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Fruit phenotypic information reflects all the physical, physiological,

biochemical characteristics and traits of fruit. Accurate access to phenotypic

information is very necessary and meaningful for post-harvest storage, sales

and deep processing. The methods of obtaining phenotypic information

include traditional manual measurement and damage detection, which are

inefficient and destructive. In the field of fruit phenotype research, image

technology is increasingly mature, which greatly improves the efficiency of

fruit phenotype information acquisition. This review paper mainly reviews the

research on phenotypic information of Prunoideae fruit based on three

imaging techniques (RGB imaging, hyperspectral imaging, multispectral

imaging). Firstly, the classification was carried out according to the image

type. On this basis, the review and summary of previous studies were

completed from the perspectives of fruit maturity detection, fruit quality

classification and fruit disease damage identification. Analysis of the

advantages and disadvantages of various types of images in the study, and try

to give the next research direction for improvement.

KEYWORDS

Prunoideae fruits, spectral image, phenotypic information, nondestructive
techniques, image technology
1 Introduction

Fruit phenotype describes the expression of fruit traits. Research on fruit traits can be

done at multiple levels, including cells, tissues, organs, individual fruits, whole plant

fruits, and even entire orchards (Dhondt et al., 2013). Phenotypic information of fruit

includes but is not limited to geometric size, biomass content, moisture content, and skin

color (Shakoor et al., 2017; Choudhury et al., 2019). The variation of phenotypic
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information is closely related to the market value of fruits.

Therefore, it is of great significance to obtain accurate fruit

phenotype information for maximizing the economic value of

fruits (Mahlein, 2016). Fruit harvesting is an important part of

agricultural production. The completion of harvesting at the

appropriate fruit harvesting window is the basis for ensuring

consumers to obtain high quality fruits. By obtaining phenotypic

information such as fruit hardness and SSC (Sohaib Ali Shah

et al., 2020), the fruit harvesting window can be accurately

grasped, thus guiding the fruit harvesting work. In addition,

the research on fruit quality evaluation (Qin et al., 2013; Su and

Sun, 2018), fruit disease and damage (Ali et al., 2019) based on

phenotypic information is also very meaningful.

In traditional methods, digital calipers and electronic scales

were used to measure the size and weight of fruits (Zhang et al.,

2014), and Folin-Ciocalteu method (total polyphenol content) and

hand-held refractometer (sugar content) (Pissard et al., 2013;

Kopjar et al., 2017) were used to determine the polyphenol and

sugar content of fruits respectively. These methods are meaningful,

but the disadvantages are also obvious, such as the measurement

process is time-consuming and damages the integrity of the fruit.

With the rapid technological advancement in electronics and

computers sectors different technologies were developed to obtain

fruit phenotypic information efficiently, accurately and non-

destructively. Compared with the traditional detection technology,

the phenotypic information detection research based on spectral

technology realizes the non-destructive detection of fruit according

to the difference between the light absorption rate and the

reflectivity inside the fruit (Toivonen et al., 2017). Due to the rich

spectral data and image information contained in the images

(Fernández-Novales et al., 2019), multispectral and hyperspectral

imaging devices have significantly improved the efficiency of fruit

phenotype acquisition, and have been widely used by researchers in

the related research of fruit phenotype information. The wide

applicability of RGB imaging equipment makes the study of

phenotypic information based on RGB images a new research

hotspot (Blasco et al., 2017). In addition, thermal imaging
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technology was used in the study of fruit temperature (Osroosh

and Peters, 2019; Ranjan et al., 2022), and computer tomography

technology (Kritzinger et al., 2017; Karmoker et al., 2018) and laser

backscatter imaging technology (Adebayo et al., 2016; Mozaffari

et al., 2022) were used in the study of fruit internal quality detection.

The phenotypic information acquisition technology based on image

technology avoids the measurement error caused by subjective

factors in traditional detection methods (Fu et al., 2020), and

further improves the accuracy of phenotypic information

acquisition. As shown in Table 1, the advantages and

disadvantages of imaging techniques in the acquisition of fruit

phenotypic information and related research were summarized.

The expression of phenotypic information in fruits may

change at different stages of ripening and different kinds of

diseases. The researchers found that fungal infection caused an

abnormal increase in water content due to the breakdown of

carbohydrates (Sun et al., 2018) and a subsequent decrease in

chlorophyll content during fruit ripening (Muhua et al., 2007;

Lleó et al., 2009). The changes of fruits are closely related to the

phenotypic information they present. Therefore, researchers

have completed the relevant research on fruits while obtaining

phenotypic information based on different types of images.

This paper reviews the phenotypic information acquisition

and related research based on RGB images, hyperspectral

images, and multispectral images, of Prunoideae fruits. The

chapter classification is completed according to the image

type, and the relevant literature is reviewed and summarized

according to the research purposes of fruit quality classification

(Pu et al., 2015), disease damage identification (Shao et al., 2019),

and maturity detection (Sohaib Ali Shah et al., 2020). The

advantages and disadvantages of the completed studies were

discussed. Finally, the future trends and challenges of

phenotypic information acquisition based on image technology

were prospected. Based on the high-frequency words of the cited

papers, the word frequency distribution map of the references is

drawn. It can be seen from the color degree of the key words in

the figure that the related research based on hyperspectral
TABLE 1 Summary table of imaging technology in the acquisition of fruit phenotypic information and related research.

Research object Imaging technology Imaging environment Portability Ref.

Cherry Commercial thermal-RGB sensor Outdoor environment Portability (Ranjan et al., 2022)

Plum Laser backscattering imager Closed darkroom t Non-portability (Rezaei Kalaj et al., 2016)

Apricot Laser backscattering imager Closed darkroom Non-portability (Mozaffari et al., 2022)

Peach Multispectral image system Closed darkroom Non-portability (Herrero-Langreo et al., 2011)

Cherry UAV Multispectral Imager Outdoor environment Portability (Karydas et al., 2020)

Plum Hyperspectral imaging system Laboratory environment Non-portability (Li et al., 2018a)

Nectarine Hyperspectral imaging system Closed darkroom Non-portability (Munera et al., 2018)

Plum Mobile phones, cameras Outdoor environment Portability (Ahmad et al., 2020)

Cherry Digital camera Laboratory environment Non-portability (Momeny et al., 2020)
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images and RGN images accounts for the majority in quantity.

As shown in Figure 1, the keyword frequency distribution map

of the references in this paper.

2 Phenotypic information
acquisition and related applications
based on RGB image

RGB mode is a color standard, by changing the red (R),

green (G), blue (B) three color channels and their superposition

to get a variety of colors. RGB mode is one of the most widely

used color systems, and RGB images can provide data
Frontiers in Plant Science 03
information such as color features, texture features, and

geometric shapes of fruits (Kaur et al., 2018). Compared with

multispectral images and hyperspectral images, RGB images can

be acquired by smartphones, cameras and other means, and the

acquisition methods are more diversified and universal. At the

same time, the image acquisition equipment has low

requirements on the acquisition environment, even in cloudy

days, sunshine or indoor environment (Miragaia et al., 2021).

In recent years, researchers have completed many related

studies based on fruit RGB images. This section reviews the

research progress of fruit maturity detection, disease damage

identification and fruit quality classification based on

RGB images.
FIGURE 1

Reference keyword frequency distribution map.
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2.1 Fruit maturity detection based on
RGB image

As the fruit gradually mature chlorophyll degradation,

anthocyanins or carotenoids and other new pigments began to

synthesize, resulting in fruit color began to change. Therefore,

consumers usually associate color with the ripening stage of

fruits (Blasco et al., 2017).

In 2015, S. Taghadomi et al. completed the determination of

color parameters during cherry ripening (Taghadomi-Saberi

et al., 2015). A CCD camera (PROLINE UK, Model 565s with

510 by 492 pixels resolutions, London, United Kingdom) was

used to acquire cherry images. Threshold segmentation

technology and Otus algorithm are used to extract cherry

image. After screening 37 common features using PCA, 7

features were obtained as input vectors. The relationship

between the L* a* b* value measured by the colorimeter and

the color features extracted from the cherry image was modeled

and analyzed based on the artificial neural network (ANN) using

MATLAB. The Levenberg-Marquardt algorithm and trainbr

function were used to train the network. The results showed

that the ANN with structure of 7-14-11-3 had the best modeling

effect on L* a* b* color parameters during cherry ripening (R2 =

0.9999). In 2018, Indian scholar Kaur et al. completed a study on

the evaluation of fruit maturity based on RGB images of plums

(Kaur et al., 2018). The plum images were captured using a

digital camera (Nikon Coolpix S3200, Resolution-4608 × 3456,

and Format-JPEG) under natural light. In their research, the

uniform threshold operator in MATLAB image processing

toolbox is used to complete image segmentation.The average

RGB value is used to extract color features, and entropy, local

binary pattern and discrete cosine transform are used to extract

texture features. Based on the multi-attribute decision making

(MADM) theory, the decision of maturity level is completed.

The results show that the developed system accurately

determines the maturity level of plums. The correlation

strength between color features and texture features and

maturity at different stages is shown in the article (Kaur

et al., 2018).

In the following year, researcher Mostafa Khojastehnazhand

et al. completed maturity detection and volume estimation based

on RGB images of apricot fruit (Khojastehnazhand et al., 2019).

