
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Xiaohui Yuan,
Wuhan University of Technology, China

REVIEWED BY

Changji Wen,
Jilin Agricultural University, China
Weijuan Hu,
Institute of Genetics and Developmental
Biology (CAS), China

*CORRESPONDENCE

Lejun Yu

yulj@hainanu.edu.cn

SPECIALTY SECTION

This article was submitted to
Technical Advances in Plant Science,
a section of the journal
Frontiers in Plant Science

RECEIVED 02 November 2022

ACCEPTED 28 December 2022
PUBLISHED 12 January 2023

CITATION

Lu Y, Wang R, Hu T, He Q, Chen ZS,
Wang J, Liu L, Fang C, Luo J, Fu L, Yu L
and Liu Q (2023) Nondestructive 3D
phenotyping method of passion fruit
based on X-ray micro-computed
tomography and deep learning.
Front. Plant Sci. 13:1087904.
doi: 10.3389/fpls.2022.1087904

COPYRIGHT

© 2023 Lu, Wang, Hu, He, Chen, Wang, Liu,
Fang, Luo, Fu, Yu and Liu. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Methods

PUBLISHED 12 January 2023

DOI 10.3389/fpls.2022.1087904
Nondestructive 3D phenotyping
method of passion fruit based on
X-ray micro-computed
tomography and deep learning

Yuwei Lu1,2, Rui Wang3, Tianyu Hu1,2, Qiang He4,
Zhou Shuai Chen4, Jinhu Wang4, Lingbo Liu1,2,
Chuanying Fang3,5, Jie Luo3,5, Ling Fu1,2,4,
Lejun Yu4* and Qian Liu1,2,4

1Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-
Huazhong University of Science and Technology, Wuhan, Hubei, China, 2MoE Key Laboratory for
Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China, 3College
of Tropical Crops, Hainan University, Haikou, China, 4School of Biomedical Engineering, Hainan
University, Haikou, China, 5Sanya Institute of China Agricultural University, Sanya, China
Passion fruit is a tropical liana of the Passiflora family that is commonly planted

throughout the world due to its abundance of nutrients and industrial value.

Researchers are committed to exploring the relationship between phenotype

and genotype to promote the improvement of passion fruit varieties. However,

the traditional manual phenotyping methods have shortcomings in accuracy,

objectivity, and measurement efficiency when obtaining large quantities of

personal data on passion fruit, especially internal organization data. This study

selected samples of passion fruit from three widely grown cultivars, which differed

significantly in fruit shape, size, and other morphological traits. A Micro-CT system

was developed to perform fully automated nondestructive imaging of the samples

to obtain 3D models of passion fruit. A designed label generation method and

segmentation method based on U-Net model were used to distinguish different

tissues in the samples. Finally, fourteen traits, including fruit volume, surface area,

length and width, sarcocarp volume, pericarp thickness, and traits of fruit type,

were automatically calculated. The experimental results show that the

segmentation accuracy of the deep learning model reaches more than 0.95.

Compared with the manual measurements, the mean absolute percentage error

of the fruit width and lengthmeasurements by the Micro-CT systemwas 1.94% and

2.89%, respectively, and the squares of the correlation coefficients were 0.96 and

0.93. It shows that the measurement accuracy of external traits of passion fruit is

comparable to manual operations, and the measurement of internal traits is more

reliable because of the nondestructive characteristics of our method. According to

the statistical data of the whole samples, the Pearson analysis method was used,

and the results indicated specific correlations among fourteen phenotypic traits of

passion fruit. At the same time, the results of the principal component analysis

illustrated that the comprehensive quality of passion fruit could be scored using

this method, which will help to screen for high-quality passion fruit samples with

large sizes and high sarcocarp content. The results of this study will firstly provide a
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nondestructive method for more accurate and efficient automatic acquisition of

comprehensive phenotypic traits of passion fruit and have the potential to be

extended to more fruit crops. The preliminary study of the correlation between the

characteristics of passion fruit can also provide a particular reference value for

molecular breeding and comprehensive quality evaluation.
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Introduction

Passion fruit (Passiflora edulis Sims) is native to Brazil and widely

cultivated in warm areas of Asia, America, Australia and other regions

(Corrêa et al., 2016; Teng et al., 2022). In recent years, there has been a

continuous increase in its area and production in China (Chen et al.,

2022). Passion fruit is popular for its captivating flavor, nutritional

benefits, medicinal properties, and other economic value (Pongener

et al., 2014). The center of the fruit contains many yellow, gelatinous

pulp, and the juice also have a potent fragrance and is rich in sugar

(Janzantti and Monteiro, 2017). Except as food, the whole fruit (pulp

and pericarp) has sometimes been used in traditional medicines as a

sedative or in therapies for the prevention of central nervous system

disorders such as anxiety and insomnia (Sena et al., 2009; Miroddi

et al., 2013). More than these, recent health-conscious trends have led

to growing consumer demand for naturally derived colorants. The

pericarp of passion fruit is an important raw material for natural

colorants extraction (Kawasoe et al., 2021).

