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Rice plant architecture and stress tolerance have historically been primary

concerns for rice breeders. The “Green Revolution” and super-rice breeding

practices have demonstrated that ideal plant architecture can effectively

improve both stress tolerance and yield. The synergistic selection and

breeding of rice varieties with ideal architecture and stress tolerance can

increase and stabilize yield. While rice plant plant architecture and stress

tolerance are separately regulated by complicated genetic networks, the

molecular mechanisms underlying their relationships and synergism have not

yet been explored. In this paper, we review the regulatory mechanism between

plant architecture, stress tolerance, and biological defense at the different level

to provide a theoretical basis for the genetic network of the synergistic

regulation and improvement of multiple traits.

KEYWORDS
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1 Introduction

Global climate extremes profoundly affect human social and economic behavior,

especially agricultural production in fragile ecosystems. In recent years, China’s rice

production and food security have been challenged by natural disasters such as cold

damage, high temperatures, and drought stress. Therefore, improving the stress tolerance

of rice is important for overcoming these issues and ensuring food security.

The concept of ideal crop architecture was first proposed by Donald in 1968 (Donald,

1968). Ideal plant architecture can improve the photosynthetic efficiency, biomass, and

stress tolerance of plants (Donald, 1968; Ma et al., 2020). Rice production continued to

increase through two Green Revolutions and has been accompanied by improvements in
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architecture and tolerance (Khush, 2001). Traditional breeding

and modern molecular breeding practices have demonstrated

that there is a close relationship between plant architecture and

stress tolerance, which complement each other throughout

reproductive process for rice and jointly affect rice yield (Guo

et al., 2020). Therefore, breeders have focused on rice plant

architecture and stress tolerance, it is an effective way to achieve

high and stable yield and solve the problem of food security to

carry out the cooperative breeding of ideal plant types and

stress tolerance.
2 Molecular regulation of rice plant
architecture and its interrelationship
with stress-tolerance

The acquisition of environmental awareness and tolerance in

plants is a complicated process involving the coordinated action of

many genes and multiple tolerance mechanisms, including a long

period of domestication during evolution and a relatively short-

term acclimation mechanism (Mittler et al., 2012). Traditional

breeding practices have found that rice plant types with short

stalks, thick stems, and upright spikes can strengthen the ability to

resist lodging, while traits like small leaves, few tillers, and large

spikes can effectively enhance drought resistance (Quarrie et al.,

1997; Tu et al., 2022). The core technology of the first Green

Revolution uses the semi-dwarf gene Sd1 in rice breeding, which is

the first variety to greatly increase production by reducing rice

plant height and improving lodging resistance. It is also the first

time to improve rice resistance by improving the plant type (Peng

et al., 1999; Guo et al., 2020). Similarly, Liu et al. found that a

height-, tiller-, and spike length-related regulatory gene HTD2

(D88/D14) encodes an esterase that regulates cell growth and

organ development through the strigolactone pathway. In rice, it

inhibits the meristem and negatively regulate the tiller number,

which helps regulate rice plant architecture (Liu et al., 2009; Wang

et al., 2020). In 2010, Jiao et al. cloned a key gene OsIPA1, it

encodes the Squamosa-like promoter-binding protein OsSPL14,

which is regulated by miR156 and binds to the important

downstream rice plant type target genes OsDEP1 and OsTB1

and directly interacts with OsSHI1 and OsIPI1 to co-regulate rice

tiller, plant height, panicle type, and stem development. Therefore,

increasing OsIPA1 expression can reduce plant tiller, increase the

grain number per panicle, and increase yield (Jiao et al., 2010; Lu

et al., 2013; Wang et al., 2017; Wang andWang, 2017; Duan et al.,

2019). Meanwhile, under low-temperature stress, OsTB1 and

OsMADS57 synergistically regulated the transcription of their

target genes OsWRKY94 and D14, shifting the morphological

development of rice to cold adaptation and improving its cold

resistance (Chen et al., 2018). In addition to regulating plant

architecture development as a growth regulator, IPA1 also

positively regulates rice blast resistance by modulating amino
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acid phosphorylation at Ser163 to binds to the promoter of the

pathogen defense gene WRKY45, maintaining the balance

between growth and immunity (Wang et al., 2018).

Additionally, IPA1 improves drought resistance at the rice

seedling stage by participating in ABA metabolism (Zhu et al.,

2022). Functional analysis of OsIPA1 confirms the possibility that

the same gene could regulate both plant-type development and its

abiotic stress tolerance characteristics (Figure 1).