They obtained seven kinds of feature information of apricot

images, and finally selected G channel, gray value, L* and b* as
input features. Discriminant analysis models based on LDA and

Quadratic Discriminant Analysis (QDA) are compared. The

results show that R2 values of LDA and QDA are 0.904 and

0.923 respectively.

There are many ways to obtain RGB images, and the

requirements for the environment are not high. However,

different acquisition environment and acquisition equipment

will make the image have some differences, such as the impact of
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light conditions, image quality differences. Miragaia et al.

completed the research of deep learning algorithm based on

convolutional neural network (CNN) to analyze plum maturity

detection in real environment (Miragaia et al., 2021). The

method of obtaining plum fruit images used in this study is

not limited. Plum fruit images obtained by devices such as

smartphones and cameras can be used for maturity

recognition. The influence of different image quality is solved,

so that the obtained images can be used for the detection of fruit

maturity. The results show that the developed system has good

robustness. Even if the image has different illumination

conditions and focus, it can correctly complete the

classification of plum fruit maturity, and the efficiency is above

94%. Table 2 summarizes the studies on fruit maturity detection

based on phenotypic information using RGB images.

It can be concluded from Table 2 that the related research on

maturity detection and classification completed by researchers

using RGB images has achieved good research results. The

reason for the analysis is that the plum fruits studied are all

varieties with strong correlation between maturity and fruit

color changes, and RGB images can better reflect the color

characteristics of fruits at different maturity stages.
2.2 Fruit quality detection based on
RGB image

In the field of fruit quality detection, the quality detection

based on RGB images is more focused on the phenotypic

information obtained from the fruit surface. This is because

the fruit RGB images only contain surface phenotypic

information such as color features, geometric features, and

texture features. We try to give the steps followed by common

image processing in target detection based on RGB images

(Figure 2). It should be pointed out that the processing steps

mentioned are not necessarily used, and the specific methods are

related to the actual needs.

Iranian researcher Esehaghbeygi et al. used a high-resolution

CCD (PROLINE UK, Model 565s with 510 by 492 pixels

resolution) camera to obtain RGB images of peach fruit, and

completed the study of color grading and size evaluation of

peach fruit (Esehaghbeygi, 2010). An edge detection algorithm

was developed to estimate the volume of peach fruit, and the

Mesh function in MATLAB software was used to obtain the hue,

saturation and value of peach image and complete the

classification of peach fruit color and the detection of surface

spots. The results show that the detection rate of white spots is

96.7%, the detection rate of brown spots is 85%, the accuracy of

size classification is 96%, and the accuracy of color classification

is 90%. It is an unavoidable problem to eliminate the influence of

other light in the detection of fruit quality in outdoor

environment. Wang et al. completed a study on the color
frontiersin.org
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evaluation of sweet cherry (Wang et al., 2012). The acquisition of

cherry images was completed by a digital camera (Nikon D5000

Nikon Inc., Melville, NY, USA). The acquisition environment

was an outdoor environment with sufficient light. The cherry

images of direct sunlight, bright shadow and dark shadow were
Frontiers in Plant Science 05
obtained respectively. The distance between the camera and the

cherry was 0.5 m. Using image processing technology to

eliminate the strong light spots caused by light, mainly

includes two steps: (1) using the green channel of color

grading area to detect the image pixels with dazzling
FIGURE 2

Image processing steps in target recognition.
TABLE 2 Review on fruit maturity detection based on phenotypic information using RGB images.

Research
object Preprocessing Method Imaging

device Result Ref.

Cherry
Thresholding and Otsu’s algorithm
techniques

ANN CCD camera R2 = 0.9999
(Taghadomi-Saberi
et al., 2015)

Plum Uniform thresholding operator MADM Digital camera

Correlation between Acidity and Green:
R2 = 0.9966;
Correlation between R/G and SSC: R2 =

0.8464

(Kaur et al., 2018)

Apricot Averaging filter
LDA and
QDA

Digital camera
LDA: R2 = 0.904.
QDA: R2 = 0.923

(Khojastehnazhand
et al., 2019)

Plum
Mean image subtraction, mean pixel
subtraction

Deep
Learning

Mobile phone,
camera

Maturity recognition accuracy>94%
(Miragaia et al.,
2021)
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reflection; (2) Eliminate detected pixels from the color rating

area of the image. In the study, a color rating system was

successfully developed to complete the color rating of cherry

images. The results showed that the overall accuracy of color

rating was more than 85%.

Taghadomi-Saberi ‘s team combined image processing

technology and ANN to complete the evaluation of

antioxidant activity and anthocyanin content of sweet cherries

(Taghadomi-Saberi et al., 2014). A color CCD camera

(PROLINE UK, Model 565S, London, United Kingdom) was

used to obtain the cherry image. The Otsu method is used to

complete the cherry image segmentation. Two prediction

models based on ANN and adaptive neuro-fuzzy inference

system (ANFIS) were established and compared, and the

accuracy of the two models for antioxidant activity and

anthocyanin content was evaluated. The results showed that

the prediction models with the structure of 11-14-9-1 and 11-6-

20-1 based on ANN had the highest correlation coefficients with

antioxidant activity and anthocyanin content, which were R =

0.93 and R = 0.98, respectively. Meanwhile, the ANFIS

prediction model obtained the best prediction results (R = 0.87

and R = 0.90) when using triangular and two-term Gaussian

membership functions. Cherry fruit skin color as an important

indicator to measure its maturity and quality has become a

research hotspot. Researchers (Wang et al., 2012; Taghadomi-

Saberi et al., 2014; Taghadomi-Saberi et al., 2015) have studied

color as an important indicator in their studies, but have

neglected the effect of cherry shape appearance on its quality.

In 2020, Mohammad Momeny ‘s team completed the analysis of

cherry quality from the perspective of cherry shape appearance

(Momeny et al., 2020). They used an improved CNN to detect

the appearance shape of cherries. The classification algorithm

completed the classification of regular and irregular cherries

with an accuracy of 99.4%. By using mirroring, rotation and

other methods to expand the data set, 14,380 images are finally

obtained. It is necessary to establish a perfect data set to obtain
Frontiers in Plant Science 06
higher classification accuracy. In the study, the deep CNN based

on hybrid pooling was compared with KNN, ANN, Fuzzy, and

integrated decision tree methods based on histogram of gradient

and local binary pattern feature extraction methods. The results

show that the improved CNN method is suitable for the

detection of cherry appearance (regular and irregular shaped).

In the review of reported studies, we found that building a

complete and sufficient image data set is a prerequisite for

obtaining accurate prediction results. Villacrés, a researcher in

Chile, installed an RGB camera on a tractor through a self-

stabilized pan-tilt for image acquisition. The camera is 1m away

from the cherry tree, and a total of 15,000 images are obtained

for the construction of the data set, which greatly improves the

efficiency of image acquisition (Villacrés and Cheein, 2020).

Four different color borders were used to label the cherries in

advance and different colors were used to distinguish the size of

the cherries. Faster R-CNN meta-architecture and Inception V2

were used as feature extractors for the detection of cherries. The

results show that the cherries in the image can be identified with

an accuracy of 85% and the cherries are divided into four sizes

according to the requirements of farmers. The main reason why

cherries are not detected in the study is that the fruit pixels

caused by occlusion are too small to detect (pixels less than 20).

Table 3 summarizes the studies on fruit quality detection based

on phenotypic information using RGB images.

Through the analysis of Table 3, we can conclude that the

current research on fruit color quality grading and fruit size

estimation based on the color features and geometric size

features of RGB images has achieved high accuracy. In the

above research, the recognition and classification accuracy

based on CNN is more satisfactory. Researchers have further

improved the research accuracy based on CNN by innovating on

the infrastructure. However, in the research of small fruit

recognition with small fruit volume and complex image

acquisition environment, improving the recognition detection

rate is still the focus of the next research.
TABLE 3 Research summary of fruit quality detection based on phenotypic information using RGB images.

Fruit
types

Imaging envi-
ronment Research aim Research

method Result Ref.

Peach
Standard Lighting
Room

Color rating; Volume
estimates

Edge
detection
algorithm

Detection rate of white and brown spots: 96.7%, 85%; Size
and Color Classification Accuracy: 96%, 90%

(Esehaghbeygi,
2010)

Cherry
Outdoor with
sufficient light

Color rating;
Color Rating
System

Color Rating Accuracy: >85%
(Wang et al.,
2012)

Cherry
Uniform
illumination
environment

Antioxidant activity;
Anthocyanin content

ANN, ANFIS
Triangular: R=0.87; Gaussian membership functions:
R=0.90

(Taghadomi-
Saberi et al.,
2014)

Cherry
Inside the lighting
box

Appearance shape
classification

CNN Classification accuracy: 99.4%
(Momeny, et al.,
2020)

Cherry
Outdoor in different
light conditions

Identification and size
grading

Faster R-CNN Recognition rate: 85%
(Villacrés and
Cheein, 2020)
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2.3 Fruit disease damage detection based
on RGB image

CNN method widely used in research related to visual

recognition, such as image classification (Ahmad et al., 2017),

target detection and recognition (Ahmad et al., 2018b), and

image matching (Ahmad et al., 2018a). In the previous chapters,

some researchers have also reported the use of CNN to complete

related research on fruit quality. This chapter summarizes the

related research on fruit disease image classification and

recognition based on RGB image, including fruit disease image

acquisition method, image preprocessing technology and neural

network algorithm. The feature information contained in RGB

images is mostly the phenotypic information existing in the fruit

surface, such as fruit color, size and other feature data.