Nowadays, an important challenge in crop production and plant

research is how to accelerate progress in breeding (Rahaman et al., 2015;

Varshney et al., 2021). Breeding targets for crops can generally be divided

into several broad categories: yield trait targets, quality trait targets,

maturity period targets, tolerance targets to combat pests and pests,

tolerance targets to environmental stresses, and fitness targets to protect

the cultivated environment. Accurate acquisition and analysis of plant

phenotypic traits are of great significance for improved breeding and

functional gene mapping. In the past 20 years, the research of plant

phenomics around the world has developed quite rapidly. Many non-

destructive and high-throughput phenotyping methods have been widely

used to automatically obtain plant phenotypic data, which are based on

visible light imaging (Zingaretti et al., 2021), near-infrared imaging

(Wang et al., 2014; Ambrose et al., 2016), infrared thermal imaging

(Yang et al., 2020), hyperspectral imaging (Sun et al., 2022), X-ray

computed tomography (X-ray CT), fluorescence imaging and magnetic

resonance imaging (MRI) (van Dusschoten et al., 2016). Modern optical

imaging technologies have achieved high-efficiency and non-destructive

extraction of plant phenotypic traits (Sun et al., 2022). At the same time,

the platforms carrying these optical devices have also made great

progress, such as the greenhouse platform, vehicle platform, track

platform, and UAV platform (Jin et al., 2021). These methods and

platforms have realized the extraction and analysis of crop phenotypic

traits and have been applied to the non-destructive testing of crops and to

promote variety improvement and breeding.
02
However, most crop phenotypic research focuses on cereal crops

such as wheat, rice, and soybean, and few research focuses on tropical

crops especially passion fruit. An improved method has been proposed

based on a Multiple Scale Faster Region-based Convolutional Neural

Networks (MS-FRCNN) approach using the color and depth images

acquired with an RGB-D camera to realize the detection of passion fruit

in the actual orchard environment (Tu et al., 2020). There are also some

scholars who use the visible light camera to obtain the color and other

information of passion fruit, combined with physical and chemical

descriptors digital image analysis, and then use the methods of

principal component analysis and cluster analysis to predict the flesh

quality of passion fruit. However, some indexes, such as pericarp

thickness, still need to destroy the passion fruit sample for

measurement, which will cause some measurement errors and be

unfavorable to the inference of the final model (Jesus et al., 2022).

Near-infrared (NIR) spectroscopy has also been applied to predict the

total soluble solids, titratable acidity, and pulp content of passion fruit

(Maniwara et al., 2019). The experimental result proved the feasibility

of NIR spectroscopy for the evaluation of passion fruit quality.

The optical imaging technology in most of the above research can

only obtain the shape and color information of the passion fruit surface

without destroying the samples, but it cannot obtain its internal structural

information. Benefiting from the rapid development of X-ray computed

tomography (X-ray CT) with the function of perspective imaging of

objects (Jenneson et al., 2003), it is gradually popularized from medical

examination to other biological detection fields, including the imaging

research of the internal structure of small animals (Bartling et al., 2008; Li

et al., 2008; Ashton et al., 2015) and the imaging research of the internal

structure of plants (Kotwaliwale et al., 2014). Researchers use this

technical means to realize the non-destructive acquisition of the

internal structure information of organisms. As for the application in

fruits and vegetables, X-ray CT was used to evaluate the density and the

water content in apples under varying moisture conditions (Tollner,

1992). Kim (Kim and Schatzki, 2001) used it to study the core breakdown

development in pears and the segmentation and classification in

hazelnuts (Khosa and Pasero, 2014). Recently, this technology has also

been applied to the internal measurement of walnut (Bernard

et al., 2020).

In order to distinguish plant samples and biological tissues, image

segmentation technology has been widely used, which means

classifying image pixels into different segments. Image segmentation

technology can be divided into segmentation based on classical digital

image processing technology (Cui and Zhang, 2018) and based on deep
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learning technology (Singh et al., 2018). In recent years, deep learning

technology has been greatly developed. Due to its strong deep feature

analysis ability and the convenience of end-to-end prediction, many

researchers have applied the segmentation algorithm based on deep

learning to the processing of plant images and achieved excellent

results. Aich (Aich and Stavness, 2017) used deep learning

architectures for initial segmentation and a convolutional network for

leaf counting. Xiong (Xiong et al., 2017) designed a segmentation

algorithm based on deep learning to achieve robust segmentation of

rice panicle under different light environments and different growth

states. Deep learning based segmentation technology were similarly

applied in monitoring fruit growth (Fukuda et al., 2021), fruit detection

and localization (Maheswari et al., 2021), detecting vascular bundles in

computed tomography images of stem internodes (Du et al., 2022) and

segmentation of major plant organs (Rawat et al., 2022). Overall, the

thechnology based on classical digital image processing technology is

easy to implement and interpretable but poorly generalizable. Overall,

the segmentation technology based on deep learning is highly accurate

and robust but requires large amounts of labeling data, and this process

is labor-intensive.

