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Large investment of stored
nitrogen and phosphorus
in female cones is consistent
with infrequent reproduction
events of Pinus koraiensis, a
high value woody oil crop in
Northeast Asia

Haibo Wu1,2,3,4†, Jianying Zhang5†,
Jesús Rodrı́guez-Calcerrada2, Roberto L. Salomón2,
Dongsheng Yin5*, Peng Zhang1,3,4* and Hailong Shen1*

1State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry
University, Harbin, China, 2Department of Natural Systems and Resources, Universidad Politécnica
de Madrid. Ciudad Universitaria s/n, Madrid, Spain, 3Key Laboratory of Sustainable Forest Ecosystem
Management-Ministry of Education, Northeast Forestry University, Harbin, China, 4State Forestry
and Grassland Administration Engineering Technology Research Center of Korean Pine,
Harbin, China, 5Forestry Research Institute of Heilongjiang Province, Harbin, China
Pinus koraiensis is famous for its high-quality timber production all the way and

is muchmore famous for its high value health-care nut oil production potential

since 1990’s, but the less understanding of its reproduction biology seriously

hindered its nut productivity increase. Exploring the effects of reproduction on

nutrient uptake, allocation and storage help to understand and modify

reproduction patterns in masting species and high nut yield cultivar selection

and breeding. Here, we compared seasonality in growth and in nitrogen ([N])

and phosphorus ([P]) concentrations in needles, branches and cones of

reproductive (cone-bearing) and vegetative branches (having no cones) of P.

koraiensis during a masting year. The growth of one- and two-year-old

reproductive branches was significantly higher than that of vegetative

branches. Needle, phloem and xylem [N] and [P] were lower in reproductive

branches than in vegetative branches, although the extent and significance of

the differences between branch types varied across dates. [N] and [P] in most

tissues were high in spring, decreased during summer, and then recovered by

the end of the growing season. Overall, [N] and [P] were highest in needles,

lowest in the xylem and intermediate in the phloem. More than half of the N

(73.5%) and P (51.6%) content in reproductive branches were allocated to

cones. There was a positive correlation between cone number and N and P
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content in needles (R2 = 0.64, R2 = 0.73) and twigs (R2 = 0.65, R2 = 0.62) of two-

year-old reproductive branches. High nutrient sink strength of cones and

vegetative tissues of reproductive branches suggested that customized

fertilization practices can help improve crop yield in Pinus koraiensis.
KEYWORDS
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1 Introduction

Many tree species undergo significant variations in seed

production from year-to-year, a phenomenon known as masting

(Kelly, 1994; Kelly and Sork, 2002; Pearse et al., 2016; Allen et al.,

2017; Fernández-Martıńez et al., 2019; Fernández-Martıńez

et al., 2020; Kelly, 2020). Inter-annual variations in seed

production have been related to climatic conditions (Allen

et al., 2014; Roland et al., 2014; Pearse et al., 2016; Fernández-

Martıńez et al., 2019; LaMontagne et al., 2020), which affect

annual growth (Yasumura et al., 2006; Smith and Samach, 2013;

Nakahata et al., 2021), flowering (Law et al., 2000; Cook et al.,

2012), pollen availability and pollination efficiency (Koenig and

Knops, 2005; Koenig et Al., 2012; Pérez-Ramos et al., 2015;

Pearse et al., 2016; Venner et al., 2016). In addition to climatic

conditions, nutrient cycling is essential in regulating masting

behaviour and reproductive mechanisms (Kelly, 1994; Kelly and

Sork, 2002; Sala et al., 2012; Pearse et al., 2016; Han et al., 2017;

Fernández-Martıńez et al., 2019; Fernández-Martıńez et al.,

2020; Kelly, 2020) because reproduction consumes a

significant amount of carbohydrates and mineral nutrients.

Experimental evidence suggests that masting species

accumulate reserves during 2-4 years for the subsequent

masting reproduction event to occur (Sork et al., 1993;

Yamauchi, 1996; Satake and Bjørnstad, 2008; Pearse et al.,

2016). During the masting event, a significant fraction of

resources is allocated to reproduction (e.g. fruit and seed

development) to the detriment of growth or defense (Venner

et al., 2016; Allen et al., 2017; Nakahata et al., 2021).