Therefore, the fruit disease detection based on RGB images is

mainly aimed at the disease and damage of the fruit surface layer.

In a study on plum disease detection reported in 2020,

researcher Ahmad et al. proposed a plum disease detection

framework based on CNN (Ahmad et al., 2020). Four

structures are compared in the study: AlexNet, VGG-16,

Inception and Resnet. The data set is expanded and made

more challenging through data augmentation to achieve robust

model training. The recognition accuracy of the model before

and after data enhancement is compared. The experimental

results show that the performance of the model increases with

the increase of the number and complexity of the data set. The

research on different architectures shows that the disease

identification and classification results based on Inception-V3

model are the best, reaching 92%. In order to run on resource-

constrained devices, Jamil Ahmad et al. quantized the Inception-

v3 model from FP32 precision to FP16, gaining a 2× speedup

and 2× less memory requirement.

Huang et al. completed a peach fruit RGB image disease

detection method based on asymptotic non-local means

(ANLM) image algorithm and parallel convolutional neural

network fusion in 2020 (Huang et al., 2020). Firstly, ANLM is

used to remove the interference of complex background in the

image, and then parallel convolutional neural network is used to

identify peach disease features. In the research, the improved elu

activation function is used to replace the traditional Eelu

activation function, and the linear particle swarm optimization

ELM proposed in the research is used to replace the traditional

softmax layer. Through the improvement of the algorithm, the

convergence speed and accuracy of the network are significantly

improved. The results showed that the accurate detection rates of

brown rot, black spot, anthracnose, scab and normal peach were

all above 85%, indicating that the improved parallel

convolutional neural network algorithm was an effective

method for peach disease detection.

The segmentation algorithm greatly affects the segmentation

accuracy, and accurately obtaining the region of interest is the
Frontiers in Plant Science 07
premise of accurately identifying the type of disease defects.

Therefore, Alosaimi et al. proposed a new CNN model for

detecting peach disease categories (Alosaimi et al., 2021). In

the study, Mask R-CNN was used to complete the segmentation

of the diseased area, and then the VGG-19 architecture was used

to identify the type of the segmented area. The peach disease

database in the study consists of a public database and photos

obtained in the natural environment. The photos obtained in the

natural environment include different types such as direct

sunlight and cloudy days. Finally, the mean Average Precision

(mAP) was used to evaluate the performance of the model. The

results showed that the improved CNN for peach disease

classification had mAP = 94%.

Deep learning is widely used in related research using

imaging data to detect disease categories, but it is difficult to

collect a large number of peach disease images, and the sample

images are unbalanced. In response to this problem, Yao et al.

proposed an improved Xception network called L2MXception

(Yao et al., 2021). The network integrates regularization terms of

L2 norm and mean. In the study, the recognition results of seven

deep learning models were compared, and the composition of

the peach disease image dataset included seven disease types.

The results show that the classification accuracy of L2MXception

reaches 93.85%, which is 28.48% higher than that of

Xception model.

Based on the above review, we found that various machine

learning algorithms have been applied to the research field of

fruit tree disease recognition. Compared with the traditional

technology, the application of new technology greatly improves

the detection speed and recognition classification accuracy.

Obtaining rich and complete data sets is necessary for the

establishment of models with excellent performance. This puts

forward higher requirements for the acquisition efficiency of

image data sets, and automatic, efficient and reliable data

acquisition equipment becomes very important.
2.4 Other related research based on fruit
RGB image

Based on the feature information obtained from RGB

images, researchers have completed related research on fruit

maturity, quality detection, disease damage and other fields. In

addition, it was also reported that relevant researchers

completed other related studies based on fruit RGB images.

In 2021, Ropelewska completed the study of cherry variety

discrimination using the acquired cherry images (Ropelewska

et al., 2021). The research proves that the discriminant model

based on texture parameters obtained from different color

channels and texture parameters obtained from different color

spaces has high recognition accuracy for cherry varieties.

Discriminant models based on histogram, co-occurrence
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matrix, run-length matrix, autoregressive model and gradient

map are considered in the experiment. The results show that the

accuracy of the model based on the texture parameters selected

from the color space is slightly higher than that of the texture

parameters obtained by inputting the color channel. In the color

channel R, X and color space, the accuracy of the texture

parameters based on histogram and co-occurrence matrix to

distinguish the three sweet cherries reached 100%. In the color

channel, the histogram model based on the color channel L

produces the highest accuracy of 97%. Similar studies have also

been applied to the field of peach variety identification.

Ropelewska et al. compared the classification results of

different color channels and different discriminant models by

acquiring images of peach skin, flesh, stone and seed texture.

(Ropelewska and Rutkowski, 2021). The results show that the

texture features based on different color channels can better

complete the identification of peach varieties.
3 Phenotypic information
acquisition and related applications
based on hyperspectral image

Hyperspectral imaging technology has broad application

space in the field of agriculture, and has gradually become one

of the important and cutting-edge technical means in

agricultural applications. The application of hyperspectral

images includes crop growth monitoring, crop stress

monitoring (Chattaraj et al., 2013), crop yield primary

estimation (Ye et al., 2006), vegetation coverage monitoring,

and non-destructive monitoring (Huang et al., 2014) of

agricultural products, providing service support for precision

agriculture and agricultural management. Compared with

multispectral images, hyperspectral imaging equipment has a

wider range of imaging wavelengths, which greatly improves the

information richness of hyperspectral images. In the processing

technology and application, the acquisition of rich spectral data

makes more reasonable and more effective analysis possible.

Therefore, hyperspectral image technology has incomparable

development potential. Hyperspectral imaging equipment is

mainly composed of halogen light source, imaging lens,

computer, transmission platform, transmission motor and

other parts.
3.1 Fruit maturity and biochemical
parameters detection based on
hyperspectral image

Hyperspectral imaging equipment obtains spectral data of

hundreds or thousands of samples with nanoscale sampling

resolution. There is inevitably a large amount of redundant
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data in the rich spectral data, and more redundant data usually

lead to longer and unreliable prediction of dependent variables.

Therefore, eliminating too much redundant data has become an

inevitable process. Researchers have used many variable

selection methods, such as ANN, partial least squares (PLS),

principal component analysis (PCA), genetic algorithms (GA),

etc. For details on variable selection methods, please refer to

Xiaobo et al. (Xiaobo et al., 2010). There is no accurate range for

the research of fruit quality, and the existing related research

focuses on fruit SSC, acidity, firmness, etc. These parameters are

directly related to the fruit flavor tasted by consumers.

Munera et al. obtained hyperspectral images of peach fruit

ripening process with a wavelength range of 450-1040 nm using

laboratory hyperspectral imaging equipment (Munera et al.,

2017). Internal Quality Index (IQI) and Ripening Index (RPI)

were introduced to evaluate peach fruit maturity. Variable

Importance in Projection (VIP) was used to complete the

spectral screening of hyperspectral images, and the regression

models of IQI and RPI were established based on PLS regression

analysis. Based on the spectral data of each pixel, the IQI and RPI

prediction values of the peach fruit image were obtained, and the

visualization of the peach fruit maturity distribution map was

realized. The results showed that in the prediction of IQI and

RPI of the two varieties of peach fruit, the R2 values of the two

indexes and the two varieties were greater than 0.87. Li et al.

completed a study on the detection and classification of SSC and

PH content and maturity of cherry fruits based on near-infrared

hyperspectral imaging technology (Li et al., 2018e). The

wavelength range of hyperspectral image of cherry fruit is 874-

1734 nm, and the distance between lens and sample is 30.5 cm.

In order to accurately complete the classification of cherry

maturity, the samples were classified by five orchard owners

according to the principle of majority, and the classification

model of cherry maturity was established by supervised learning

method Linear Discriminant Analysis (LDA). According to the

spectral characteristic parameters of different maturity

categories, the classification of cherry maturity was completed.

The results show that the accuracy of the classification model

is 96.4%.

The relevant literature shows that the research methods

based on hyperspectral images have been widely used in the

research of fruit maturity, including the optical index (Lleó et al.,

2011) based on spectral image acquisition for maturity detection

and grading, and the maturity prediction and grading based on

the established prediction model (Munera et al., 2017; Li et al.,

2018e). The summary of related research in recent years is

completed through Table 4.

From the Table 4, we found that the wavelength range used

in the study was mostly concentrated near the chlorophyll

absorption peak and SSC absorption peak. This is because the

content of biochemical substances in the fruit will change with

the change of maturity. The feasibility of fruit maturity

classification by detecting the content of biochemical
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substances has been verified by relevant researchers. However,

there are some differences in wavelength selection among

different varieties.

In 2017, Zhu et al. obtained hyperspectral images of different

slices inside peaches using visible and short-wave near-infrared

spectral imaging equipment (380-1030 nm) and long-wave near-

infrared spectral imaging equipment (874-1734 nm) (Zhu et al.,

2017). Savitzky-Golay smoothing and standard normal variate

transformation were used to preprocess the spectral images.

