parameters of grape

by quantifying the HSI response indices of photosynthetic pigments

and water status parameters. Yuan et al. (2022) simulated the

maximum carboxylation rate at 25°C (Vm25) of crops over time

based on the convolutional neural network (CNN) model

combining flux and satellite remote sensing data to further improve

the estimation accuracy of GPP. Based on the leaf phenotype data,

Zhang et al. (2020b) established poplar Pn estimating models using

the extreme gradient boosting model (XGBoost). (Fu et al., 2020,

2022) have also proven the good performance of machine learning

models based on the rich feature input of the HSI data for

photosynthetic parameter estimation. However, there is a lack of

understanding of machine learning methods for photosynthesis

parameters estimating with less reflectance features based on the

multispectral data and less research on rice.

In this study, multispectral images of rice canopy were acquired

by UAV, and the responses of multispectral reflectance features

together with Pn, PH, and SPAD to the different nitrogen or

leakage treatments were analyzed at different growth stages. The

correlation between Pn, VIs, and TIs extracted from the multispectral

reflectance was compared, and the VIs with relatively significant

correlations were employed as input of the five machine learning

models. Model performance comparison under different input

combinations was performed, and the improvement of fusing TIs

and basal growth index PH and SPAD was further analyzed. The final

purpose is to explore an economical and accurate method at field scale

for the estimation of Pn and photosynthesis stress detection during

the whole growth season of rice.
2 Materials and methods

2.1 Study area

The experiment was conducted at the Jiangning Campus of Hohai

University, Nanjing City, Jiangsu Province in China (31°54’57” N, 118°

46’37” E). A total of 22 plots were set in this study, with a length × width

of 2.5 m × 2.0 m and a depth of 2.0 m, which were cultivated with a
Frontiers in Plant Science 03
rice–wheat rotation for many years. Rice cultivar (Nanjing-9108) was

transplanted on 4 July with a spacing of 20 cm × 15 cm and harvested

on 25 October 2021 under the controlled irrigation and drainage

scheme. In order to obtain various spectral characteristics and

photosynthetic characteristics parameters of rice canopy at different

stages, five nitrogen fertilizer levels (N1–N5: 0, 150, 225, 300 and 375

kg/ha total pure nitrogen) and two infiltration levels (W1 and W2: 3

and 5 mm/day) were applied. The above two-factor complete

experimental scheme was used for randomized design within the 22

plots. N fertilizers were employed as the base fertilizer (5 July), tiller

initiation fertilizer (14 July), and spikelet-developing fertilizer (14

August) with the proportion of 40%, 30%, and 30% of total pure

nitrogen, respectively. Phosphate (P) and potassium (K) fertilizers were

applied once as the base fertilizer. All plots were well managed with

practices commonly adopted by local farmers. The basic properties of

the test soils are listed in Table 1 (Chen et al., 2022a) and the location of

the experimental area and the arrangement of experimental treatments

are shown in Figure 1.
2.2 UAV based multispectral data acquisition
and processing

A DJI Innovation’s Phantom4-M (P4M) was employed as the

phenotyping platform in this study. It is equipped with a multispectral

camera with six CMOS, including one color sensor for visible light

imaging (RGB) and five monochrome sensors for multispectral

imaging. Each sensor has an effective pixel of 2.08 million, a lens

field angle of 62.7°, and a focal length of 5.74 mm. Specific parameters

of the sensor are shown in Table 2. The UAV-based multispectral

image data were obtained under clear and cloudless weather

conditions (10:00–14:00) at each rice growth stage. The UAV flew

at an altitude of 15 m, with a heading overlap of 85% and a sideway

overlap of 75%.

The multispectral original images of five bands acquired by each

UAV flight sortie were exported into the PIE-UAV software (Piesat

Information Technology Co., Ltd., China) to correct and splice into

field orthophoto. The production steps of the orthophoto were as

follows: (1) image matching: match the original images with 40,000

key and tie point limits by geographical location matching method;

(2) image aligning: import ground control point (GCP) information

and align the images with high adjustment accuracy, 0.05 pixel GCP

measurement accuracy, and 0.5 pixel connection point matching

accuracy; (3) DEM building: generate DEM data using a resolution

of 1 GSD; (4) tessellation building: generate the tessellation line based

on the Voronoi Geometry method; (5) orthophoto correction: correct
TABLE 1 Basic soil properties of different layers.

Soil layer (cm)
Soil particle fraction (%)

Bulk density (g cm−3) Organic matter (%) pH (H2O)
Sand Silt Clay

0–20 40.21 ± 9.06 38.22 ± 6.43 21.57 ± 3.26 1.36 ± 0.23 1.24 ± 0.06 6.94 ± 0.06

20–40 39.12 ± 6.31 39.16 ± 4.71 21.72 ± 2.63 1.40 ± 0.19 1.35 ± 0.06 6.97 ± 0.05

40–60 38.87 ± 5.46 39.86 ± 4.06 21.27 ± 2.83 1.43 ± 0.20 1.20 ± 0.08 6.85 ± 0.07

60–160 40.25 ± 5.02 38.12 ± 3.72 21.63 ± 2.41 1.48 ± 0.21 / 6.80 ± 0.04
fr
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the orthophoto with automatically calculated image resolution and