Here, we present the development of a robust method that extracts

the complete morphological traits of passion fruit for the first time

using X-ray Micro-CT and deep learning. This method solves the

problem that the traditional internal measurement method needs to

destroy the sample, which could be laborious and error-prone, and

realizes the nondestructive, accurate, and comprehensive measurement

of passion fruit. More than that, we also analyze the correlation between

the traits of passion fruit and propose a comprehensive evaluation

method. Our results can be used as a reference for new breeding

research. Biologists can cultivate better varieties by selecting the best

germplasm as the basis of genetic improvement.
Methods

Plant materials and experiment design

In this study, 45 passion fruits were subjected to Micro-CT and

manual measurements. These passion fruits were obtained in four
Frontiers in Plant Science 03
separate batches, named PF041, PF042, Qinmi 9, and Tainong 1.

Among them, PF041 and PF042 were cultivated in the Hainan

University (Haikou City, Hainan province, China; 20.05°N,

110.3°E). Qinmi 9 and Tainong 1were cultivated in the passion

fruit planting base in Sanya City (Sanya City, Hainan province,

China; 18.33°N, 109.15°E), Hainan Province, China. It should be

noted that PF042 and Qinmi 9 are generally considered to be the same

variety. Due to the differences in their sources and growth stages, they

were regarded as two types of samples in this paper.

After picking, all samples were transported to the laboratory in a

sealed and refrigerated manner for the imaging experiment, which

was divided into two parts: CT imaging experiments and manual

measurement experiments. Subsequently, the fourteen phenotypic

traits of passion fruit were calculated based on the CT imaging data.

The artificially measured fruit width and length data were used as a

reference to verify the reliability and robustness of the method in

this paper.

The experimental workflow used in this paper is shown in

Figure 1. As shown in Figure 1, the experimental process can be

divided into four parts: (1) Sample preparation, (2) X-ray Micro-CT

image acquisition, (3) Semantic segmentation and 3D reconstruction,

and (4) Morphological traits extraction. In Figure 1A, the passion

fruits were embedded in a flexible polyurethane foam sample holder

(15 cm length × 15 cm width × 20 cm height) to keep the samples

from any abrupt or slight movement during the scanning process in

order to avoid producing distorted images. In Figure 1B, the X-ray

Micro-CT scan data was reconstructed into several tomograms, and

they were saved according to the scanning sequence (corresponding

to the sample depth). In Figure 1C, the semantic segmentation

method was performed on the basis of the tomograms. After that,

the whole image was divided into pericarp, sarcocarp and

background. In order to obtain more accurate extraction and

quantification of their morphological traits, all the tomograms were

sequentially stacked to reconstruct a three-dimensional image. In

Figure 1D, an image processing pipeline was designed to measure the

morphological traits of passion fruit based on three-dimensional

images. Part of the traits was calculated based on the intermediate

depth (Figure 1D 1)), such as pericarp average thickness, fruit

longitudinal perimeter and fruit max cross-sectional area
A B DC

FIGURE 1

X-ray CT workflow of passion fruit measurements. (A) Composition of Micro-CT system and preparation of the sample. (B) Image acquisition.
(C) Semantic segmentation and 3D reconstruction. (D) Morphological traits extraction.
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(Figure 1D 2)). Another part was calculated based on the whole data,

such as fruit width, fruit width, fruit volume, and fruit surface area.

The remaining part was calculated from the above traits. The details

of each step will be introduced later.
X−ray computed tomography imaging
system specifications

The Micro-CT imaging system was developed to obtain CT

projection images non-destructively. The system consists of six

main elements: an X-ray source (Y.FXE-225.48, German), an X-ray

source chiller (Nova600, OXFORD, UK), an X-ray flat panel detector

(XRD3025N-G22-A, Varex, USA), a rotation platform (OMTOOLS

100B, Panasonic, Japan), a lead chamber, a computer (CPU i5-7700k,

DELL), and a PLC controller (CP1H, OMRON Corporation, Japan).

The schematic system diagram is shown in Figure 2.

As we all know, for a Micro-CT imaging system, choosing

different tube currents and tube voltage will have a great impact on

the imaging results (Stuppy et al., 2003). In order to achieve the best

imaging effect of passion fruit, after a large number of confirmatory

experiments, this paper set the tube current as 50 mA, the tube voltage
as 100 kV, the distance from the ray source to the detector as 75cm,

the distance from the ray source to the rotary table as 38cm, and the

number of scanning frames as 360. Under this parameter, the time-

consuming of each scanning effort by the Micro-CT system is

about 10 min.
Image acquisition and
semantic segmentation

After the parameters of the Micro-CT system were set, each

passion fruit sample was sequentially fixed in the designed flexible

polyurethane foam container on the rotation platform (Figure 1A). In

order to facilitate the traits calculation, uniformly place the passion

fruit so that its longitudinal axis was parallel to the plane of the

rotation platform as far as possible, and the top section was facing

upwards. After the scanning was completed, the reconstruction

algorithm was used to obtain the imaging results of each sample

from the original data. It parsed them into several tomograms with a

size of 2000*2000 pixels, which were saved in the TIF file format. This

process takes about 5 minutes. Since the useless background occupied

most of the pixels in each section, the region of interest (ROI)

extraction algorithm was applied to each tomogram to reduce the
Frontiers in Plant Science 04
background pixels while preserving the sample information. Such an

operation could reduce the computation and make it more conducive

for the deep learning network to obtain sample features. Finally, the

size of each tomogram was reduced to 1000*1000 pixels.