Leaf morphology is an important factor affecting plant

architecture. Several leaf-shape regulatory genes, such as SLL1,

PSL1, and SRL1, were cloned by Zhang et al. using specific

germplasm and mutants, which regulate the development of leaf

polarity and play an important role in resisting adversity stress

(Zhang et al., 2009; Xiang et al., 2012; Zhang et al., 2021). SLL1, a

KANADI family transcription factor, affects leaf-rolling

phenotypes by regulating the development of sclerenchyma

cells on the abaxial surface of rice leaf and interacts with

OsSKIPa to regulate drought tolerance in rice (Zhang et al.,

2009; Hou et al . , 2009). PSL1 , the gene encoding

polygalacturonase, changes the cell wall structure and water

homeostasis via gene differential expression, thus regulating

the drought resistance of rice. SRL1, which encodes a GPI-

anchored protein, positively regulates drought tolerance in rice

mainly through leaf curling caused by epigenetic inactivation

and by controlling cell wall formation to further influence the

epidermis and water homeostasis (Li et al., 2017). Moreover, as a

dominant-negative gene, REL1 primarily responds to drought

stress in rice through the ABA pathway while regulating leaf

rolling (Liang et al., 2018).

In addition to leaf morphology, plant height, spike shape,

tiller, and root development are important morphological

factors in regulating rice plant architecture and stress

response. OsSDG721 encodes a TRITHORAX-like protein

that affects plant height and spike shape, and positively

regulates salt tolerance in rice by regulating the methylation

of OsHKT1;5 (Jiang et al., 2018; Liu et al., 2021). OsDRO1 is

involved in the morphological development of rice roots.

Higher expressed OsDRO1 significantly promoted root

morphology development by increasing the angle of rice

roots, which improved water uptake capacity. Over-

expression of OsDRO1 in shallow-rooted germplasm could

promote deeper root establishment, improve drought and

lodging resistance, and enhance yield (Uga et al., 2013).

OsLIC1 regulates stress tolerance and traits such as leaf

structure, plant height, tiller angle, and grain number by

activating the BR signaling pathway in rice (Wang et al., 2008).

In recent years, in addition to the studies of IPA1 on the

genetic regulation network of rice plant type and resistance,

several protein families such as Zinc-finger protein (ZFP),

double-stranded RNA binding protein (DsRBP), and Heat

shock protein (HSP) have been successfully cloned, which has

clarified the synergistic regulatory functions of rice plant

development, stress tolerance, and biological defense.
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3 Zinc finger proteins synergistically
regulation of plant architecture
establishment and stress
tolerance in rice

Zinc finger proteins are a class of nucleic acid-binding

transcription factors that play important roles in plant growth

and development, hormone regulation, stress response, and

transcriptional regulation (Noman et al., 2019). PROG1

encodes a C2H2-like zinc-finger protein and plays an

important role in the domestication of stolon or slope growth

to upright growth in rice. PROG1 from both wild and cultivated

rice has transcriptional activation activity, and the loss of PROG1

function in cultivated rice not only improved rice plant

architecture but also increased the spike number, significantly

increasing yield (Jin et al., 2008; Tan et al., 2008). Huang et al.

(2009) cloned the C2H2-type zinc finger protein coding gene

DST from the broad-leaf salt, and drought-tolerant mutant dst,

which also has transcriptional activation activity. By directly

binding to the DBS sequence of the promoter of reactive oxygen

species-related genes to regulate their expression and affect

stomatal opening through ABA-independent pathway, thereby

negatively regulating drought and salt tolerance in rice (Huang

et al., 2009). DSTreg1, the semi-dominant allele of DST,

competes to bind to the promoter region of OsCKX2 in a
Frontiers in Plant Science 03
dominant negative regulatory manner to reduce its expression,

resulting in increased plant height, reduced tillering, and

increased grain number per spike. At the same time, the

function of DSTreg1 is closely related to SAM activity (Li

et al., 2013). DCA1, a transcriptional co-activator of DST,

encodes a CHY-type zinc finger protein that can form a

heterotetramer with DST to regulate stomatal opening and

stress tolerance in plants by affecting the expression of

hydrogen peroxide scavenging factors, such as Prx24 (Cui

et al., 2015). Therefore, DST affects the development of leaf

shape and spike shape and regulates abiotic stress response by

regulating the expression of different downstream genes.