the mosaic line mask method; (6) color balancing: set the number of

pyramid layers to 3 for color homogenization of mosaic images; and

(7) image mosaicking: resample the orthophoto by the cubic

convolution method and export into Geo-Tiff format. The final size

and resolution of the orthophoto were 9,012 × 5,126 pixels and 7.25

mm/pixel, respectively. ENVI 5.3 was used to perform layer stacking

on Tiff images of each band to obtain five-band multispectral images,

and the digital numbers (DNs) were transformed into reflectance by

radiometric correction.
2.3 Field data collection

Simultaneous field measurements were conducted within the

same day of the UAV multispectral image data acquisition,

including rice PH, SPAD, and photosynthetic parameters Pn, Tr,

and Gs. The PH values were measured with a soft ruler from the soil

ground to the leaf tip (cm). The SPAD values were measured by the

chlorophyll meter model (SPAD-502, Spectrum Technologies, Inc.,

NE, USA) and averaged from the measurements at the tip, middle,

and base of each leaf. The photosynthetic parameters were measured

by the portable photosynthesis system (LI-6800, LI-COR Inc., NE,
Frontiers in Plant Science 04
USA) at 10:00–11:30 a.m. The measured leaf position was the middle

of the latest fully unfolded leaf at the jointing–booting stage, and the

middle of the panicle leaf at heading–flowering and ripening stages.

Each parameter was averaged from three representative plants within

a 30 cm × 30 cm quadrat, and three quadrats were measured for each

plot. Thus, 60 groups offield data were obtained for each growth stage

and 180 groups in the total growth season. The details of ground

measurements and UAV flights are listed in Table 3.

It should be noted that the weather conditions in early September

2021 were mainly cloudy and rainy; the measurement on 3 September

was the only relatively ideal condition. Therefore, the ground SPAD

and Pn measurement at the heading–flowering stage and

photography of UAV were affected to a certain extent.
2.4 Vegetation index and textural
index calculation

2.4.1 Vegetation index calculation
VI is established by the linear or nonlinear combination of different

spectral band reflectances, which is a common method to retrieve

physiological and biochemical indicators of crops (Zeng et al., 2022). A

set of 25 commonly used VIs were employed in this study to investigate

the relationship between VIs and rice photosynthetic parameters.

Threshold processing was firstly performed on the stacked

multispectral image to eliminate the influence of water on the

reflectance. The canopy reflectance of each band within the 30 cm ×

30 cm region of interest (ROI) was then averaged to calculate the VIs of

each plot. The involved VIs and formulas are listed in Table 4.

2.4.2 Textural index calculation
Gray-level cooccurrence matrix (GLCM) (Haralick et al., 1973)

was applied in this study to extract eight texture features from each

band in the stacked image, including mean (MEAN), variance (VAR),

homogeneity (HOM), contrast (CON), dissimilarity (DIS), entropy

(ENT), second moment (SEC), and correlation (COR), and a total of

40 texture features (with a 3 × 3 pixel window size) were obtained.
TABLE 2 Multispectral camera sensor parameters.

Band
name Abbreviations

Center
wavelength

(nm)

Band
width
(nm)

Resolution
(pixels)

Blue B 450 16 1,600 × 1,300

Green G 560 16 1,600 × 1,300

Red R 650 16 1,600 × 1,300

Red
edge

RE 730 16
1,600 × 1,300

Near
infrared

NIR 840 26
1,600 × 1,300
FIGURE 1

Study area and experiment treatments. W represents the leakage treatments (including W1: 3mm/day and W2: 5mm/day); N represents the nitrogen
treatments (including N1-N5: 0, 150, 225, 300 and 375 kg/ha total pure nitrogen, respectively); GCP is abbreviation of gourd control points for geometric
correction; Ground measurements in each sample point were averaged from 3 representative plants.
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The same ROI size with VIs was used to extract texture features and

the average value was taken. The extracted GLCM texture features

were numbered in the order of MEAN, VAR, HOMO, CON, DIS,

ENT, SEC, and COR of each band (in the order of band 1 to band 5)

from 1 to 40. The normalized difference textural index (NDTI),

difference textural index (DTI), and renormalized difference

textural index (RDTI) were selected to construct TI involving two

different texture features. The TI formulas are as follows:

NDTI =
T1 − T2

T1 + T2

DTI = T1 − T2

RDTI = T1−T2ffiffiffiffiffiffiffiffiffi
T1+T2

p .

where T1 and T2 represented two random different

texture features.
2.5 Modeling and validation

2.5.1 Machine learning regression methods
Linear regression (LR), support vector regression (SVR), gradient

boosting decision tree (GBDT), random forest (RF), and multilayer

perceptron neural network (MLP) were employed in this study for Pn

estimation. The gridsearch tuning results for the hyperparameters of

each model are listed in Table 5, where the unmentioned

hyperparameters were the default values.

(1) Linear regression: LR is a traditional algorithm based on

classical statistics, which is the most commonly used model in the

spectral inversion research because of its simple construction form

and strong interpretation. Combined with the correlation analysis, the

relationship between variables and target parameters can be directly

reflected. In this study, the LR model with the ordinary least squares

method was used for Pn multiple regression.