Subsequently, PLSR and LS-SVM modeling methods were

established and compared. In their study, the contents of

protopectin, water-soluble pectin and total pectin were predicted

respectively, and results showed that the prediction model had

better prediction results for protopectin than for water-soluble

pectin. According to this result, it was analyzed that water-soluble

pectin dissolved in the process of destructively obtaining peach

slices. The visualization of peach fruit pectin content distribution

was also completed in the study. Pectin content is considered to be

closely related to maturity. Pectin distribution map can be used as

an indicator to provide guidance for understanding fruit ripening

and post-harvest storage systems. In the subsequent study, Li et al.

completed the detection of non-destructive quality attributes of

plum fruit from three quality indicators: color, firmness and SSC (Li

et al., 2018a). Two hyperspectral cameras with wavelength ranges of

600-975 nm in visible and near infrared (VNIR) region and 865-

1610 nm in short wave near infrared (SWIR) region were used to

obtain hyperspectral images of two varieties of plum fruits. Because

the surface of plum fruit is smooth and has strong reflection, which

is different from peach fruit, the intensity of fruit edge in the sample

spectral image is low. They cited the automatic correction method

for light scattering of spherical objects developed by Gomez-Sanchis

et al. to improve this phenomenon (Gómez-Sanchis et al., 2008). At

the same time, a PLSR model was established for the non-

destructive measurement of firmness, SSC and color components

of two different plum varieties. The results showed that there was a

strong correlation between SSC and SWIR spectra, and the

predicted correlation coefficient rp
2 was greater than 0.8. The

VNIR spectrum has a good correlation with color, and the rp
2

value is greater than 0.7 for L* and a*. Both hyperspectral imaging
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systems have low prediction accuracy for hardness.Shen et al.

predicted the SSC of green plum using sparse autoencoder (SAE)

in a study reported in 2020 (Shen et al., 2020). SAE is an

unsupervised machine learning algorithm, which continuously

adjusts the autoencoder parameters and finally completes the

model training by calculating the error between the autoencoder

output and the original input. The hyperspectral imaging

equipment used in the experiment has a spectral range of 400-

1000 nm and a spectral resolution of 2.8 nm. Amulti-layer network

model SAE-PLSR was proposed to predict SSC, and the sparsity

parameter r was set to 0.01 (Tang et al., 2016). At the same time,

BP, SVR, PLSR, SAE-BP, SAE-SVP and SAE-PLSR were compared.

The results showed that SAE-PLSR model had the best prediction

results, r and root mean square error (RMSE) of prediction set were

0.938 and 0.654 respectively.

With the improvement of deep learning theory, Yang et al.

introduced deep learning theory into the prediction of SSC content

of peach, and proposed a SSC estimation method of fresh peach

based on deep features of hyperspectral image fusion information

(Yang et al., 2020). The distance from the peach sample to the lens is

220 mm, the wavelength range is 900-1740 nm, and the spectral

resolution is 5 nm. In the research, the stacked autoencoder is used

for the depth feature of the spectrum and the depth feature

extraction of the image. Unlike the sparse autoencoder used by

Shen et al. (Shen et al., 2020), the stacked autoencoder is a cascade of

multiple autoencoders to complete the task of layer-by-layer feature

extraction. The resulting features are more representative and have

a small dimension. Finally, a stack autoencoder - random forest

peach SSC estimation model based on hyperspectral image fusion

information depth features was established. The results show that

the estimation model with the network structure of 1237-650-310-

130 has the highest accuracy, the training set R2 = 0.9184, and the

validation set R2 = 0.8838. In 2022, Xuan et al. completed the

analysis of SSC, firmness, diameter, weight and other internal and

external quality of peach fruit based on hyperspectral images (Xuan

et al., 2022). The wavelength range of hyperspectral image is 400-

1000 nm, and the distance between the sample and the lens is set to

47 cm. The CARS and random frog algorithms were used to select

effective wavelengths, and a non-destructive regression model for
TABLE 4 Summary of research on maturity detection based on hyperspectral imaging.

Research Objective Research
object Method Wavelength

coverage
Wavelength
screening

Optical
index Model Ref.

Fruit Maturity Detection of
Prunoideae

Peach
Optical
index

640, 675, 680, 720,
730, 800 nm

/
Ind1, Ind2,
Ind3, IAD

/
(Lleó et al.,
2011)

Peach

Forecasting
model

380-1030 nm SPA, UVE, CARS /
PLSR, LS-

SVM
(Zhu et al.,
2016)

Peach 450-1040 nm VIP / PLS
(Munera
et al., 2017)

Cherry 874-1734 nm GA, SPA / LDA
(Li et al.,
2018e)
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predicting SSC and firmness was established based on multiple

linear regression (MLR). The results showed that the CARS-MLR

model had a good prediction effect on SSC, and the training set and

validation set were R2C 0.856 and R2V 0.841, respectively. In the

study, the estimation information of fruit size and weight was

obtained by extracting pixel diameter and area, the estimation of

peach diameter was completed by using the minimum boundary

rectangle method, and the weight of peach fruit was predicted by

MLR model. The results showed that the maximum error was

3.14 mm, the average absolute error was 0.94 mm and the average

percentage error was 1.01%. The MLR regression model was

established for weight estimation. The training set and validation

set were R2C = 0.946 and R2V = 0.957, respectively.

Li et al. completed a study on the detection and classification

of SSC and PH content and maturity of cherry fruit based on

near-infrared hyperspectral imaging technology (Li et al.,

2018e). The research content related to maturity detection and

classification has been summarized in the previous chapters.

Here, the related research on SSC and PH content is reviewed.

The cherry samples studied completed the establishment of

calibration set and validation set according to the principle of

interval sampling. Principal components regression model and

PLSR model based on full spectrum and GA-MLR model based

on characteristic bands were established. For the prediction

model established by full spectral band, the prediction result of

SSC is better than that of PH, the reason is that the fluctuation

range of PH value is too small, and the PH value only fluctuates

between 3.3 and 4.1. The GA and SPA wavelength selection

algorithm are compared in establishing the prediction model

with characteristic band as input. The results show that the

prediction model of feature wavelength screening by GA has

achieved better results. The prediction evaluation indexes of GA-

MLR model are shown in the article. Table 5 summarizes the

application of fruit quality detection based on phenotypic

information through hyperspectral images in recent years.

Through Table 5, it can be seen that the acquisition

environment of fruit hyperspectral images required by

researchers still stays in a relatively stable acquisition

environment such as laboratory and closed dark box. Such an

environment does not require strong mobility of imaging

equipment, and significantly reduces the impact of external

light sources on images.
3.2 Fruit disease damage detection based
on hyperspectral image

Many researchers have focused on the use of hyperspectral

imaging technology to detect fruit phenotype information to

achieve damage detection for fruit diseases, including disease

identification, classification and quantification (Du et al., 2020).

Compared with traditional disease damage detection,

hyperspectral imaging technology provides an efficient non-
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destructive detection method (Wang et al., 2015). This section

mainly introduces the application of hyperspectral image in

prunoideae fruit disease damage detection.

The types of fruit disease damage are diverse and complex.

Due to the existence of disease damage, the phenotypic

information expressed by the fruit is abnormal, which reflects

the abnormal spectral characteristics on the spectral image. In

2016, Li et al. completed the detection and recognition of nine

defects in a two-color peach based on hyperspectral images (Li

et al., 2016). The wavelength range of the hyperspectral image is

325-1100 nm, the spectral resolution is 2.8 nm, the distance

between the sample and the lens is set to 400 mm, and the image

acquisition environment is a closed darkroom. Principal

component regression and PCA was used to complete the

wavelength selection of hyperspectral image. In the study,

according to the weight coefficient of each band, the spectral

wavelength image corresponding to the maximum difference of

weight coefficient is selected to obtain the dual wavelength ratio

image and complete the detection of disease damage. The results

show that the defect recognition effect of ratio image is better

than that of single wavelength image, and the total detection rate

of nine defects is 96.6%. In the subsequent study, the Li ‘s team

completed the detection of early bruises on peaches (Li et al.,

2018c). Accurate non-destructive testing of early bruises is a

challenging task. Due to being in the early stage of bruises,

peaches have not significantly improved in appearance. In the

study, they used two hyperspectral spectrometers for image

acquisition, with spectral ranges of 325-1100 nm and 930-2548

nm, respectively, and used PCA to complete the wavelength

screening of hyperspectral images. They proposed an improved

watershed segmentation algorithm and compared it with the

traditional Ostu segmentation algorithm and global threshold

segmentation method. The results of the study showed that the

accurate recognition rate of damaged peaches reached 96.5%,

and the accurate recognition rate of healthy peaches reached

97.5%. Their proposed method of using hyperspectral images

combined with improved watershed segmentation algorithm to

detect early peach bruises is an effective method that can

accurately and non-destructively detect early peach bruises.

Peach is a perishable fruit, in order to extend the storage

time of peaches, peaches are usually stored at low temperature.

Peaches will suffer from freezing damage due to low temperature

for a long time, resulting in a decrease in their market value. The

symptoms are peach fruit texture deterioration and lack of juice.