OsLIC1, a gene encoding CCCH-type zinc finger protein, is a

transcription factor with both transcriptional activation activity

and RNA binding activity. OsLIC1 regulates the development of

traits such as leaf angle, plant height, tiller angle, and grain

number per spike by activating BR signaling pathway in rice

(Wang et al., 2008; Zhang et al., 2012). It also interacts with

proteins such as OsBZR1, OsALDH2B1, and AOS2 to activate

JA synthesis and signal transduction to regulate rice defense

against abiotic and biotic stresses (Ke et al., 2020). OsDRZ1

encodes another zinc finger protein involved in regulating rice

plant type and drought stress. But unlike most of the reported

zinc finger proteins, OsDRZ1 has transcriptional repressive

activity and could regulate stress response in rice by affecting

the expression of drought-responsive genes such as OsGLP1
FIGURE 1

Regulatory relationship of IPA1 on plant architecture and stress tolerance.
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(Yuan et al., 2018). Additionally, ZFP185, OsDHHC1, SNFL1,

and other zinc-finger proteins were also involved in leaf

morphology and stress response of rice plants through

different pathways (Zhou et al., 2017; He et al., 2018).
4 RNA-binding proteins mediate the
regulation of rice plant
morphogenesis and stress tolerance

In addition to being the main components of ribosomes,

RBPs are also involved in RNA processing, signal recognition,

transcriptional activation, and developmental regulation.

Most double-stranded RBPs (DsRBPs) contain two

functional or catalytic domains and can participate in

multiple regulatory pathways (Lu and Fedoroff, 2000), such

as sRNA synthesis and regulation, plant architecture

regulation, stress tolerance, and biological defense

(Waterhouse et al., 2001; Raghuram et al., 2015). AtHYL1,

the gene encoding DsRBP, mediates the post-transcriptional

regulation of miRNAs and represses the translation of its

target genes. AtHYL1 participates in miRNA processing,

synthesis, and accumulation and regulates plant responses to

hormones such as ABA, IAA, and CK by interacting with

AtDCL1, AtSE, and AtHEN1, which affects leaf morphogenesis

and stress tolerance (Lu and Fedoroff, 2000; Yang et al., 2021).

Currently, 12 double-stranded RNA-binding domain-

containing proteins have been identified in rice, including 8

double-stranded RNA-binding proteins (DRBs) and 4 Dicer-

like (DCL) proteins, which are mainly involved in establishing

rice leaf polarity, sRNA biosynthesis, and biotic-stress-

resistance regulation (Liu et al., 2005; Song et al., 2012;

Raghuram et al., 2015). Of them, both OsDCL1 and OsDCL4

are involved in miRNA maturation and regulate leaf

morphological development (Lu and Fedoroff, 2000), while

OsDCL1 negatively regulates the basal resistance of rice to

Pyricularia oryzae Cav (Zhang et al., 2015).. Analysis of

OsDRB2 in rice showed that defects of the OsDRB2-miR166-

OsHBs pathway could play an important role in formation of

the rolled leaf phenotype, Moreover, OsDRB2 also regulated

accumulation of miR160 , miR390 , and miR396 and

expressions of the genes involved in leaf polarity to affect

leaf development (Yuan et al., 2022). As we know, Double-

stranded RNA binding domain containing proteins play an

integral role in all the small RNA pathways of the plants

(Eamens et al., 2012). The expression levels of OsDRB1-2,

OsDRB1-3, OsDRB2 and OsDRB3 genes were up-regulated in

rice seedlings treated with abiotic treatments such as UV-B

and drought and biological treatments. meanwhile, DRB1 is a

phosphorylation target of mitogen activated protein kinase

MPK3 in both rice and Arabidopsis, and the transcripts of

OsMPKs in rice were differentially regulated in abiotic and
Frontiers in Plant Science 04
biological stresses, suggesting their stress-responsive functions

as evident by the literature (Raghuram et al., 2015). This

provided more new ideas for DRB to participate in rice

stress response.
5 The functional mechanism of heat
shock proteins in rice plant type
development and stress tolerance