Korean pine (Pinus koraiensis S. et Z.) is a monoecious

evergreen gymnosperm that naturally distributed in Northeast

China, Korean Peninsula and Russia Far-east (Shen, 2003; Wang

and Chen, 2004). P. koraiensis is a major source of timber and

edible pine nuts due to its excellent wood properties and the

substantial production of nutritious seeds and trees reach

reproductive age at 20 - 30 years old, and female cones take

two years to develop. (Shen, 2003; Wang and Chen, 2004; Xie

et al., 2016; Zhang et al., 2017; Liao et al., 2021). Like many other

pine species, P. koraiensis is a prominent masting tree, and its

inter-annual periodicity is 3 to 5 years (Shen, 2003; Cheng et al.,
02
2017), with massive cone production during the masting year

consuming a large share of carbohydrates and mineral nutrients

(Han et al., 2017; Yin et al., 2019; Wu et al., 2021). P. koraiensis is

one of the 4 major nut trees globally (Xie et al., 2016); however,

compared with other orchard trees (e.g. almond or chestnut), P.

koraiensis remains at an early stage of domestication. There is

certain blindness in the management and fertilization regimes of

the species, which significantly limits its economic potential.

Mineral nutrients required for plant growth, development,

and reproduction are mainly taken up from the soil by the roots

and transported upwards through the xylem to organs

aboveground (Wiley and Helliker, 2012; Congreves, et al.,

2021). Nevertheless, mineral nutrients consumed for spring

growth are commonly remobilized from storage tissues rather

than taken up by the roots (Han et al., 2008; Nowak-Dyjeta et al.,

2017), as water and nutrient transport through the xylem is still

constrained by a low evaporative demand (Millard and Grelet,

2010; El Zein et al., 2011), as observed in Picea and Pseudotsuga

seedlings (Van den Driessche, 1985; Proe and Millard, 1994).

The development of reproductive organs constitutes an

additional resource sink that competes with growth and

storage. Nitrogen (N) and phosphorus (P) are two

macronutrients often limiting the growth and reproduction of

masting plant species (Newbery et al., 2006; Sala et al., 2012;

Ichie and Nakagawa, 2013; Han et al., 2014) which can be readily

translocated from leaves and woody tissues to reproductive

organs for seed maturation (Miyazaki et al., 2002; Han et al.,

2011). Likewise, vegetative branches neighboring reproductive

branches can also act as nutrient suppliers (Munoz et al., 1993;

Miyazaki et al., 2014), a frequent behavior during masting events

(Sork et al., 1993; Satake and Bjørnstad, 2008; Ichie and

Nakagawa, 2013; Sala et al., 2012; Miyazaki et al., 2014).

Therefore, N and P content commonly decreases during the

masting event throughout tree organs (Ichie and Nakagawa,

2013; Sala et al., 2012; Miyazaki et al., 2014). Nevertheless,

nutrient allocation patterns seem to be species-, organ- and

nutrient-specific. For example, sduring the masting of Pinus

albicaulis, N and P concentrations ([N] and [P] hereafter) were

reduced compared to previous, non-masting years only in

reproductive branches, while during the following year, [N]
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and [P] depletion occurred in both vegetative and reproductive

branches (Sala et al., 2012). In branches, stem and roots of

Dryobalanops aromatica, [P] was reduced by more than half

during reproduction compared to a non-masting year, while [N]

remained stable (Ichie and Nakagawa, 2013). Therefore, a better

understanding of mineral nutrient tree demand, absorption

capacity and allocation during reproduction cycles will help

design species-specific fertilization treatments, with the ultimate

goal of shortening reproduction cycles and increasing gross seed

production in the long term. In line with this, previous studies in

different species have suggested that N- or P-fertilization

enhances tree growth (Turner et al., 2002; Jasim, 2013),

improves pollen, ovule viability and seed production (Callahan

et al., 2008; Smaill et al., 2011; Ghanem et al., 2014; Bogdziewicz

et al., 2017), and reduces the interval of masting events

(Bogdziewicz, 2022).

This study aims to assess whether the growth of reproductive

(cone-bearing) branches is inhibited by the mast event and

whether cone maturation depletes nutrient availability in

reproductive branches of Korean pine. To answer these

questions, we monitored the seasonal dynamics of stored

nutrients and the reproductive output (cone yield) in Korean

pine during a masting year. Specifically, [N] and [P] seasonality

in needles, twigs and cones of reproductive and vegetative

branches were measured. We also examined the effect of

masting on the growth of young (one- and two-year-old)