Pan et al. established a hyperspectral imaging system based on

laboratory environment to detect cold injury of peach (Pan et al.,

2016). The wavelength range of hyperspectral image used was

400-1000 nm, and the lens was 400 mm above the sample. The

discrimination model of peach fruit cold injury was established

by using multi-layer perception artificial neural network

(MLPANN). The comparison test of full spectrum input and

eight optimal wavelengths input was completed. The results

showed that the overall classification accuracy of MLPANN
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peach cold injury discriminant model based on characteristic

wavelength was 92.9%. Pan et al. also proposed the cold injury

(CI) index to quantify the frostbite degree of peach fruit. The

formula for obtaining the cold injury (CI) index is as follows: CI

index = [(CI score) × (number of fruits with this CI score)]/(3 ×

total number of fruits). Sun, a member of the same team, studied

chlorophyll content to detect decayed honey peaches in the

following year (Sun et al., 2017). In this study, the wavelength

range of hyperspectral imaging is 400-1000 nm, and the sample

is 22 cm closer to the lens. For the spectral data of hyperspectral

images, the successive projection algorithm (SPA) is used to

complete the selection of characteristic wavelengths

(617,675,818 nm). The prediction models of chlorophyll

content based on PLS and SPA-PLS were established. The

prediction sets rp of the two models were 0.904 and 0.858,

respectively, and RMSEP were 0.633% and 0.751%, respectively.

Based on the characteristic wavelength ratio image, the

recognition of peach decay area was completed. The results

showed that the classification accuracy of healthy peach and

diseased peach was 98.75% by using three characteristic

wavelength ratio images. In the same year, Sun developed a
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hyperspectral imaging system with a 360° rotating platform to

detect varying degrees of fungal infection in peaches (Sun et al.,

2018). Such improvements are very helpful for the identification

of decay occurring in different locations of peach fruit. In the

study, the disease damage area was quantified into four

categories, no decay, mild decay, moderate decay, and severe

decay, with recognition rates of 95%, 66.29%, 100%, and 100%,

respectively. The low recognition of mild decay can be attributed

to the fact that the changes of internal physical and chemical

properties of mild decay peaches are less affected by fungal

infection, so they are not easy to be detected and identified.

Li et al. ‘s research on peach disease damage classification

was done from the perspective of time (Li et al., 2021). The

spectral reflectance of bruised fruits will decrease due to the

presence of bruises, which is related to the firmness, density,

titratable acid (TA), vitamin C and moisture after bruises. The

reflectance of fruits in different time periods after bruises also

changes, and as time increases, the color of the bruise position

will gradually brown. Based on this, Li et al. used hyperspectral

imaging technology to complete the classification of peach

bruises at different time periods (12h, 24h, 36h, 48h). The
TABLE 5 Summary of fruit quality detection based on phenotypic information from hyperspectral imaging.

Research
Object

Biochemical
parameter

Imaging
environment

Wavelength
coverage

Wavelength
screening Model Evaluating indicator Ref.

Peach slices

Protopectin,
Water-soluble
pectin and Total
pectin

Laboratory
environment

380-1030 nm
and 874-1734

nm

SPA, UVE,
CARS

PLSR, LS-
SVM

Protopectin: RPD=2.264;
Water-soluble pectin and Total
pectin are poor predictors

(Zhu et al.,
2017)

Peach SSC Sealed black box 325-1100 nm
MC-UVE,
CARS, RF

PLS
Set-I: rp=0.9192, RMSEP=0.3967
Set-III: rp=0.8469,
RMSEP=0.4260

(Li et al.,
2018d)

Plum
Color, firmness,
SSC

Laboratory
environment

600-975 nm and
865-1610 nm

PCA PLSR
SSC: rp

2>0.8
L* and a*: rp

2>0.7
(Li et al.,
2018a)

Green plun SSC
Laboratory
environment

400-1000 nm SAE

BP, SVR,
PLSR, SAE-
BP, SAE-
SVP, SAE-
PLSR

SAE-PLSR: rp=0.938;
RMSEP=0.654

(Shen et al.,
2020)

Peach SSC Sealed black box 900-1740 nm
Stacked
Autoencoder

random
forest

Calibration set R2 = 0.9184;
Validation set R2 = 0.8838

(Yang et al.,
2020)

Cherry
TSS and
firmness

Dark room 500-1500 nm VIP PLSR, GPR

GPR: TSS: RPDT=3.4, R
2
T=0.88,

RMSET=0.43%; Firmness:
RPDT=2.54, R

2
T=0.60,

RMSET=0.38N; PICP: 0.90-0.97

(Pullanagari
and Li,
2020)

Peach
SSC, firmness,
diameter, weight

Laboratory
environment

400-1000 nm
CARS and
RF

CARS-MLR;
MLR

SSC: R2
V: 0.841, RMSEV: 0.546;

RPD: 2.51,
Firmness: R2

V: 0.826; RMSEV:
1.008, RPD: 2.401
Weight: R2

v=0.957, RMSEV:
9.203, RPD: 4.819

(Xuan et al.,
2022)

Cherry SSC and PH Sealed black box 874-1734 nm SPR; GA
PCA; PLSR;
GA-MLR;
SPA-MLR

GA-MLR: SSC: RC
2 = 0.897,

RMSEC= 1.054, RP
2 = 0.863,

RMSEP=1.210 RPD=2.700

(Li et al.,
2018e)
f
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wavelength range of hyperspectral imaging technology is 380-

1080 nm, the spectral resolution is 2.8 nm, and the imaging

environment is a closed darkroom environment. In the study,

PCA was used to complete the screening of spectral

characteristic wavelengths, and the average gray value feature

of the bruise position was used as the image feature. A

discriminant classification model based on PLS-DA and LS-

SVM was established. The results showed that when the input

variables were spectral features, the classification accuracy of

PLS-DA model for peaches at 12,24,36 and 48 h after bruising

was 96.67%, 96.67%, 93.33% and 83.33% respectively, and the

correlation coefficient of training set was rc = 0.928. Based on the

LS-SVM algorithm, the correct classification of 12,24,36 and

48 h after bruising was 80%, 96.67%, 100% and 100%. This study

can complete the detection of bruises as soon as possible. When

the damage is softened and visible to the naked eye, the peach

has lost its market value. Early detection of damage is necessary

to reduce the loss. Table 6 summarizes the research on fruit

disease damage detection based on phenotypic information

through hyperspectral images in recent years.

Through the summary of Table 6, we found that the types of

disease damage detected based on hyperspectral images are

abundant, including different types of defects located on the

surface and inside. It is one of the advantages of hyperspectral

imaging technology that the detection of multiple types of

defects in the interior of the fruit is completed by the change

of spectral characteristics presented by the acquired

hyperspectral image, thus ensuring the integrity of the fruit. At

the same time, we can also see that the detection objects in the

reviewed related studies are concentrated on peaches. This may
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be because the volume of peaches is easier to complete the

related research in the fruit of Prunoideae, and the peach fruit is

more conducive to the progress of related research due to the low

light reflection phenomenon on the surface.
3.3 Other related research based on fruit
hyperspectral image

As a new detection technology, hyperspectral imaging

technology is widely used by researchers because of its high

effic iency , non-destruct ive and accurate detect ion

characteristics. In addition to the above summary of the

article, there are other applications related reports.

Munera ‘s team used hyperspectral images to identify

nectarine varieties with similar appearance but different

varieties (Munera et al., 2018). The imaging method of

hyperspectral image is reflection imaging, and the wavelength

range is 450-1040 nm. In the study, it was found that there were

significant differences in the spectra of the two nectarines in the

wavelength range near 680 nm and 970 nm, which indicated that

there were differences in chlorophyll (Herrero-Langreo et al.,

2011) and water content (Lu and Peng, 2006) between the two

nectarines. The regression coefficient vector was used to

determine the 14 optimal wavelengths, and a variety

classification model based on PLS-DA was established. The

average spectrum of a single fruit was used as the model input

feature. The results show that the classification accuracy reaches

96.3%. The study also compared the variety classification based

on hyperspectral images and color visual images. The results
TABLE 6 Summary for the detection of fruit disease and damage based on phenotypic information using hyperspectral imaging.

Research
object Disease damage type Wavelength

range (nm)
Feature

extraction Method Result Ref.

Bi-colored
peaches

Skin injury, scarring, insect, damage,
puncture, injury, decay, disease, spots,
dehiscent, scarring and anthracnose

325-1100 nm PCA Ratio images Accuracy: 96.6%
(Li
et al.,
2016)

Peach Early abrasions
325-1100 nm
and 930-2548
nm

PCA
Image
segmentation

Damage peach: 96.5%
Non-destructive peach: 97.5%

(Li
et al.,
2018c)

Peach Cold injury 400-1000 nm / MLP, ANN Accuracy of cold-injured peaches: 95.8%
(Pan
et al.,
2016)

Honey
peaches

Peach decay 400-1000 nm SPA
PLS, SPA-
PLS

PLS: rp=0.904, RMSEP=0.751% SPA-
PLS: rp=0.858, RMSEP=0.633%

(Sun
et al.,
2017)

Peach Fungal infection 400-1000 nm SPA PLS-DA
No decay: 95% Slight decay: 66.29%
Moderate decay: 100% Severe decay:
100%

(Sun
et al.,
2018)

Peach Bruises 380-1080 nm PCA
PLS-DA, LS-
SVM

12h, 24h, 36h, 48h after bruising; PLS-
DA: 96.67%, 96.67%, 93.33% and
83.33% LS-SVM: 80%, 96.67%, 100%,
100%

(Li
et al.,
2021)
frontie
rsin.org

https://doi.org/10.3389/fpls.2022.1084847
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2022.1084847
showed that the variety discrimination ability based on color

vision image was low due to the high similarity of geometry and

color of two nectarine varieties. In recent years, with the rapid

development of image processing technology, spectral image and

analysis technology, computer and data processing technology,

hyperspectral imaging technology has been widely used in fruit

phenotypic information and related research, such as maturity

detection, fruit quality grading, disease damage identification

and so on.