A single tomogram from the final imaging result was used as a

representative to analyze image features in Figure 3. It can be seen

from Figure 3B that the grayscale distribution of the tomogram was

mainly divided into three intervals. The grayscale value of the pixels

with a proportion of 28.9% was zero, and the grayscale between 0 and

60 accounted for 47.41% ratio; the number of pixels with a grayscale

higher than 60 only occupied a ratio of 23.69%. Analyzing by

combining the three illustrations in Figure 3, it could be found that

the pixels with zero gray value were the background area, which will

not interfere with the segmentation. The pixels with gray distribution

between 0 and 60 were generally the inherent noise caused by the

imaging system. At the same time, the sarcocarp and pericarp of

passion fruit we were interested in were distributed in the range of 60-

255. Significantly, there was no apparent gray difference between the

sarcocarp and pericarp in Figure 3A.

Segmentation methods based on digital image processing

technologies, combined with image filtering, morphological

processing operators and other methods, and some prior

knowledge, could show excellent segmentation performance on

some tomography images (Hughes et al., 2017). Nevertheless, when

applied to a large number of tomography image data with whole or

even multiple passion fruit samples, it is very vulnerable to the

changes in biological structure in the sample. Methods based on

deep learning have been applied to biomedical image segmentation

and achieved good results. However, using a deep learning model

actually needs to prepare high-quality training sets in advance, which

is very labor-intensive.

To solve the shortcomings when the two methods were applied to

the segmentation of passion fruit tomogram images, this paper

proposed a segmentation strategy that combined them: a label

generation method based on digital image processing was designed

to achieve segmentation of a series of images, and the part with higher

accuracy in the segmentation results was picked as labels to be used to

training deep learning model.

The Flow of the label generation method designed in this paper is

divided into three main steps (Figure 4): image preprocessing

(Figure 4A), contour extraction (Figure 4B), contour sorting and

region segmentation (Figure 4C). Firstly, take the tomogram image as

input. The gray value of it was first transformed to suppress the

background area with a low gray value to improve the image

contrast. Then the Otsu segmentation algorithm was applied to the
FIGURE 2

X-ray Micro-CT system schematic diagram.
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non-zero regions in the image (Figure 4C). The significance of this step

was to calculate the threshold depending on the area of interest rather

than the entire image, which would be more conducive to the

segmentation of the sarcocarp and pericarp. Based on the previous

step’s segmentation results, the image’s contours would be

extracted (Figure 4B).

According to the actual situation (Figure 5), the contour with

the largest enclosing area, the second-largest and the third-

largest generally corresponded to the outer edge of the passion

fruit sample (Figure 5E), the inner edge of the pericarp

(Figure 5F), and the outer edge of the sarcocarp (Figure 5G).

Of course, it cannot be ignored that the sarcocarp would be

divided into several separate parts in the partial depth of the

tomograph. At this time, the third-largest contour did not

contain all the core parts, so we designed a judgment method:

When the fourth-largest contour is greater than 25% of the third-

largest contour, the sarcocarp part was the combination of the
Frontiers in Plant Science 05
third and fourth contours. The sarcocarp of passion fruit was

generally represented as a single-connected domain, double-

connected domain and triple-connected domain in the

tomogram image, so we only calculated the first five contours

for now. Regarding the generated contour as a mask, the label

(Figure 5H) was obtained by convolution of the mask and

original image. In this way (Figure 4C), a large number of

tomograms were processed, and even if there was a certain

amount of data, the resulting labels were inaccurate due to

differences in structure. Despite all this, it did not affect the

generation of a sufficient number of accurate labels.

The U-Net convolutional model (Figure 6) was used for the

semantic segmentation of passion fruit tomogram images. U-Net

(Ronneberger et al., 2015) is a convolutional neural model which

builds upon encoder-decoder architecture and is simply a hierarchical

down-sampling convolutional layer followed by symmetric up-

sampling convolutional layers, additionally feature maps from the
A

B

C

FIGURE 4

Flow of label generation method. (A) Image preprocessing. (B) Contour extraction. (C) Contour sorting and region segmentation.
A B C

FIGURE 3

Grayscale distribution of tomogram images. (A) Example of a tomogram image. (B) The gray histogram. (C) Visualizes an approximate percentage of
pixels in each cluster.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1087904
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lu et al. 10.3389/fpls.2022.1087904
encoder network are concatenated in the respective decoder part for

the passage of semantic information. As an end-to-end network, it

only needs to input images to get corresponding segmentation results

after the network has been trained.
3D reconstruction and
morphological measurement

According to the settings of Micro-CT system parameters and

reconstruction algorithm parameters, the actual size of the single pixel

of the tomogram is 0.1mm*0.1mm. At the same time, 1300 tomogram

images correspond to the actual size of 13cm, which shows that the

thickness of each tomogram map is also 0.1mm. By observing the

actual imaging situation, it was found that 800 tomogram images were

enough to include all the information of a single passion fruit sample.
Frontiers in Plant Science 06
The other 500 tomogram images would be discarded to reduce the

amount of calculation.