branches. We hypothesize that (i) the growth of young

reproductive branches will be lower than that of vegetative

branches due to the diversion of nutrients and carbohydrates

for reproductive purposes. Likewise, we predict (ii) stronger N

and P depletion during cone maturation in vegetative tissues

(needle, phloem and xylem) of reproductive branches relative to

vegetative ones. We further expect (iii) the reproductive output

to be inversely related to [N] and [P] in vegetative tissues at the

seasonal timescale.
2 Materials and methods

2.1 Study site and sampled trees

This study was conducted at the Maoershan Research

Station of the Northeast Forestry University (127°30′-127°34′
E, 45°21′-45°25′N; Heilongjiang, China), in the northwest ridge

of the Zhangguangcai Mountains. The area is characterized by a

continental temperate monsoon climate, with warm, humid

summers and cold, dry winters. The mean annual temperature

is 2.8°C, and the mean temperatures in the coldest (January) and

hottest (July) months are -19.6°C and 20.9°C, respectively. The

growing season lasts fromMay to September, approximately 120

to 140 days. The mean annual precipitation is 723 mm, with

477 mm occurring from June to August. Soils are Hap-Boric

Luvisols, with high organic matter content and good drainage.
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More details on the site and soil characteristics can be found in

Wang et al. (2006). This study was conducted during the 2018

growing season in a 5-ha P. koraiensis stand planted in 1968. The

site is located 490-510 m above sea level and has an average slope

of 15° facing the north. The mean (± standard error) height of

the trees in 2018 was 13.5 (± 0.6) m, and the mean diameter at

breast height was 34.0 (± 3.6) cm.
2.2 Sampling time and protocol

Five healthy trees with a large production of cones accessible

for climbing were selected for measurements. Trees were

sufficiently spaced to prevent significant shading by neighbors.

For each tree, we selected five branches bearing cones (i.e.

reproductive branches) and five branches with no cones (i.e.

vegetative branches) from the sun-lit southwest section of the

upper canopy. Selected reproductive and vegetative branches

were spaced at least 2 m to avoid the influence of cones on traits

of vegetative branches. One reproductive and one vegetative

branch per tree were harvested five times during the 2018

growing season. In the fifth sampling time, two additional

reproductive branches were sampled to better analyze the

relation between cone number and end-of season nutrient

status. Sampling dates were established according to the

development of female cones (hereafter, cones; Figure 1): (1)

before the appearance of new shoots and cone growth (May;

DOYs (day of year) 128); (2) at an early stage of cone growth,

when new shoots had begun to grow (June; DOYs 172); (3) at a

stage of rapid cone expansion, when new shoots had stopped

growing (July; DOYs 204); (4) when the cones are ripe and ready

for harvesting (August; DOYs 237); (5) when the cones are fully

mature, and trees are nearly dormant (September; DOYs 258).

At each sampling time, the branches were transported to the

laboratory with an ice cooler. In the laboratory, the length and

width of cones were measured. Foliar (needles), xylem, phloem

(including bark) and cone (including seeds) tissues were

manually separated to determine their dry biomass. For this,

organs were oven-dried in a forced-air oven at 75°C until

constant dry mass. The dried material was ground into a fine

powder in a steel ball mill (Retsch MM400, German) and dry-

stored until further biochemical analyses. In the last sampling

date (DOYs 258), diameter and length were measured in one-

and two-year-old branches.
2.3 N and P concentrations

We used an automatic Kjeldahl analyzer (model KT260; Foss

Inc., Hillerod, Denmark) to determine the total [N]. A

subsample of each tissue was digested in 98% H2SO4 (w/w)

and 30% H2O2, using CuSO4 and K2SO4 as catalysts to

transform N into (NH4)2SO4. Thereafter, a 40% NaOH
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solution (w/v) was used to release NH3 from (NH4)2SO4. Finally,

1% H3BO3 was used to transform the released NH3 into

(NH4)2B4O7. A solution of 0.1 M HCl was used to titrate the

content of (NH4)2B4O7.

We used a modified H2O2-H2SO4 method to determine the

total [P] (Rapp et al., 1999; Shen et al., 2019). We digested 0.2 g

of ground material in 5 mL of 98% H2SO4 and 2 mL of 30%

H2O2 at 400°C for 2-3 h. When the solution had reached 100°C,

30% H2O2 was added dropwise until the solution became pale

yellow or colorless. The digests were diluted, filtered through

Whatman 2 filter paper, and finally topped up to 50 mL with

deionized water. The concentration of P in the solution was

determined at 700 nm with a spectrophotometer (UV-PC01;