The image information and rich spectral data contained in

hyperspectral images are the basis for the wide application of

hyperspectral technology. For different use requirements and

application fields, it is also necessary to select the wavelength

range with the strongest correlation. Therefore, the choice of the

optimal wavelength is also one of the problems faced by

researchers. With the gradual improvement of machine

learning theory, wavelength screening methods are also

divided into two main methods: statistical methods and

machine learning methods. There are more and more

literatures using machine learning methods for data

dimensionality reduction and model building, indicating that

the combination of fruit phenotype information research based

on hyperspectral image and intelligent computing is the general

trend. However, there is no uniform and clear evaluation criteria

for evaluating traditional modeling methods and machine

learning-based modeling methods. In future research, the

promotion of advanced technologies in practical production

applications is also a field that cannot be ignored, pushing

imaging equipment toward smaller, more sophisticated, lower

cost, wider use of the environment, and faster, more accurate,

and more efficient algorithms for wavelength selection and

prediction models.
4 Phenotypic information
acquisition and related applications
based on multispectral image

In recent years, researchers have been exploring the use of

spectral imaging equipment to obtain fruit phenotypic

information, and based on the obtained fruit phenotypic

information to achieve fruit disease damage (Kemps et al.,

2010), fruit maturity and biochemical content (Li et al., 2018d)

and other related applications. Multispectral images usually

contain several to more than a dozen spectral bands, and some

groups contained in organic substances, such as C-H, O-H, N-H,

etc., these groups absorb energy in the spectral imaging bands

used by multispectral imaging devices, resulting in changes in

reflection or transmission spectra (Saranwong et al., 2004).

After the light beam emitted by the light source of the

multispectral imaging device irradiates the surface of the fruit

to be tested, part of the light beam will be reflected back after
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reaching the fruit to be tested, while the other part of the light

beam will penetrate the fruit and scatter in different directions.

Therefore, the imaging mode of the multispectral imaging device

includes reflection imaging and transmission imaging. When the

content of substance to be detected (SSC, TA, etc.) of fruit

samples is different, different fruit samples will produce different

spectral curves. Therefore, the corresponding relationship

between the spectral data and the substance to be detected can

be established according to the spectral characteristics of fruit

samples, so as to realize the quantitative analysis of the content

of the detected substance (Pissard et al., 2013). The researchers

completed the measurement and analysis of relevant biomass,

and combined the fruit biomass measurement research with

practical application to explore the fruit maturity, disease

damage, biochemical content and other related studies based

on phenotype information.
4.1 Fruit maturity and biochemical
parameters detection based on
multispectral image

There are many criteria for determining the fruit maturity.

These indicators include phenotypic information such as

physical properties of the fruit (Herrero-Langreo et al., 2012)

and biochemical parameters (Herrero-Langreo et al.,

2011).Accurately grasping the fruit ripening stage is of great

significance for guiding fruit picking time, post-harvest storage

and fruit flavor. In recent years, significant progress has been

made in the research on the acquisition of Prunoideae fruit

phenotypic information based on multispectral images. The

relevant research literature is summarized in Table 7.

Firmness is one of the most significant indicators of change

during fruit ripening. Traditional methods for measuring fruit

firmness such as micro-deformation measuring instruments and

Magness-Taylor penetration/deformation resistance measuring

instruments. However, these methods are harmful to fruit

integrity and have the disadvantages of time-consuming and

low accuracy. Spanish researcher M.Ruiz-Altisent first studied

the relationship between peach fruit hardness and spectral

wavelength to reflect the maturity of peaches (Ruiz-Altisent

et al., 2006), and designed traditional measurement methods

to verify the accuracy of optical measurement of peach fruit

hardness. In the study, the spectral wavelengths of 450 nm and

680 nm were finally determined. The results of principal

component analysis showed that the above two wavelengths

were independent and complementary. The prediction model of

spectral reflectance and hardness was established, the

determination coefficient R2 = 0.78. At the same time, it was

found that there were some differences in the setting of

parameters when establishing prediction models for different

varieties of peach fruits. The two spectral wavelengths obtained
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by principal component analysis are consistent with previous

studies (Lu and Peng, 2006). In the study of Lu and Peng, it was

found that the reflectance at 450 nm and 680 nm was related to

carotenoid and chlorophyll content, respectively.

The researchers completed a test of maturity classification

program based on multispectral images of peach fruits (Herrero-

Langreo et al., 2011). The multispectral image data of peach fruits

used in the verification were obtained from the same variety but

different years. At the same time, the fruit segmentation problem of

peach fruit multispectral image is optimized, and the triangle

threshold segmentation algorithm is used to complete the

segmentation of the region of interest of peach fruit infrared

image. Compared with Otsu method, the triangle threshold

segmentation method reduces the influence of highlight spots on

fruits and irregularity in image background. Comparing the

segmented images using the Otsu method and the triangle

threshold segmentation method, in the experiment of peach fruit

size estimation, the explained variance between the fruit

measurement size and the image estimation size increased from

90% (Otsu) to 96%.

In the process of fruit ripening, the most intuitive and easy to

observe phenomenon is that with the change of fruit maturity, fruit

hardness will decrease significantly. In-depth exploration of the

reasons we can know that this is due to the decomposition of certain

biochemical substances within the fruit as the maturity changes.

Therefore, in the detection of fruit maturity, the researchers in

addition to the detection of hardness index, fruit chlorophyll

content, fruit total soluble solids content (SSC), acidity,

antioxidant components and other biochemical substances were

also tried to measure. The traditional method for measuring the

content of biochemical substances in fruit has the disadvantages of

time consuming, damaging the integrity of fruit and large error.

With the continuous exploration of researchers and technological

progress, the detection technology based on various types of images

for fruit internal biochemical content has gradually demonstrated

the potential to replace traditional methods.

In addition to using multispectral images, some multispectral

indices can also be used to detect fruit maturity. In subsequent
Frontiers in Plant Science 14
reports, the researchers used four spectral indicators to detect peach

fruit maturity (Lleó et al., 2011). It includes two new optical indices

Ind1 and Ind2, and two previously used indices Ind3 (Sims and

Gamon, 2002; Lleó et al., 2009) and IAD (Ziosi et al., 2008). The

selection of the four optical indexes is within the range of

chlorophyll absorption peak, and the change of optical index

reflects the change of chlorophyll in fruit with maturity. The

ability of four spectral indicators to distinguish fruit maturity was

evaluated from two perspectives: (1) Maturity perception. The

parameter L is introduced to evaluate the ability of each optical

index to distinguish the maturity of peach fruit. The L parameter

scores of the four indicators are as follows: L (Ind2) > L (Ind1) > L
(IAD) > L (Ind3). (2) Robustness of indicators related to fruit

convexity. The purpose of this comparison is to analyze which

indicators are affected by fruit convexity. In the test of the effect of

fruit convexity on spectral indexes, the results showed that only

Ind1 was affected. In the study of L. Lleó, the intensity distribution

of four optical indices in peach fruit images was obtained. It was

found that the index Ind2 had the highest ability to distinguish

maturity and was not affected by fruit convexity. Ind2 also allows

the division of mature regions in the fruit and shows the evolution

of these regions during ripening. In recent reports, researchers have

tried to use changes in chlorophyll absorption index IAD to reflect

peach fruit maturity (Ziosi et al., 2008). IAD as an optical index

reflects the absorbance difference between 670 nm and 720 nm

wavelengths. In the experiment, the linear regression method was

used to establish the relationship between IAD index and chlorophyll

content, appearance color (L*, a*, b*), hardness, extractable juice

and SSC/TA ratio of six different varieties of peach fruit. The results

showed that the higher the IAD value, the higher chlorophyll

content, hardness, TA and b* values, and the lower a* value. IAD
was significantly positively correlated with chlorophyll (r2 > 0.8)

and hardness (r2 > 0.6). The higher the IAD value, the higher the TA

content of the peach, while the SSC did not change, so the peach

fruits with different IAD values had different SSC/TA ratios. The

results showed that IAD index could divide peaches into different

maturity groups according to chlorophyll content, SSC/TA and fruit

firmness. They also found that such predictions were inaccurate for
TABLE 7 Summary table of fruit maturity and biochemical parameters detection based on multispectral image.

Research
object

Wavelength
coverage

Testing
index Processing method Result Ref.

Peaches 450, 689 nm; Firmness PCA+MLR R2 = 0.78
(Ruiz-Altisent
et al., 2006)

Peach
632, 650, 670, 780,
850, 900 nm

SSC and
firmness

Lorentzian distribution (LD), Gaussian distribution
(GD), Exponential distribution (ED)
MLR

r=0.949, SEP=1.56 N,
r=0.970, SEP=0.69°Brix

(Muhua et al.,
2007)

Peach 450, 675, 800 nm Firmness Ward classification algorithm, ANOVA, regressions R/IR imaged>R image
(Lleó et al.,
2009)

Cherry
550, 660, 735, 790
nm

Antioxidant
Activity

XGBoost, RF, SVR, MLP RMSE=6.74; MAPE=15.06
(Karydas et al.,
2020)
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the internal quality of peach fruit, which was caused by the

attenuation of light in peach fruit.