After these tomograms were stacked into three-dimensional images,

the isotropic resolution data could be obtained without adjusting the step

size. The size of the resulting 3D image was 1000*1000*800 pixels, and

the size of a single voxel was 0.1mm*0.1mm*0.1mm. It would provide a

benchmark for subsequent volume and area calculations.

Based on the segmented three-dimensional image of passion fruit,

the fruit traits in Table 1 could be calculated automatically in the

designed image processing pipeline (Figure 1D). Volume is the

complete connected-pixel count for each given sample (Hughes

et al., 2017). The surface area was calculated by adapting a

previously accurate method (Hu et al., 2020). The length and width

of the passion fruit and the thickness of the pericarp were obtained by

rectangle fitting and random sampling point distance measurement

on several middle tomogram images (Zhu et al., 2022). All the traits of
FIGURE 6

Application of U-Net convolutional model in tomogram image segmentation.
A B D

E F G H

C

FIGURE 5

Label generation processing. (A) Example of a tomogram image. (B) After grayscale transformation. (C) Otsu segmentation result. (D) All contours.
(E) Largest contour. (F) Second-largest contour. (G) Third-largest contour. (H) Label of the original image.
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passion fruit were divided into three categories: passion fruit traits,

sarcocarp traits and pericarp traits, which were the key indicators

concerned in the scientific research, planting and production of

passion fruit. The fruit traits include the length and width of

passion fruit (also known as longitudinal diameter and transverse

diameter), fruit surface area, fruit volume, max cross-sectional area

(longitudinal) and fruit longitudinal perimeter.

Moreover, the length-width ratio and fruit type index are

calculated to evaluate the shape characteristics of passion fruit. The

fruit length-width ratio (FLWR) is defined by (1) and the fruit shape

index (FSI), which combines sphericity (Bernard et al., 2020) and the

length-width ratio, is defined by (2). The closer the length-width ratio

is to 1, the more coordinated the horizontal and vertical proportion of

the passion fruit is. The closer the fruit shape index is to 1, the closer

the whole fruit is to spherical.

Fruit   Length −Width  Ratio =  
FL
FW

(1)

Fruit   Shape   Index =  
p

1
3 6FVð Þ23

FSA*FLWR
(2)

At the same time, the pericarp volume, average thickness and

sarcocarp volume of passion fruit could also be calculated, and then

their proportion in the fruit volume would be calculated. Sarcocarp

filling rate refers to the proportion of pulp in all components

(including cavities and some low-density tissues) of passion fruit

except the pericarp.

It should be noted that the workstation parameters during all the

experiments are as follows: CPU: Intel i7-11700K @3.60 GHz, GPU:

NVIDIA GeForce GTX3090, RAM: 64GB. The fully automatic

calculation method for the phenotypic traits of passion fruit was

developed based on the Python Language and OpenCV Library and

run in PyCharm IDE. For an individual passion fruit, the process of

image segmentation versus trait extraction takes approximately

100 seconds.
Frontiers in Plant Science 07
Result

Image data analysis and process of
passion fruit

The pre-experimental results of Micro-CT reconstruction of a

small number of passion fruit samples show that with the tube voltage

set to 100 kV and the tube current set to 50 μA, the projection images

with better contrast will be obtained. In order to reduce the influence

of the low signal-to-noise ratio of cone-beam CT, 15 frames are

collected and averaged within the same angle step.

Seven morphologically representative passion fruit samples are

selected from all the samples and shown in Figure 7. Figure 7A shows

the RGB images of these seven samples. It can be seen that they are

quite different in shape and color. Some samples have a shape that is

close to spherical, while some samples are closer to ellipsoidal.

Figure 7B shows the three-dimensional reconstruction results of

passion fruit from the Micro-CT system. The three-dimensional

images show that the sarcocarp and pericarp of passion fruit

samples have a high X-ray absorption rate. The middle cavity and

some low-density tissues are insignificant due to their low absorption

rate. Figure 7C shows the cross-sectional view of each sample to

observe the internal characteristics, from which it can be seen that

there are also some differences in the distribution of various tissues

within each sample. Figure 7D shows the tomogram images of

samples from Micro-CT, which is also the basis for sarcocarp and

pericarp segmentation and three-dimensional reconstruction.