(2) Support vector regression: SVR is an important application

branch of support vector machine (SVM), which seeks the optimal

hyperplane by minimizing the total deviation of all sample points

from the hyperplane (Cortes and Vapnik, 1995). Unlike ordinary least

squares, the SVR model sets a threshold ϵ around the regression line

such that all data points within ϵ are not penalized for their errors.
Frontiers in Plant Science 05
Kernel function, gamma, and C are crucial parameters in the SVR

model and have been tuned through the gridsearch method in the

sklearn package.

(3) Gradient boosting decision tree: GBDT is an iterative decision

tree algorithm with a “boosting” ensemble learning method

(Friedman, 2001; Wu et al., 2020). The basic learners [usually

classification and regression tree (CART)] in the GBDT model have

strong dependencies between each other and are trained by

progressive iterations based on the residuals. The results of all basic

learners are added together as the final output, which grant GBDT

great advantages in overfitting and computational cost fields and

reduce bias at the same time.

(4) Random forest: RF is one of the most popular tree algorithms

proposed by Breiman (2001) based on the bagging idea of ensemble

learning. RF applies the “bootstrap” method to retrieve samples to

train the N basic learners (usually CART) in parallel without

dependence. The final output of the RF model is derived by

combining results of the basic models with the “voting” method,

which makes the RF model insensitive to outlier variable values.

(5) Multilayer perceptron neural network: MLP is generally

composed of a fully connected input layer, a hidden layer, and an

output layer, in which the hidden layer can be multiple (Khoshhal and

Mokarram, 2012). As the most basic form of feed-forward neural

network, the MLP model has been widely applied in the analysis of

various complex problems and is also the foundation of CNN, deep

neural network (DNN), and other complex neural networks. A typical

three-layer MLP model was used in this study and parameters were

well tuned.

2.5.2 Model validation and evaluation
Sixty groups of multispectral data and field measured data in each

growth stage were divided into training and validation sets by the 10-

fold cross-validation method. Each time, 90% and 10% of the data

were employed as training and validation sets, respectively; this

process continues 10 times until all the samples have been

predicted once and only once. The model final performance was

averaged from the evaluation criteria in the cross-validation. To

comprehensively evaluate the model performance of Pn estimation,

the mean square error (MSE), mean absolute error (MAE), explained

variance score (EVS), and coefficient of determination (R2) were

considered in this study as the evaluation criteria. All model code
TABLE 3 Ground and UAV data acquisition details.

Date Growth stage
Temperature

Wind
speed Ground measure-

ments

UAV data acquisition

(°C) (m/s) Time Height
(m)

Resolution (mm/
pixel)

17 August 2021 Jointing–booting 30.38
1.90 PH, SPAD, Pn 10:45

a.m.
15.00 7.25

3 September 2021
Heading–
flowering

31.08
4.30 PH, SPAD, Pn 11:10

a.m.
15.00 7.25

21 September
2021

Ripening 30.05
2.60 PH, SPAD, Pn 11:00

a.m.
15.00 7.25
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TABLE 4 Vegetation indices and formula examined in this study.

Vegetation index Abbreviations and formula

NIRv(Zeng et al., 2019) NIRv = bNIR
bNIR − bR
bNIR + bR

Chlorophyll Index Green(Gitelson et al., 2005) CIgreen =
bNIR
bG

− 1

Chlorophyll Index Red Edge (Gitelson et al., 2005) CIred edge =
bNIR
bRE

− 1

Chlorophyll Vegetation Index (Gitelson et al., 2003) CVI =
bNIR � bR

b2G

Difference Vegetation Index (Vincini et al., 2008) DVI=bNIR−bR

Enhanced Vegetation Index (Jordan, 1969) EVI = 2:5
bNIR − bR

bNIR + 6bR − 7:5bB + 1

Greenness Index (Huete et al., 2002) GI =
bG
bR

Green Normalized Difference Vegetation (Smith et al., 1995) GNDVI =
bG − bR
bG + bR

Modified Chlorophyll Absorption in Reflectance Index (Gitelson et al., 1996) MCARI = (bRE − bR) − 0:2
(bRE − bG)
bRE=bR

Modified Nonlinear Vegetation Index (Daughtry et al., 2000) MNVI =
1:5(b2NIR − bR)
b2NIR + bR + 0:5

Modified Soil Adjusted Vegetation Index (Gong et al., 2003) MSAVI =
bNIR + 1−

0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2bNIR + 1)2 − 8(bNIR − bR)

p

Modified Simple Ratio (Goel and Qin, 1994) MSR =
bNIR=bR − 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bNIR=bR + 1

p

MERIS Terrestrial Chlorophyll Index (Chen, 1996) MTCI =
bNIR − bRE
bRE − bR

Modified Triangular Vegetation Index (Dash and Curran, 2004) MTVI =
1:5(1:2(bNIR − bG) − 2:5(bR − bG))ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2bNIR + 1)2 − (bNIR − 5

ffiffiffiffiffi
bR

p
)

p
− 0:5

Nonlinear Vegetation Index (Haboudane et al., 2004) NLI =
b2NIR − bR
b2NIR + bR

Normalized Difference Vegetation Index (Tucker et al., 1979) NDVI =
bNIR − bR
bNIR + bR

Optimization of Soil-Adjusted Vegetation Index (Rondeaux et al., 1996) OSAVI =
1:16(bNIR − bR)
bNIR + bR + 0:16