Nowadays, heat shock proteins are often involved in plant

growth and development and various stress responses as

molecular chaperones (Liu et al., 2021). More than 30 heat

shock proteins have been reported in rice, but only Nal11 and

OsHSF18 are involved in regulating rice plant type. Nal11

encodes the small molecule heat shock protein HSP40. The

disruption of the DNAJ domain in mutant nal11 affects the

mRNA splicing pattern and leads to premature termination of

translation, which affects agronomic traits such as the tiller, leaf

width, and panicle length in rice (Wu et al., 2016). Meanwhile,

Nal11 has been confirmed to have a negative regulatory effect on

the drought resistance of rice seedlings in terms of morphology,

physiology and biochemistry, and gene expression (Wang et al.,

2020). Current studies have demonstrated that OsHSF18 is

involved in plant heat-resistance, cold-resistance, drought-

resistance, and salt-resistance. RNA-Seq and ChIP-Seq

screening revealed that OsHSF18-OX lines plants primarily

respond to heat stress by participating in phytohormone signal

transduction, ascorbic acid, and other metabolic pathways (Li,

2018). Meanwhile, that excessive transcription levels of OsHSF18

negatively regulate plant height, tillering, seed setting rate, and

1000-grain weight (Qin, 2015). It is worth noting that the

involvement of HSPs in the regulation of rice plant growth

and development and stress tolerance is complex (since they are

molecular chaperones), therefore, the regulatory mechanisms

need to be further investigated.
6 Regulation of rice plant
development and stress tolerance
by hormones, miRNAs, and
transcription factors

Rice plant architecture and stress tolerance characteristics

are simultaneously regulated by genetic, environmental, and

protein levels. The genetic regulatory network is complicated,

where most proteins cannot perform their functions alone but

typically form complexes with different proteins or interact with

upstream and downstream proteins (Oliver, 2000). At the same

time, different hormones and miRNAs are also involved in

various physiological activities in the cell or organism,
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synergistically regulating and maintaining the balance of plant

morphological development and stress tolerance. JA and ABA

are important hormones required for plant growth and

development and stress response. OsJAZ9 is a repressor of JA

and can respond to drought stress by modulating JA signaling to

alter potassium homeostasis or by decreasing leaf width and

stomatal density to reduce leaf transpiration (Singh et al., 2021).

The binding of miRNA166 to its primary target, OsHB4,

promotes the expression of genes related to cell wall

formation. The miRNA166 knockout lines and OsHB4

overexpression lines showed leaf curling traits and reduced

water conductivity due to a reduced diameter of stem xylem

ducts, thus exhibiting higher drought tolerance (Zhang et al.,

2018). Similarly, the F-box geneMAIF1, which is involved in the

root growth of rice plants under miRNA regulation, is also

induced by hormones such as ABA, JA, and CK to negatively

regulate resistance to drought, salt, and low-temperature stresses

(Yan et al., 2011). OsCYP19-4 could be involved in rice plant

development and cold stress adaptation by regulating auxin

transport. The promoter of OsCYP19-4 was activated when

responding to cold stress. and the overexpression of OsCYP19-4

caused a significant increase in the tiller number and spike number.

Therefore, regulating OsCYP19-4 expression could increase rice

biomass or improve cold tolerance. miR535 is involved in rice

agronomic traits such as plant height and spike shape by regulating

the expression of the OsSPL gene family (Sun et al., 2019) and

negatively regulating immunity to rice blast (Li, 2017). In addition,

the transcription factor family is particularly important in plant

growth and development. OsMYB91, a transcription factor of

R2R3-type MYB, participates in salt stress response via DNA
Frontiers in Plant Science 05
demethylation and histone acetylation, while negatively

regulating plant height in rice (Zhu et al., 2015). The MADS-box

transcription factor OsMADS25 regulates rice root development

through the nitrate accumulation pathway and also enhances rice

tolerance to low temperature and salt stress through an ABA-

dependent signaling pathway (Yu et al., 2015; Xu, 2019; Yan et al.,

2021) (Figure 2).
7 Discussion and outlook

Increasing rice production is important for global food

security. However, the frequent occurrence of extreme weather

events (e.g., high temperatures, low temperatures, droughts, and

floods) caused by climate change poses a serious threat to rice

production. The typical high and stable yield of rice is

determined by its genotype and external environmental

conditions. As a “smart” plant, rice constantly changes its

plant type to adapt to different environmental conditions. For

example, under high temperature conditions, rice plant reduces

transpiration by promoting leaf curling, thereby enhancing

resistance (Zhang et al., 2021); in cold temperature

environments, rice plant enhances the stress tolerance by

enlarging leaf width (Yang et al., 2013); and rice plant

improves its salt tolerance or drought resistance by increasing

the number of lateral roots, thereby improving the water

absorption capacity of the root system (Seo et al., 2020); etc.