The segmentation of the tomogram was carried out under the U-

Net segmentation model. As shown in Figure 8A, each tomogram was

divided into three parts: sarcocarp, pericarp and background

(including background and fibrous tissue with extremely low X-ray

absorption rate). The data set used to train the segmentation network

includes 2000 training sets and 400 verification sets. In order to verify

the accuracy and robustness of the segmentation model based on U-

Net, two hundred tomograms of different depths from different

samples were randomly selected as the test sets, and then the

manual labels and segmentation results were combined for

verification. The segmentation accuracy was quantified using two

parameters commonly used in segmentation algorithms, Intersection

over Union (IoU) and Dice Coefficient (Dice). The batch size was set

as four and RMSprop was used to optimize the model with an initial

learning rate of 0.001. To match the receptive field of the network, the

input images were scaled by 0.5. The U-net model was trained for a

total of 200 epochs.

The quantitative and average indicators of each category are

shown in Figure 8B. It can be seen that the mean Dice (mDice_All)

and mean IoU (mIoU_All) of all three segmentation categories in the

validation set reach about 0.983 and 0.971, respectively. After

removing the background components, the mean Dice

(mDice_Passion) and mean IoU (mIoU_Passion) of the passion

fruit are about 0.975 and 0.955. Judging from the segmentation

accuracy of each category, the Dice and IoU of the background are

all above 0.990, the Dice and IoU of the sarcocarp are distributed

around 0.985 and 0.972, and they are distributed around 0.973 and

0.945 for the pericarp. The result shows that the U-Net segmentation

model has sufficient accuracy and reliable performance when it is used

to segment passion fruit tomograms.
TABLE 1 The classification and abbreviation of passion fruit traits.

Trait
classification

Trait Abbreviation Unit

Passion Fruit Traits Fruit width FW mm

Fruit length FL mm

Fruit surface area FSA mm2

Fruit volume FV mm3

Fruit max cross-sectional area FMCA mm2

Fruit longitudinal perimeter
Fruit length-width ratio
Fruit shape index

FLP
FLWR
FSI

mm
-
-

Sarcocarp Traits Sarcocarp volume SV mm3

Sarcocarp content SC %

Sarcocarp filling rate SFR %

Pericarp Traits Pericarp volume PV mm3

Pericarp content PC %

Pericarp average thickness PAT mm
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Passion fruit morphological traits extraction

In order to obtain the results of three-dimensional reconstruction,

the segmented results of all the tomogram images are stacked sequentially

into a three-dimensional format, and then the three-dimensional digital

model of each sample could be obtained. Fourteen traits, as shown in the

Table 1, can be automatically calculated in the designed image processing

pipeline. The descriptive statistics (mean, standard deviation minimum

and maximum) of the fourteen traits in all samples are given in Table 2.
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It can be seen from Table 2 that the average length and width of

passion fruit samples in this experiment are 65.88mm and 61.05mm, the

difference between samples is not more than 20mm, and the volume and

surface area show significant differences. In addition, the average length-

width ratio of the samples is 1.08, which indicates that most of the samples

have relatively balanced dimensions in the horizontal and vertical

directions. The fruit shape index also indicates this, but it can also be

seen that there are still some flat and long individuals. The average

proportion of the sarcocarp of passion fruit is 28%, and some samples
A B

FIGURE 8

The accuracy analysis of the U-net segmentation model. (A) Original tomogram image, its label and segmentation result. (B) Dice and IoU of each category.
A

B

D

C

FIGURE 7

Seven morphologically representative passion fruit samples. (A) RGB images of samples. (B) 3D-reconstruction images of samples from Micro-CT.
(C) RGB cross-sectional view of samples. (D) Tomogram images of samples from Micro-CT.
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reach 40%. Meanwhile, the average proportion of the pericarp is 23.65%,

and some samples even exceed 50%. The average filling rate of the

sarcocarp is 36.84%, which indicates that there are still a considerable

number of cavities and other plant tissues in the fruit. The X-ray absorption

rate by these tissues is extremely low, and the density is also very low.

The manual measurement method was adopted to verify the

accuracy of the automatic measurement method. As shown in

Figure 9, the length and width of the passion fruit were manually

measured. The results show that the R2 coefficients of the manual

measurement and the automatic measurement method in the

measurement of width and length are 0.96 and 0.93, the Mean

Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), and

Root Mean Squared Error (RSME) of width are 1.94%, 1.18 and 1.56. As

for length, they are 2.89%, 1.91 and 2.31. That is, for a passion fruit

sample with a length and width of about 6cm, the error of the automatic

measurement result is within 2mm. Such results can fully prove the

reliability and accuracy of the automatic measurement method.
Correlations and validation

Pearson correlation matrix for passion fruit
morphological traits

Using the Pearson correlation coefficient, it is found that there is a

specific correlation between these traits. According to Figure 10, it is

evident that there is a strong positive correlation between the volume,

surface area, length and width of passion fruit (0.661-0.966, P value 0.01),

which follows the physical law. The max cross-sectional area strongly

correlates with length, width and volume (0.821-0.902, P value 0.01). The

longest girth shows the strongest correlation with fruit volume (0.801, P
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value 0.01), which is reasonable because neither length nor width alone can