Renormalized Difference Vegetation Index (Roujean and Breon, 1995) RDVI =
bNIR − bRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bNIR + bR

p

Ratio Vegetation Index 1 (Birth and McVey, 1968) RVI1 =
bNIR
bR

Ratio Vegetation Index 2 (Xue et al., 2004) RVI12 =
bNIR
bG

Structure Intensive Pigment Index (Blackburn, 1998) SIPI =
bNIR − bB
bNIR + bB

Transformed Chlorophyll Absorption in Reflectance Index (Haboudane et al., 2002) TCARI = 3((bRE − bR) − 0:2(bRE − bG)
bRE
bR

)

Triangular Vegetation Index (Broge and Leblanc, 2001) TVI=60(bRE−bG)−100(bR−bG)

Visible Atmospherically Resistant Index (Gitelson et al., 2002) VARI =
bG − bR

bG + bR − bB

Visible Difference Vegetation Index (Zhang et al., 2019) VDVI =
2bG − bR − bB
2bG + bR + bB
F
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bB, bG, bR, bRE, and bNIR represent blue (450 ± 16 nm), green (560 ± 16 nm), red (650 ± 16 nm), red edge (730 ± 16 nm), and near-infrared (840 ± 26 nm) band reflectance, respectively.
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and evaluation criteria calculations were written in Python3.2 and

implemented in a laptop with Intel Core i7-9750H CPU @2.60 GHz,

NVDIA GeForce GTX 1660 Ti GPU, and 16 GB of RAM.

MSE =
1
no

n

i=1
yi − ŷ ið Þ2

MAE =
1
no

n

i=1
yi − ŷ ij j

EVS = 1 −
VAR yi − ŷ ið Þ
VAR yið Þ

R2 = o
n
i=1 ŷ i − �yð Þ2

on
i=1 yi − �yð Þ2

where yi , ŷ i and �yepresent the measured value, the mean

measured value, and the estimated value, respectively. n represents

the number of the results. VAR represents the variance of the results.

MSE and MAE are in the same unit with the measured value, ranging

from 0 (optimum value) to +∞ (worst value). EVS and R2 are

dimensionless, ranging from 0 (worst value) to 1 (optimum value).
3 Results

3.1 Rice photosynthetic traits and canopy
multispectral feature response to
different treatments

3.1.1 Rice plant height, SPAD, and net
photosynthetic rate

The PH, SPAD, and Pn of tested rice at the jointing–booting,

heading–flowering, and ripening stage are shown in Figure 2,

respectively. PH increased obviously with the increase of nitrogen

(N) application and advancement of growth stage, while it decreased

slightly with ear filling at the ripening stage (Figure 2A). When PH

reached the highest at the heading–flowering stage, the average rice

PH with N2–N5 level under W1 (low leakage) treatment was 10.11%,

14.51%, 18.53%, and 21.23% higher than that under the N1 level,

respectively, and 18.48%, 15.59%, 15.47%, and 15.59% higher than the

N1 level, respectively, for W2 treatment. PH under W2 (high leakage)

treatment was significantly higher than those under W1 treatment at

N1 and N2 levels in the jointing–booting and heading–flowering
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stage, respectively, but the difference was not obvious under other

N applications.

As shown in Figure 2B, SPAD generally showed a trend of initially

increasing (N1–N3) then decreasing (N3–N4) and finally ending up

with a small increase (N4–N5) with the increase of nitrogen

application under the same leakage conditions. The maximum

value of SPAD in each growth stage almost appeared at the N3

level, while the lowest value was found at the N1 level without N

application. The SPAD value reached the maximum at the heading–

flowering stage, and the average SPAD values of N2–N5 levels were

12.27%, 8.30%, 1.62%, and 10.29% higher than the N1 level for W1

leakage treatment and 1.44%, 3.60%, 0.36%, and 1.08% higher than

the N1 level for W2 leakage treatment, respectively. For the same N

application level, W1 leakage treatment could increase the SPAD

value of N1–N5 levels by −0.18%, 10.48%, 4.35%, 1.08%, and 8.91%,

respectively, compared with W2.

It can be seen from Figure 2C that the Pn of rice decreased with

the advancement of the rice growth stage. Pn under different N

treatments showed a generally similar change trend with SPAD,

increasing with the increase of N application at N1 to N3 levels and

reaching the maximum at N3, decreasing at N4, and reverting at the

N5 level [the Pn increase from N4 to N5 is not significant (p > 0.05)].

At the jointing–booting stage when photosynthesis was most

vigorous, the average Pn values under N2–N5 levels with W1

treatment were 9.78%, 21.74%, 8.69%, and 13.04% higher than the

N1 level, respectively, and 16.36%, 22.87%, 9.72%, and 17.16% higher

than the N1 level under the conditions of W2 treatment, respectively,

which indicated that excessive application of N fertilizer might inhibit

photosynthesis. Under the same N application level, the Pn with W1

treatment was slightly higher than that with W2 treatment, indicating

that low leakage intensity could promote leaf photosynthesis to a

certain extent.
3.1.2 Rice canopy multispectral
reflectance characteristics

Figure 3 illustrates the rice canopy multispectral reflectance of

blue (band 1), green (band 2), red (band 3), red edge (band 4), and

near infrared (band 5) with different treatments at three growth

stages. In general, the average reflectance value of all five bands

decreased as the growth stage progressed. As one of the most

representative features in the crop spectral curve, the band 5

reflectance value ranged from 0.337 to 0.465 at the jointing–booting

stage, while it decreased slightly to 0.327–0.449 at the heading–
TABLE 5 Tuned hyperparameters of models employed in this study.