The imaging systems of the above researchers are mostly

laboratory multispectral imaging systems. In the study of Karydas

et al., multispectral imaging equipment was installed on an

unmanned aerial vehicle platform to obtain four bands of cherry

orchard aerial multispectral images (550,660,735,790 nm) (Karydas

et al., 2020). The detection model of antioxidant components in

cherry fruit was established by machine learning method, and the

free radical scavenging activity (DPPH) of cherry fruit was analyzed.

Three spectral indices were extracted based onmultispectral images:

normalized difference vegetation index (NDVI), carotenoid

reflectance index 2 (CRI2) and anthocyanin reflectance index

(ARI). Four machine learning algorithms are tested: extreme

gradient boosting (XGBoost), random forest (RF), support vector

regression (SVR) and multi-perceptron (MLP). The smaller RMSE

and mean absolute percentage error (MAPE) obtained using the

XGBoost algorithm in the study of the data obtained in 2018 were

6.74 and 15.06, respectively. In further studies, Karydas et al. were

able to extend the prediction of DPPH for cherries throughout the

orchard to accurately predict the maturity of cherries in different

regions, guidingmanagers in the harvesting of cherries. The spectral

indices (NDVI, CRI2, ARI) used in his research are the fusion of

two or more bands of spectral data obtained by certain

mathematical calculations (Crocombe, 2018). With the help of

similar vegetation index (VI), the relevant research conclusions

can be more obvious.

Multispectral imaging technology has been proved to be a

feasible method for detecting fruit maturity and biochemical

parameters. Compared with the traditional method, the detection

method based on multispectral image has the advantages of high

efficiency and non-destructive. However, the laboratory

multispectral imaging equipment has higher requirements on the

use environment, which also limits the application of multispectral

image detection maturity and biochemical parameters in actual

production. With the development of technology, such as UAV

platform multispectral imaging equipment, portable multispectral

equipment has been gradually developed, compared to the

laboratory imaging equipment is small and easy to use features

are more significant. Very useful for non-researchers (Li et al.,

2018b). The research on fruit firmness, fruit SSC, size estimation

and antioxidant content based on fruit multispectral images can

provide guidance for fruit harvest time, fruit quality classification

and fruit postharvest storage. It improves the quality of fruit, ensures

its market value, and conforms to the development concept of

precision agriculture.
4.2 Fruit disease damage detection based
on multispectral image

Fruit disease damage is one of the most direct factors

affecting fruit quality (Sun et al., 2019). The types of disease
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damage can be classified as existing in the fruit surface and fruit

interior. The causes of diseases exist in many processes such as

fruit growth, picking, and storage. Fruits with disease damage are

more likely to rot, and if not treated in time, they can even cause

lesions in other normal fruits. The multispectral image of fruit

contains rich phenotypic information, and the detection of

disease damage by multispectral image of fruit has been

verified by many researchers.

Based on the phenomenon that the spectral characteristics of

different disease damage tissues in fruit multispectral images are

different, the detection of various types of fruit damage can be

completed by using multispectral images. An improved

enhanced GA-ANN is used to detect and classify different

defect types in cherry multispectral images (Guyer and Yang,

2000). In this study, multispectral images of cherries were

obtained by a non-portable multispectral imager and three

spectral wavelengths of 680, 920 and 1120 nm were finally

selected to complete the classification of seven different tissue

types (dry crack, decay, mold, good tissue, background, stem or

highlight). Researcher Daniel Guyer combines GA with ANN,

and GA was used to optimize the weight of multi-layer

feedforward artificial neural network. The results showed that

the correct recognition rate of different tissue types reached 92%,

while the correct recognition and accurate quantification of

tissue types was only 72%. As can be seen from the results,

more errors were made in the quantification process due to the

similarity of the two types of defects, some moldy tissues were

mistaken for rotten tissues. Sun et al. established a multispectral

structured illumination reflection imaging system for the

detection of early fungal infection in peach (Sun et al., 2019).

The recognition rate of early fungal infection in peach fruit

reached 98.6%, and the recognition rate of early infection

without disease symptoms reached 97.6%. This study is the

first time that the multispectral structured light reflection

imaging system has been applied to detect fungal infection in

peach fruits. Images of seven wavelengths between 690 and 810

nm at three different spatial frequencies of 60, 100 and 150 m−1

were obtained by the structured illumination reflection imaging

system, followed by demodulation to obtain alternating

component (AC) images and direct component (DC) images.

Based on the acquired AC image, DC image and ratio image,

three image classification methods, watershed algorithm, partial

least squares discriminant analysis (PLS-DA) and CNN, were

used to complete the detection and recognition of peach fruit

lesions. The results show that AC images with wavelength and

spatial frequency of 730 nm and 100 m−1 have high consistency,

high detection rate and accuracy in disease region recognition

and region estimation. In the horizontal comparison of

classification algorithms, CNN is the best, followed by

watershed segmentation algorithm.

Using multi-spectral imaging technology to detect fruit

damage can efficiently and accurately complete the detection

requirements, and give objective and quantitative evaluation
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(Alfatni et al., 2013). Therefore, fruit disease damage detection

based on multi-spectral imaging technology has important

research significance, and it is also very important to promote

the automation, digitization and intelligent construction of fruit

detection system. With the improvement of ANN algorithm, it

has been widely used in image classification applications for

disease damage types. The traditional image classifier needs to

select feature vectors for the classification of fruit disease

damage. If the feature selection is improper or insufficient, the

classification accuracy will be directly affected. In comparison,

the advantage of CNN model for image recognition is that its

multi-level mechanism can extract and identify complex visual

features, so the advantage of CNN is obvious. In addition, the

defective tissues of fruits are often a combination of several types

of defects, which complicates the identification and description

of defects. Therefore, for each type of defect, the combination of

the selected optimal wavelength and image processing

operations can help to better complete the identification and
Frontiers in Plant Science 16
detection. The wavelength composition of the fruit multispectral

image is shown in Figure 3.
5 Phenotypic information
acquisition and related applications
based on other types of image

In the summary and review of the acquisition of phenotypic

information of Prunoideae fruits based on multispectral images,

hyperspectral images and RGB images and related applications,

we also found that some other imaging techniques were used in

the related research of phenotypic information acquisition of

Prunoideae fruits, including thermal imaging technology,

computer tomography (CT) technology, laser-l ight

backscattering imaging (LLBI) and so on. These imaging

techniques have not been widely used in the related research
FIGURE 3

Wavelength composition of multispectral image.
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of the Prunoideae fruit, but they cannot be ignored. In the

following sections, we analyze and review the cited literature

according to different imaging techniques.
5.1 Phenotypic information acquisition
based on thermal imaging technology
and related research

The thermal imaging equipment uses the infrared detector

and the optical imaging mirror to receive the infrared radiation

energy of the measured target, and reflects the energy

distribution to the photosensitive element of the infrared

detector, so as to obtain the thermal image of the measured

target. The obtained thermal image corresponds to the thermal

distribution of the measured object (Lee et al., 2019). The

imaging methods of thermal imaging equipment include active

system and passive system. Compared with passive system,

active system usually includes heating or cooling system.

Cherry is a kind of fruit which is sensitive to the surface

temperature and humidity. Fruit cracking caused by abnormal

changes in fruit surface temperature and humidity will seriously

affect its market value. Osroosh et al. used thermal imager-RGB

image system to detect the surface temperature of cherry fruit

and used microclimate information detection system to verify

the results (Osroosh and Peters, 2019). The thermal imaging

equipment was installed at a distance of 20 cm from the target

cherry. In the experiment, a simulated rainfall system was also

built to change the surface humidity of the cherry fruit. They also

developed a custom computer vision algorithm to recognize

cherry fruits in thermal images and RGB images, and completed

the extraction of fruit surface temperature. In the study, they

found that the surface temperature of cherry fruits was highly

correlated with the surface temperature of leaves (R2 > 0.89). The

final experimental results show that it is feasible to detect the

surface temperature of cherry fruit using a system based on low-

resolution thermal RGB images. They also established the

normalized temperature index (NTDI and NRTI) to quantify

fruit surface humidity levels.

In a recently reported study, researchers developed two

models for predicting cherry surface humidity based on

thermal-RGB images and weather sensing systems (Ranjan

et al., 2022). The input data of the first model is weather

sensor data, and the input data of the other model combines

the fruit surface temperature obtained from thermal image data.

An automatic custom image processing algorithm was

developed for fruit recognition and surface temperature

extraction, and the radiation calibration equation was used to

correct the temperature data. In the experiment, two varieties of

cherry fruits were used to complete the prediction of fruit surface

humidity. The results showed that the correlation between the

measured and predicted values of humidity was R2 = 0.80 and R2
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= 0.86, respectively. Compared with other imaging technologies,

thermal imaging technology can accurately provide the

temperature information of the measured target, which is an

advantage that other types of images do not have. Especially in

the exploration of temperature and fruit phenotype research

applications, has an irreplaceable role. However, the use of

thermal imaging equipment in outdoor environments is

strongly affected by light, which will have a certain impact on

its accuracy.
5.2 Phenotypic information acquisition
based on computed tomography
imaging technology and related research

Computer tomography (CT) has become one of the mature

non-destructive technologies for measuring the external

morphological characteristics and internal defect detection of

agricultural products (Arendse et al., 2018). The CT technology

ray includes X-ray, g-ray, ultrasound, etc. CT technology can

reflect the density change of the measured sample. The density

and absorption coefficient of the measured sample will lead to

the attenuation of the ray during the penetration process. The

CT image can reflect the density change of the measured object

through the gray value of the pixel. The image is white,

indicating high density, and black indicates low density.