determine the final size of this feature. The volume of the sarcocarp and

pericarp are positively related to the volume of the whole fruit. However,

the general correlation (0.684, 0.676) is caused by differences between

individuals and varieties. The filling ratio of fruit sarcocarp is highly

correlated with its volume (0.839, P value 0.01). It shows a certain

degree of negative correlation with length, volume and max cross-

sectional area (-0.464, -0.493, -0.497), which indicates that the larger the

size of the fruit, the lower the plumpness of fruit sarcocarp. At the same

time, it can be noted that the proportion of the pericarp and its thickness

show a strong correlation (0.888, P value 0.01), and the thickness of the

pericarp is also strongly correlated with the volume of the pericarp (0.769, P

value 0.01). At the same time, there is no significant correlation between the

volume of the pericarp and the sarcocarp. The fruit shape index shows a

negative correlation with the length-width ratio and surface area (- 0.565, -

0.466).When the length-width ratio is smaller, the fruit will be closer to the

sphere, and the fruit type coefficient will be smaller. For three-dimensional

objects, the surface area of the sphere is the smallest under the same

volume. In this way, the conclusion of the analysis is consistent with the

physical reality. In molecular breeding, comprehensive information is

needed to support the analysis of the relationship between traits and

genes. The specificity correlation among various characters of Passion Fruit

can provide new reference information for breeders.
Principal component analysis for passion
fruit morphological traits

In the passion fruit industry, manufacturers and consumers have

special expectations. For example, manufacturers hope that the

proportion of sarcocarp and pericarp in fruits will be higher to
TABLE 2 Descriptive statistics of passion fruit morphological traits.

Morphological Trait Mean ± SD Range Unit

Passion Fruit Traits

Fruit width 61.05 ± 5.64 50.96 - 68.21 mm

Fruit length 65.88 ± 6.07 55.62 -73.19 mm

Fruit surface area 15733.21 ± 3345.44 10997.25 - 21726.56 mm²

Fruit volume 134524.15 ± 37998.12 87863.49 - 177060.82 mm³

Fruit max cross-sectional area 3119.32 ± 659.57 1827.85 - 3827.55 mm²

Fruit longitudinal perimeter 222.64 ± 25.35 184.32 - 308.23 mm

Fruit length-width ratio 1.08 ± 0.08 1.00 - 1.31 –

Fruit shape index 0.76 ± 0.12 0.49 - 0.87 –

Sarcocarp Traits

Sarcocarp volume 36764.16 ± 9395.57 14466.47 - 52115.16 mm³

Sarcocarp content 28.01 ± 6.03 16.26 - 40.26 %

Sarcocarp filling rate 36.84 ± 7.47 19.09- 49.17 %

Pericarp Traits

Pericarp volume 31553.56 ± 12518.67 13176.91 - 57428.58 mm³

Pericarp content 23.65 ± 7.78 12.96 - 56.41 %

Pericarp average thickness 2.69 ± 0.98 1.31 - 5.80 mm
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obtain higher economic benefits. At the same time, consumers are

more inclined to buy fruits with a more round and beautiful

appearance and larger volume. Using these traits data for principal

component analysis can provide some references for a comprehensive

evaluation of passion fruit sample quality.

Figure 11A is a gravel map drawn according to the data variation of

the principal components. The eigenvalues tend to flatten after the third

principal component. Combined with the variance interpretation rate

of each principal component in Figure 11B, the first three dimensions

of PCA explain 80.31% of the total variance. Figure 11C shows the
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contribution of each component in the first three principal dimensions.

Dimension 1 corresponds to the morphometric traits (FW, FL, FMCA),

the volumes (FV, PV, SV), and the fruit surface area. Dimension 2 is

linked to the related traits of sarcocarp, such as volume and proportion.

Dimension 3 focuses on the content of the sarcocarp and pericarp,

which can be abstracted to describe the proportion of valuable parts in

the fruit. According to the weight calculation results of each component

of the principal component analysis, the sample individuals can be

comprehensively evaluated by these fourteen traits. The top ten samples

have scores ranging from 0.438 to 1.072 as shown in Figure 11D.
FIGURE 10

Pearson correlation matrix for passion fruit morphological traits.
FIGURE 9

Automatic and manual measurement results of passion fruit length and width.
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Among all samples, these samples are in the head position in terms of

size and volume. In order to better represent the contribution of each

trait in the sample, all the trait data were normalized within the range of

these ten samples, and finally, the stacked bar graph shown in

Figure 11D was formed. The samples with the top three scores are

among the best because of their large size, regular shape and prominent

fruit volume, which coincide with the shopping philosophy of
Frontiers in Plant Science 11
consumers. The remaining samples also have their own outstanding

advantages in sarcocarp volume, sarcocarp filling rate and other traits.