Model Tuned hyperparameters

SVR kernel=‘rbf’; gamma= ‘auto’; C=1.0.

GBDT n_estimators=100;max_features=‘none’;max_depth=‘adaptive’.

RF n_estimators=100;max_features=‘none’;max_depth=‘adaptive’.

MLP hidden_layer_sizes= (100),; activation=‘relu’; solver=‘lbfgs’; learning_rate=0.001.
LR, SVR, GBDT, RF, and MLP represent linear regression, support vector regression, gradient boosting decision tree, random forest, and multilayer perceptron neural network models, respectively.
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flowering stage, and finally dropped to approximately 0.030 at the

ripening stage. Band 2 was the most intuitive band visible to the naked

eye that could represent the nutrient statue and growth stage of crops,

which reached a maximum of 0.160–0.221 at the jointing–booting

stage, decreased to 0.139–0.174 with heading and flowering, and

finally decreased to 0.027–0.038 with the yellowing of leaves and ears

at the ripening stage.

For the same N application level at the jointing–booting stage, the

average reflectance values of band 1, band 2, and band 3 under theW1

leakage treatment were generally lower than those under the W2

leakage treatment, except that W1N3 had higher band 1 and band 3
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values than W2N3. However, the average reflectance values of band 4

and band 5 showed opposite trends; specifically, W1 leakage

treatment could increase the reflectance of band 4 and band 5

compared with W2 treatment and the N3 level improved the most.

It could also be found from Figure 3A that lower leakage treatment

had a steeper increase from band 3 to band 4, which indicated the

better growth status. Under the same leakage treatment, the average

reflectance values of band 1 to band 4 generally presented a trend of

initially decreasing (N1–N3), then increasing (N3–N4), and finally

ending up with a small decrease (N4–N5), while the reflectance value

of band 5 increased with the N application level, but the law was not
B

C

A

FIGURE 2

PH, SPAD and Pn of rice response to different treatments at different stages. (A) PH represents plant height (cm); (B) SPAD is relative chlorophyll content;
(C) Pn represents the net photosynthetic rate (umol m-2s-1). W represents the leakage treatments (including W1: 3mm/day and W2: 5mm/day); N
represents the nitrogen treatments (including N1-N5: 0, 75, 150, 225 and 300 kg/ha total pure nitrogen, respectively). The above ground measurements
were conducted at the same time with UAV flight at 3 growth stages.
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obvious. Moreover, the average reflectance value of these five bands

did not show a certain rule in the heading–flowering stage and the

ripening stage, which might be due to the influence of rice heading

and flowering, here leaves and ear yellowing in the growth process on

the multispectral characteristics of the canopy.
3.2 Correlation analysis between VIs, TIs,
and Pn

Pearson’s correlation coefficients (r values) between the above 25

VIs and Pn at three growth stages are listed in Table 6. The code for r

value calculation and significance analysis was written in Python3.2

with the scipy package (1.20.3). Generally, the VIs had a better

relationship with Pn at the jointing–booting stage, but the r value

became worse as the growth stage advanced; however, it might be that

the number of samples was relatively small and therefore no VIs

passed the highly significant correlation test (p< 0.01). To be specific,

CIgreen, CVI, MNVI, NLI, OSAVI, RDVI, and RVI2 achieved a

significant positive correlation (p< 0.01) with Pn at the jointing-

boosting stage, with r value ranging from 0.3330 to 0.3893. NIRv,

DVI, EVI, MSAVI, MSR, NDVI, RVI1, SIPI, and TCARI also had a

satisfactory r value (p< 0.05) with absolute value between 0.2753 and

0.3262. At the heading–flowering stage, only CIgreen, RVI2, and SIPI

showed a significant relationship and NDVI, NLI, TCARI, and VDVI

had a relatively higher r value. When the crop proceeded to the

ripening stage, no VIs could achieve a satisfactory r value with Pn.

The VIs employed for Pn estimation were thus selected based on the r

value at different stages, and the selected VIs are shown in bold

in Table 6.

The NDTI, DTI, and RDTI were calculated using any two texture

features from NO. 1 to NO. 40 and the correlation thermal map in

Figure 4 was thus drawn according to the r value between TIs and Pn.
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Because the order of the two selected texture features was different,

the correlation r value in the figure presented positive and negative

axis symmetry. Taking the thermal map at the jointing–booting stage

as an example, it could be found that there were obviously deeper red

and blue lines in the DTI and RDTI figure, indicating that the DTI

and RDTI composed of any of the NO. 1 (MEAN1) and NO. 25

(MEAN4) features with the other feature had a better relationship

with Pn (r value mainly approximately 0.35 and 0.39, respectively).