Kritzinger et al. used X-ray CT technology to detect the

occurrence of fruit core cracking during plum fruit development

(Kritzinger et al., 2017). They selected six plum varieties to

explore the causes of fruit core cracking, and randomly selected

measurement targets in the orchard for X-ray CT scanning. The

acquisition process of CT images developed from the inner

epidermis until the fruit core was completely hardened. The

results showed that due to the influence of temperature changes,

the growth of the inner epidermis of the fruit was affected, and

the incompletely hardened inner epidermis was affected by the

tension of the pulp, resulting in cracking. In their research, CT

technology accurately reflected the process of fruit core

hardening at different stages, thus accurately discovering the

occurrence of fruit core cracking.

In a study to determine whether 1-Methylcyclopropene

treatment of apricot fruit is beneficial for fruit preservation, X-

ray CT technology was used to detect the occurrence of voids

inside the fruit (Karmoker et al., 2018). The obtained fruit CT

images are divided into high-density regions (−200 ~ +350HU)

and low-density regions (−900 ~ −200HU) to detect voids. The

changes of ethylene content in fruits treated with conventional

methods and 1-Methylcyclopropene during storage were

compared. The results showed that the apricot fruit pretreated

with 1-Methylcyclopropene effectively inhibited the production

of ethylene. From the CT image of the fruit, it can be seen that

the inside voids the treated apricot fruit is less than that of the
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apricot fruit preserved by the conventional method. These

results show that CT imaging technology has significant

advantages in the detection of fruit internal.
5.3 Phenotypic information acquisition
based on laser-light backscattering
imaging technology and related research

Laser-light backscattering imaging (LLBI), as a low-cost

imaging technology, realizes the detection and analysis of targets

by using the principles of light absorption, scattering and image

processing in the visible and near-infrared electromagnetic

spectrum. When a beam of bright light is irradiated to the fruit

surface, most of the light will transmit to the fruit tissue, and the

other part will diffuse to the fruit surface (Adebayo et al., 2016).

Through the interaction between light and the object to be

measured, useful information about the structure and

composition of the object to be measured is provided for quality

analysis of fruits.

In 2016, a quality evaluation study using LLBI technology to

detect plum fruit during tree development and storage was reported

(Rezaei Kalaj et al., 2016). In this study, two different wavelengths of

light (532,785nm) were used to detect two different varieties of

plum. The full width at half maximum (FWHM) value was

obtained by radial backscattering profile calculation, and this

value was tried to establish with fruit hardness, SSC, dry matter

content and normalized anthocyanin index. The results showed

that the decrease of FWHM532 was closely related to the increase of

anthocyanin content during fruit development. In addition, the

increase of FWHM785 was closely related to the decrease of flesh

firmness during fruit development and storage. Their results show

that it is feasible to use the appropriate wavelength LLBI technique

to nondestructively detect the oxidation resistance and firmness of

plum fruit.

In a recent study, LLBI technique was used to predict the

quality characteristics and maturity of apricot fruit (Mozaffari

et al., 2022). Different from previous studies, the wavelength of

650 nm was used to obtain backscatter images of six ripening

stages of apricot fruit. They used Otsu and first inflection point

techniques to segment the image and extract spatial domain

features from it. They established three prediction models

(ANN, PLSR, PCA-ANN) to predict the hardness and SSC of

apricot. The results show that the R2 based on ANN prediction

model is the highest and RMSE is the lowest. The results of

hardness and SSC were R2
CV = 0.974, RMSECV = 3.482 and R2

CV

= 0.963, RMSECV = 1.146, respectively.
6 Discussion

At present, the acquisition of fruit phenotypic information

based on image technology and its related research have made
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remarkable progress under the efforts of researchers. In the

review of past research, our research based on image type is

divided into three types. Here, we discuss the related research of

three image types.

(1) Fruit phenotypic information acquisition and related

research based on RGB images: Firstly, from the perspective of

images, RGB images only contain image information compared

with the former two, and do not involve spectral data. In terms

of phenotypic information acquisition, only fruit color features,

texture features and geometric morphological parameters based

on image information can be extracted. However, the

convenience of RGB image acquisition is one of its most

significant advantages.

The convenience of RGB image acquisition is one of its most

significant advantages. However, with the popularity of various

imaging devices, the obtained RGB images have differences in

pixel resolution, image size, etc. These differences should be

solved in subsequent image processing. In addition, the

acquisition of RGB images should also take into account the

automatic preprocessing of the image during the acquisition of

the image by the smartphone, such as the adjustment of

exposure time and contrast, which will lead to the acquisition

of RGB images can not accurately reflect the color characteristics

of the target object.

(2) Fruit phenotypic information acquisition and related

research based on hyperspectral images: Compared with

multispectral images, hyperspectral images have become one

of the research hotspots with richer spectral data. The spectral

resolution of hyperspectral imaging equipment is nanoscale, and

the hyperspectral image obtained often contains hundreds of

thousands of wavelengths. Therefore, the rich spectral data

makes the hyperspectral image more comprehensive and

accurate in the process of obtaining fruit phenotypic

information, which makes it widely studied in the fields of

fruit maturity detection, fruit quality grading, disease damage

identification quantification and so on.

Removing redundant hyperspectral data is also one of the hot

issues for researchers in related research using hyperspectral

images. With the improvement of artificial intelligence theory,

there is also great potential in feature wavelength selection

algorithms, such as UVE, SVE, etc., which have achieved good

results. It should be mentioned that in most of the studies

reviewed, hyperspectral imaging equipment is used in a

laboratory environment, and some researchers have also used

portable spectral imaging equipment for research. However,

further improvement is needed to balance image quality and

cost issues.

(3) Fruit phenotypic information acquisition and related

research based on multispectral images: Fruit multispectral

images are used by researchers in fruit maturity, biochemical

parameter detection, disease damage detection and other fields by

virtue of the image information and spectral data contained in the

image. On the one hand, the band range of multispectral images
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often contains only a few to a dozen, and there is a defect that the

spectral data acquisition is not comprehensive, which limits the

researchers to obtain various phenotypic information of fruits

through spectral data and complete related applications. On the

other hand, the low number of spectral data in multispectral images

also reduces the complexity of data dimensionality reduction and

further processing in the later stage. From the perspective of multi-

spectral imaging equipment, the low cost and portability of multi-

spectral imaging equipment are its most significant features.

Considering that the imaging environment is mostly outdoor,

sunlight will have a certain impact on multispectral images, so

multispectral imaging equipment should be further improved in

terms of resolution and anti-interference ability.

(4) In the review and summary of other imaging technology,

we mentioned thermal imaging technology, CT imaging

technology, LLBI technology. The images obtained by these

imaging techniques can provide data in different dimensions

for the acquisition of fruit phenotypic information and

subsequent research applications. The acquisition of fruit

surface temperature information by thermal imaging

technology is irreplaceable in the study of avoiding fruit

cracking due to abnormal surface temperature. CT imaging

technology and LLBI technology can accurately reflect the

internal quality of fruits by means of X-ray and laser beam

penetration measurement in the detection of internal phenotypic

information of fruits.

Finally, with the development of image processing technology

and related target recognition and segmentation algorithm, the

acquisition of fruit phenotype information based on RGB image and

related research is still one of the important areas. Researchers have

used a variety of neural network algorithms to complete research on

maturity, fruit quality, disease damage and other related research

based on RGB images. In this review article, we do not deeply

explore the related algorithms used by researchers, but it can be

concluded that with the continuous improvement of related

algorithms, deep learning shows significant advantages over

traditional algorithms.
7 Conclusions

We tried to review the acquisition of fruit phenotypic

information and related research based on image technology.

Image types mainly include multispectral, hyperspectral and RGB

images. Then, according to the research purpose, the research based

on each type of image is introduced, including the imaging

equipment parameters, image analysis technology and research

results, etc. When the actual design is based on different types of

images to complete the application of fruit detection, due to the

differences, it may be necessary to readjust the various parameters of

the image analysis algorithm and combine various technologies. In

addition, the specificity of the imaging equipment and imaging

environment used in the references leads to its popularization to be
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improved. In some researches based on natural light and outdoor

environments, the preprocessing algorithms proposed for other

interference light sources are worthy of reference, which can

significantly reduce the impact of noise in target fruit recognition

and detection, thereby improving the accuracy of research. In order

to further promote the application of image-based fruit detection

technology in actual production, it is necessary to further improve

the portability of imaging equipment and coordinate the cost

problem. Moreover, it can be seen from the environmental

specificity of previous studies that the existing analysis algorithms

have poor universality. Therefore, the development of new

algorithms to achieve high efficiency, high accuracy and strong

adaptability is of great significance for the promotion of this

technology in practical applications.
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