The comprehensive quality evaluation method based on principal

component analysis can help producers and breeders understand the

quality of samples more comprehensively and objectively. It can

provide support for molecular breeding research aimed at obtaining

better varieties.
A

B

D

C

FIGURE 11

Principal Component Analysis using the passion fruit samples and the 14 traits quantified. (A) The characteristic root of the 14 components in PCA.
(B) Scree plot of the percentage of components explained by all dimensions. (C) The contribution of each component to the first three dimensions.
(D) Top ten samples of comprehensive quality evaluation and normalized expression of their 14 components.
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Discussion

Advantages and disadvantages of
Micro-CT system for passion fruit
phenotype traits measurement

Nowadays, the Micro-CT system has been widely used in the

medical field. Because of its nondestructive detection ability, it is also

widely applied in crop research. This study applies this technology to

the traits measurement of passion fruit for the first time. Fourteen

phenotypic traits, such as fruit volume, length, width, sarcocarp

volume and pericarp thickness, are obtained without damage and

with high accuracy. It has prominent advantages over other

traditional methods. First of all, it is a nondestructive measurement

method. When using traditional methods to measure the internal

traits of fruit, such as sarcocarp volume and pericarp thickness, it is

necessary to cut the sample, which will lead to the rupture,

deformation, and loss of some tissues. In particular, the flesh of

passion fruit is very easy to liquefy, introducing specific errors in

measuring passion fruit.

Moreover, the damaged fruits will no longer have any use value.

After nondestructive measurement methods process the samples, the

physiological and biochemical status of the samples will not be

affected, which can continue to be used for in-depth research in

gene metabolism and other fields. Secondly, the Micro-CT system can

provide a three-dimensional digital image model of the sample, which

is difficult for traditional sensors to provide. For example, although

the structured light camera can provide a three-dimensional fruit

model, it can not obtain internal traits. According to the three-

dimensional digital model, the sample traits can be fully

automatically extracted, effectively avoiding the subjective bias in

manual measurement methods. The defect of the Micro-CT based

measurement method mainly lies in that the physical density and the

absorption rate of the X-ray of each biological tissue are different, and

the response intensity reflected on the image is determined by both of

them. In addition, it is affected by noise, which often leads to the

situation that the gray levels of different tissues are close or some low-

density tissues are difficult to distinguish from the air. The main

parameters of the Micro-CT system, such as tube voltage and current,

need to be adjusted before the experiment to obtain the best

imaging effect.

The method studied in this paper has been well applied to passion

fruit, but its significance is far more than this. These techniques and

calculation methods can also be applied to other tropical fruits, such

as coconut and pitaya. The reason is that there are often some density

differences between the tissues of these tropical fruits, and the mass

attenuation coefficients are also different, which will be reflected in the

final imaging results. When calculating various characters based on

the imaging results, because they all have inner and outer wrapping

structures similar to Passion Fruit, the method used in this paper can

be applied to other tropical fruits with only a few modifications. In the

long run, because of their nondestructive characteristics, Micro-CT-

based measurement methods have the potential of dynamic

monitoring and character mining, which can continuously monitor

the same sample in different growth or decay cycles and establish a

complete growth or decay model. At the same time, this measurement

method can mine more meaningful new traits, which is essential in
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promoting the research of plant development mechanisms and

pathological influences. It is beneficial to cultivate new varieties,

improve yield and quality, and has important practical significance

in promoting the development of the agricultural economy.
Deference of segmentation based on
traditional digital image process and
deep learning

In image processing, especially in image segmentation, the primary

methods can be divided into algorithms based on traditional digital

image processing (DSP) and deep learning technology. In comparison,

the traditional digital image processing methods are more

straightforward and faster, while the methods based on deep learning

have more vital generalization ability and better performance.

For the tomogram image segmentation of passion fruit, we used the

standard structural features of the samples as prior knowledge to design

a feature extractor. Finally, we achieved fast image segmentation based

on DSP.When applied to a large amount of data, only about 30% of the

data showed excellent results. In the remaining images, the

segmentation effect was poor due to structural and grayscale

differences, and it was not easy to directly use it for subsequent

statistics and calculations. On the other hand, the deep learning

method needs to manually mark the image before using it. It takes

about 2 minutes to mark a 2000*2000 pixels Passion Fruit tomogram,

and it is easy to introduce personal subjective bias in the marking result.

Because of these situations, this paper combined the two kinds of

methods. In order to automatically and quickly generate labels, a

segmentation algorithm based on DSP was designed to process a

certain number of original images, and the one with the better effect

was selected as the training set. It was used for network training of

subsequent deep learning, and finally, the trained network was used to

predict all the data to obtain the final segmentation result. The

experimental results showed that the designed method for generating

training set labels was reduced from the artificial 120 seconds/frame to

2 seconds/frame, and the accuracy was very little different from the

manual labeling. The method in this paper performed more objectively

on some ambiguous pixels decisive. The accuracy of the final network

prediction results also reached a high level. Our method can also be

extended to other crops, and the process is relatively simple.
Conclusions

This study presented a phenotype traits measurement method of

passion fruit based on Micro CT and deep learning technology, which

realized the nondestructive automatic and rapid extraction of fourteen

phenotypic traits of passion fruit. Based on the phenotypic data of

several samples, Pearson correlation analysis was carried out to mine

the possible internal correlation, and the comprehensive quality of

passion fruit was evaluated by combining principal component

analysis. The experimental results showed that our proposed

method not only filled the gap in the phenotypic measurement of

passion fruit but also was a potential method for other species with

similar structures. It could play a vital role in the future breeding

improvement and industrial production.
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