Scattered hot spots with high r value could be seen in the RDTI figure,

but no dominant texture feature could be found. For each TI, the

feature combination with the highest correlation with Pn was selected

and the results at different growth stages are listed in Table 7.
3.3 Estimation rice Pn from VIs at different
growth stages

The accuracy comparison results between LR, SVR, GBDT, RF,

and MLPmodels based on the selected VIs are listed in Table 8 and all

criteria indices were calculated by the average of 10-fold cross-

validation results. At the jointing–booting stage, most VIs showed

good correlation with Pn and a total of 16 VIs were selected for

modeling; therefore, the models achieved the relatively highest

accuracy compared with those at other growth stages. Specifically,

GBDT achieved the highest average accuracy (with an MSE of 0.253

mmol m−2 s−1, an MAE of 0.414 mmol m−2 s−1, an EVS of 0.938, and

an R2 of 0.938), while SVR models attained the worst performance

(with an MSE of 2.512 mmol m−2 s−1, an MAE of 1.155 mmol m−2 s−1,

an EVS of 0.390, and an R2 of 0.383). RF, MLP, and LR models ranked

second, third, and fourth, respectively. Figure 5A also shows that the

Pn estimated value of GBDT was the closest to the measured Pn value

in each validation set. The Pn estimated values of LR and SVR models

were almost concentrated in the range of 24–27 mmol m−2 s−1; thus,
B CA

FIGURE 3

Average value of canopy band reflectance response to different treatments at different stages. (A-C) are the reflectance at jointing-booting, heading-
flowering and ripening stage, respectively. Band1-band5 represent blue (450±16 nm), green (560±16 nm), red (650±16 nm), red edge (730±16 nm), near-
infrared (840±26 nm) reflectance, respectively. W represents the leakage treatments (including W1: 3mm/day and W2: 5mm/day); N represents the
nitrogen treatments (including N1-N5: 0, 75, 150, 225 and 300 kg/ha total pure nitrogen, respectively).
frontiersin.org

https://doi.org/10.3389/fpls.2022.1088499
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wu et al. 10.3389/fpls.2022.1088499
the estimation accuracy was not satisfactorily compared with GBDT,

RF, and MLP models, where the Pn values were relatively lower and

higher (inside the blue and red dashed circle). The correlation

between VIs and Pn gradually weakened and inputted VIs thus

decreased in number as the growth stage progressed; therefore, the

model estimation accuracy decreased to a certain extent without

ranking change. In detail, the LR model suffered the biggest loss in

estimation accuracy with an R2 value decreasing to 0.296 at the

heading–flowering stage and then to 0.125 at the ripening stage.

However, GBDT and RF models still showed good performance with

R2 values of 0.928 and 0.869 at the heading–flowering stage and 0.863

and 0.815 at the ripening stage, respectively. Figures 5B, C also

demonstrated that the GBDT and RF models could better describe

the relationship between VIs and Pn in the value full range at different

growth stages. Although the performance of the MLP model ranked
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third, the performance was not ideal when compared with GBDT and

RF models for both lower and higher PN value estimation. In

conclusion, the accuracy of modes for estimating Pn value at the

jointing–booting stage was relatively best and the GBDT model could

be highly recommended for Pn estimation during the rice whole

growth season.
3.4 Estimation rice Pn from fused VIs, TIs,
and basal growth index

In order to further improve the Pn estimation accuracy, TIs

(NDTI, DTI, and RDTI) and basal growth index (PH and SPAD)

were introduced based on the input VIs. The accuracy comparison

result of different models under different input combinations is shown

in Table 9. After adding the TIs inputs for Pn estimation, all models

performed higher accuracy at the jointing–booting stage with the

MSE of LR, SVR, GBDT, RF, and MLP decreasing by 0.090, 0.370,

0.126, 0.113, and 0.057 mmol m−2 s−1, respectively, and the R2

increasing by 0.022, 0.090, 0.031, 0.028, and 0.015, respectively. As

the basal growth index further increased, the final R2 of the employed

models increased to 0.792, 0.565, 0.987, 0.943, and 0.822, respectively.

It is possible that the basal growth index improved the model

accuracy slightly more than TIs because the difference in PH could

reflect the stress of crops to a certain extent, and SPAD is directly

related to chlorophyll content, which directly affects photosynthesis.

The same improvement effect of model accuracy could also be found

at the heading–flowering and ripening stages, and although the

improvement of GBDT and RF models was relatively small (with

R2 increasing to 0.062 and 0.031 for VIs + TIs input and 0.113 and

0.132 for VIS + TIs + PH and SPAD input), they were still the top two

models among the employed models. The greatest improvement

could be found in the LR model, with an R2 increase of 0.139 and

0.470 at the heading–flowering stage and 0.114 and 0.471 at the

ripening stage under the VIs + TIs and VIS + TIs + PH and SPAD

input combination, respectively. The accuracy of the SVR model also

had been improved greatly, but it still is the lowest among the five

models. In conclusion, both TIs and the basal growth index could

obviously improve the model accuracy for Pn estimation and the PH

and SPAD had a better effect compared with the TIs in this study,

which significantly improved the model performance at the heading–

flowering and ripening stages, especially for LR and MLP models.
4 Discussion

4.1 Relationship between rice growth and
canopy multispectral feature

The ground sample results showed that the SPAD and Pn

generally increased with nitrogen application (N1–N3 levels), then

decreased at the N4 level, and finally recovered at the N5 level under

the same leakage treatment at the jointing–booting stage, which also

indicated that proper N application could improve the

photosynthesis, while excessive N application not only had a poor

effect on photosynthesis, but also affected plant growth and increased
TABLE 6 Correlation coefficient (r value) between selected VIs and Pn.