In addition, plant architecture, which is determined by

environmental conditions, is also involved in the regulation of

the optimal planting density of rice. Proper leaf morphology and
FIGURE 2

Multidimensional synergistic regulation of rice architecture and stress resistance.
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appropriate number of tillers contribute to a more efficient

spatial arrangement and photosynthetic efficiency of rice

plants, thus achieving both increased resistance to stress and

yield of rice plants (Jun et al., 2006). The ability of rice plants to

adapt to adversity through plant architecture improvement thus

provides a new idea for future rice breeding. By combining

conventional breeding methods to select for superior traits, and

by using molecular techniques to explore the genes for superior

traits and resolve the corresponding molecular regulatory

mechanisms, new rice varieties with favorable stature and high

tolerance to adversity can be selected more efficiently.

Rice has long been cultivated in China, making it rich in wild

germplasm resources with a wide array of local germplasm

varieties, salt-tolerant varieties, and deep rice varieties. These

germplasm resources have accumulated abundant genetic

resources during their natural evolution and artificial

domestication. The mining, analysis, and utilization of these

genetic resources are important for enhancing resistance and

improving agronomic traits (Liu et al., 2018). With the

discovery of sd1 in “Dijiaowujian” realized the dwarfing profile

of rice plants, which improved the lodging resistance of rice and

catalyzed the first “Green Revolution” of rice production. It is

easier to transfer good genes from wild rice because it is the

ancestor of cultivated rice. Several genes and QTLs related to cold

tolerance and drought resistance, such as SRFP1 (Zhuang, 2016)

and OrbHLH00 (Li et al., 2010), have been mined and utilized in

the wild rice variety “Dongxiang”. The DREB-like transcription

factor, which has a typical AP2 structural domain, was successfully

cloned from wild rice in “Chalin” and is a promising candidate for

future cultivar selection to improve the resistance of cultivated rice

to low-temperature stress (Liu, 2010). Because the acceleration of

economic globalization and international trade liberalization, and

current climate stresses have increased domestic and international

demand for high-yield and high-quality rice, this requires using

existing specific germplasm resources to explore and screen

additional plants with highly resistant specific germplasm and

favorable haplotypes.

Exploring more rational and advanced breeding approaches

to develop new methods of rice breeding is also an essential

mission for future rice breeding. Recent studies have found that

variation in cis-regulatory regions (CRRs) can overcome

pleiotropy among quantitative traits and provide a new source

of targets for breeding beneficial traits, while the study of

agronomic gene CRR systems will reveal more critical

transcriptional regulatory networks, thus providing key

information to guide the creation of novel elite alleles in plant

breeding (Song et al., 2022). In 2021, Li Jiayang’s team achieved

the domestication of heterotetraploid wild rice from scratch by

using techniques such as multiple recombinant technology and

gene-editing, providing a new breeding concept for a new rice

with high yield and good environmental adaptation. This is also
Frontiers in Plant Science 06
a new way of breeding practice for the synergistic improvement

of rice plant development and stress tolerance (Yu et al., 2021).

Rice plant development and stress tolerance are complex

agronomic traits controlled by multiple genes. To improve the

synergistic regulatory network between plant development and

stress tolerance, more genes must be identified. So far, plant

breeding has made the leap from manual selection breeding,

hybrid breeding to molecular breeding. In future r,esearch on

rice production, it would be necessary to investigate the genetic

network and signaling regulatory mechanism of rice plant

development and stress response and apply them to breeding

practice in a short period of time by combining various research

methods. This includes QTL localization or Genome-Wide

Association Studies (GWAS) to explore genes for superior

agronomic traits and resistance genes, and multi-omics

analyses such as transcriptomics, proteomics, metabolomics

and epigenomics to investigate the regulatory network of plant

development and resistance from a comprehensive perspective

to achieve gene prediction and accurate breeding (Baldoni,

2022). To enable the utilization of genes for breeding, modern

molecular methods such as CRISPR/Cas genome editing,

marker-assisted selection (MAS), marker-assisted genealogical

selection (MAPS), marker-assisted recurrent selection (MARS)

and marker-assisted backcrossing (MABC) could be used to

create, screen and identify desirable plant architecture and

resistant germplasm resources (Oladosu et al., 2019). In

addition, with the theory that extended light practices can

shorten the plant growth cycle, speed breeding (SB) became

the focus of attention (Samantara et al., 2022). By combining SB

with conventional breeding or molecular breeding methods, SB

can enhance the accuracy of plant phenotypic analysis while

greatly shortening breeding time, which lays a good foundation

for accelerating the synergistic improvement of rice architecture

and resistance, and developing new high-yielding, high-quality,

multi-resistant and environmentally friendly rice varieties.
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