VIs Jointing–booting
(n = 60)

Heading–flower-
ing (n = 60)

Ripening (n
= 60)

NIRv 0.3262* 0.2034 −0.0903

CIgreen 0.3893** 0.3490** 0.1693

CIred
edge

0.1938 0.1046 0.0649

CVI 0.3396** 0.1155 0.1605

DVI 0.3186* 0.1737 −0.1083

EVI 0.2803* 0.1333 −0.0949

GI −0.1549 −0.0196 0.0137

GNDVI −0.1473 0.1699 −0.0531

MCARI −0.0091 −0.0642 −0.095

MNVI 0.3342** 0.2119 −0.0798

MSAVI 0.3281* 0.2194 −0.0820

MSR 0.3157* 0.1905 0.0926

MTCI 0.1369 0.0886 0.0742

MTVI 0.1419 0.1113 −0.0846

NDVI 0.3178* 0.3166* 0.0370

NLI 0.3386** 0.2661* −0.0056

OSAVI 0.3330** 0.2622 −0.0487

RDVI 0.3342** 0.2259 −0.0746

RVI1 0.3136* 0.1038 0.1223

RVI2 0.3893** 0.3490** 0.1693

SIPI 0.3258* 0.3381** 0.0648

TCARI −0.2753* −0.3014* −0.2131

TVI −0.1262 −0.2094 −0.1258

VARI −0.0984 0.0632 −0.0685

VDVI −0.1881 0.2746* −0.0680
* and ** represent significant level p< 0.05 and p< 0.01, respectively. The number is the sample
size of the data. VIs corresponding to the bolded value were selected as the inputs for machine
learning modeling at different growth stages.
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risk of contamination during leakage and drainage. This phenomenon

was similar to that found by Cisse et al. (2020). It might due to the fact

that there was no significant difference in Rubisco activity and non-

photochemical quenching (NPQ) between the N4–N5 and the N3

level; thus, excessive energy could not be dissipated by NPQ, leading

to oxidative stress, resulting in a decrease in Pn when excessive

nitrogen was applied. An opposite trend could be found for canopy

multispectral reflectance as the N application increased. Band 1 to

band 4 generally decreased when N application increased from the

N1–N3 level, while they slightly increased at the N4 level then

decreased again at the N5 level; however, band 5 reflectance

consistently increased with N level, which was consistent with

previous studies on other crops Qiu et al. (2015). Generally, crops

with good growth have a lower reflectance and a steeper increase from

the red to the NIR band; thus, the variation trend of the canopy

reflectance was consistent with SPAD and PN, which also provides a

theoretical basis for the inversion of photosynthetic characteristic

parameters using VIs.
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4.2 Limitations and suggestions on Pn
estimation using VIs and TIs in this study

Based on the result and analysis in Section 3.1.1, the relationship

between VIs and Pn decreased with the growth stage, which might be

due to the influence of heading and flowering, although panicle

photosynthesis is also an important part of crop canopy

photosynthesis and contributes significantly to grain formation.

However, due to the limitation that the photosynthetic

measurement equipment used in this paper could only be used to

measure leaves, the canopy photosynthesis was thus approximately

the photosynthetic capacity of the included leaves. Therefore, after

rice heading and flowering, the spectral reflectance of the canopy was

affected to a certain extent and the correlation based on the above data

decreased significantly. In order to improve the estimation accuracy

of Pn at the heading–flowering stage, the image segmentation should

be carried out first to remove the panicle reflectance image.

Meanwhile, the method of canopy photosynthesis measurement
B

C

A

FIGURE 4

Correlation coefficient between Pn and TIs with different textural features combination. (A-C) are the correlation coefficient values at jointing-booting,
heading-flowering and ripening stage, respectively. NDTI, DTI, RDTI represent normalized difference textural index, difference textural index and
renormalized difference textural index, respectively. X-axis and Y-axis legends are the texture features in order of NO.1-40. The coloration in the thermal
map is based on the correlation (r value) between TIs and Pn.
TABLE 7 Compositions of selected TIs and its correlation with Pn.

TIs/stages
Jointing–booting Heading–flowering Ripening

Combination r Combination r Combination r

NDTI MEAN4, HOMO4 0.4361 COR2, HOMO1 0.4052 ENT2, DIS3 0.3526

DTI MEAN4, DIS2 0.4042 MEAN2, COR1 0.3650 COR5, DIS3 0.3348

RDTI MEAN4, COR5 0.4169 MEAN2, COR1 0.4016 COR5, DIS3 0.3808
frontie
NDTI, DTI, and RDTI represent normalized difference textural index, difference textural index, and renormalized difference textural index, respectively. The texture features mean, variance,
homogeneity, contrast, dissimilarity, entropy, second moment, and correlation extracted by the GLCM method are abbreviated as MEAN, VAR, HOM, CON, DIS, ENT, SEC, and COR, respectively.
The number after the abbreviation represents the band where the feature is extracted.
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and the effect of panicle on photosynthetic contribution and

reflectance should be revised and improved in future studies.

According to the correlation analysis results of TIs during the

whole growth season in Figure 4, it could be concluded that most of
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the dominant texture features were extracted from band 1 to band 3,

while the TIs constructed by the features extracted from band 4 and

band 5 were not that satisfactory. Specifically, MEAN and COR

texture features were more included in the optimal features for

NDTI, DTI, and RDTI construction, because MEAN represents the

average of moving windows containing targets and backgrounds,

which can smooth the image and reduce the interference of

background factors, while COR can reflect the local gray-level

correlation in the image and distinguish the differences of image

texture in all directions. In addition, window sizes of 6 × 6, 9 × 9, and

12 × 12 were also employed in the GLCM for textural feature

extraction; however, the performance was not much different from

that of the 3 × 3 window size, which might be due to the high

resolution (4.5 mm/pixel) of each pixel in the image. Therefore,

improving the resolution of visible images to extract higher-quality

TIs might be an economical and practical approach to improve the

accuracy of Pn estimation.
4.3 Influence of input combination on Pn
estimation performance

The model performance under the different input combinations

of VIs, VIs + TIs, and VIs + TIs + PH and SPAD concludes that the

fusion of VIs and TIs could effectively improve the accuracy of Pn

estimation because the VIs contain the canopy reflectance features

and are more sensitive to the nutrition variations, while the TIs could

better reflect the difference in canopy structure. The results were also

consistent with previous studies (Liu et al., 2019; Zhang et al., 2021) in

that this fusion combination could improve the estimation accuracy

of biomass, LAI, nitrogen nutrition, and potassium nutrition and
TABLE 8 Model performance for Pn estimation based on VIs.

Growth
stage Model MSE (mmol

m−2 s−1)
MAE (mmol
m−2 s−1) EVS R2

Jointing–
booting

LR 1.859 1.128 0.543 0.543

SVR 2.512 1.155 0.390 0.383

GBDT 0.253 0.414 0.938 0.938

RF 0.521 0.604 0.872 0.872

MLP 0.942 0.777 0.768 0.768

Heading–
flowering

LR 4.165 1.612 0.298 0.296

SVR 4.388 1.589 0.261 0.258

GBDT 0.425 0.505 0.928 0.928

RF 0.774 0.691 0.869 0.869

MLP 1.948 1.06 0.671 0.671

Ripening

LR 2.413 1.296 0.125 0.125

SVR 2.293 1.061 0.205 0.169

GBDT 0.377 0.507 0.863 0.863

RF 0.511 0.610 0.815 0.815

MLP 1.490 0.930 0.460 0.460
LR, SVR, GBDT, RF, and MLP represent linear regression, support vector regression, gradient
boosting decision tree, random forest, and multilayer perceptron neural network models,
respectively.
B

C

A

FIGURE 5

Comparison of estimated and measured Pn values of different models at certain stages. (A-C) are the comparison of estimated and measured Pn values
at jointing-booting, heading-flowering and ripening stage, respectively. LR, SVR, GBDT, RF and MLP represent linear regression, support vector
regression, gradient boosting decision tree, random forest and multilayer perceptron neural networks model, respectively. Pn represents the net
photosynthetic rate (umol m-2s-1). The dashed blue and red circle in each figure are used to compare the fitting between the estimated and measured
value when Pn value is low and high, respectively.
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accumulation. Furthermore, the addition of PH and SPAD brought

higher accuracy, which could attribute its success to the high

correlation between PH and N nutrition status, SPAD and

chlorophyll content, brought by the obvious difference of 5 N

treatment. To sum up, more different kinds of data could introduce

more direct or indirect related features, and it is also suggested that

stacking and blending ensemble learning methods (Wu et al., 2021)

could be employed to combine the model ability of feature extraction

and analysis based on different principles in future research to

improve the model accuracy for Pn estimation, which is also the

purpose and significance of developing agricultural big data and

agricultural intelligent models.
5 Conclusion

This paper studied and revealed the responses of canopy

multispectral band reflectance and rice net photosynthetic rate (Pn)

to different nitrogen applications and leakage treatments through

different growth stages under controlled irrigation and drainage

schemes. The relationship between VIs, TIs, and Pn based on the

UAV multispectral image was comprehensively analyzed and focused

on. The performance of LR, SVR, GBDT, RF, and MLP models for Pn

estimation under different input combinations was evaluated and

compared at the jointing–booting, heading–flowering and ripening

stages. The results indicated that the selected VIs and TIs had a

relatively better correlation relationship with Pn at the jointing–

booting stage, while only a moderate correlation at the heading–
Frontiers in Plant Science 13
flowering stage and an unsatisfactory correlation at the ripening stage

could be found. Therefore, the employed models generally had a

better performance during the jointing–booting stage and the

accuracy decreased as the growth stage progressed. Among the five

used models, GBDT and RF models achieved the highest and most

stable accuracy in the whole growth season and could be highly

recommended for Pn estimation in the paddy field. Meanwhile, the

fusion of VIs with TIs and basal growth index could significantly

improve the model accuracy, and the plant height (PH) and SPAD

had a better effect on performance improvement compared with

NDTI, DTI, and RDTI employed in this study. The techniques and

results presented in this paper could be valuable for rice field-scale

photosynthetic monitoring, which could assist further stress detection

and yield prediction.
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