Shimadzu Corp., Kyoto, Japan). The content of N and P in each

tissue was estimated by multiplying [N] and [P] by the

corresponding dry biomass of each tissue.
2.4 Statistical analysis

Linear mixed models were adjusted per surveyed dependent

variable. These include biomass, [N], [P], N content, and P

content in needles, phloem and xylem of one- and two-year-old

twigs. Branch type (i.e. vegetative vs reproductive), harvest time

and their interaction were treated as fixed factors, while the tree

was considered a random factor. When significant (P < 0.05),

post-hoc LSD tests were applied for multiple comparisons. One-

way analysis of variance (ANOVA) was used to evaluate the

effect of harvest time on cone width, length, [N], [P], N content,
Frontiers in Plant Science 04
and P content in reproductive branches. Finally, linear

regressions between cone number and N and P content were

adjusted separately for needle and twig tissues (xylem and

phloem) for reproductive branches. Statistical analyses were

performed using SPSS 26.0 for Windows (SPSS, Chicago,

USA), and figures were plotted with SigmaPlot 10.0 (Systat

Software, San Jose, USA).
3 Results

Branch type (reproductive or vegetative) and harvest time

had a significant effect on [N] and [P] in needles, phloem and

xylem of both one- (Figure 2) and two- (Figure 3) years-old

twigs, with the interaction between branch type and harvest time

being significant in most cases (Table S1). Overall, [N] and [P] in

needles, phloem and xylem were lower in reproductive branches

than in vegetative branches. Among tissues, [N] and [P] were

generally highest in needles, lowest in the xylem, and

intermediate in the phloem.

Seasonality in [N] and [P] was roughly similar across

monitored tissues and for one- and two-year-old twigs

(Figures 2, 3, respectively). The concentrations were highest in

spring (May-June), decreased as organs matured during summer

(July-August), and increased again by the end of the growing

season (September), without fully recovering spring values in the

case of one-year-old twigs. The only exception to this seasonal

behavior was observed for [P] in needles, which increased in

two-year-old twigs as the growing season progressed. The
FIGURE 1

Female cones of Pinus koraiensis at different developmental stages. The numbers below each cone denote the sampling dates at May, June,
July, August and September, corresponding to DOYs 128, 172, 204, 237 and 258, respectively.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1084043
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wu et al. 10.3389/fpls.2022.1084043
seasonality of [N] and [P] was different in reproductive and

vegetative branches. For one-year-old twigs, differences in needle

[N] and [P] between branch types were higher during early

summer than in September, while differences in xylem [N] and
Frontiers in Plant Science 05
[P] were higher in September than in June (Figure 2). For two-

year-old twigs, xylem and phloem [N] were higher in September

than May in vegetative branches and lower in May than

September in reproductive branches. Similarly, xylem [P]
A B

D

E F

C

FIGURE 2

Nitrogen ([N]; A, C, E) and phosphorus ([P]; B, D, F) concentrations in needles (A, B), phloem (C, D) and xylem (E, F) of one-year-old twigs of
Pinus koraiensis during four sampling times (June, July, August and September, corresponding to DOYs 172, 204, 237 and 258, respectively).
Bars and arrows represent the mean and corresponding standard error from five trees, respectively. Asterisks indicate significant differences
between branch types for a given harvest time; *, ** and *** indicate significance levels at P < 0.05, 0.01 and 0.001, respectively. Different
lowercase letters indicate significant differences between harvest times for a given branch type.
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FIGURE 3

Nitrogen ([N]; A, C, E) and phosphorus ([P]; B, D, F) concentrations in needles (A, B), phloem (C, D) and xylem (E, F) in two-year-old twigs of
Pinus koraiensis at five sampling times (May, June, July, August and September, corresponding to DOYs 128, 172, 204, 237 and 258,
respectively). Bars and arrows represent the mean and corresponding standard error from five trees, respectively. Asterisks indicate significant
differences between branch types for a given harvest time; *, ** and *** indicate significance levels at P < 0.05, 0.01 and 0.001, respectively.
Different lowercase letters indicate significant differences between harvest times for a given branch type.
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recovery in September was higher in vegetative than in

reproductive branches (Figure 3).

Branch type, harvest time and their interaction had a

significant effect on the biomass of needles, phloem and xylem

of one-year-old twigs, while these effects were tissue-specific on

the biomass of two-year-old twigs (Table S1; Figure 4). The

biomass of all tissues of one- and two-year-old reproductive

branches was significantly higher than those of vegetative

branches during late-summer (August and/or September), but

not in spring (May) except for xylem biomass of two-year-old

twigs. In two-year-old twigs of vegetative branches, needle and

phloem biomass decreased significantly from spring to summer.

The width, length, and biomass of individual cones increased

over time from May to August, when growth ceased (Figure 5).

Cone [N] was highest in May (ca. 24.3 mg g dw-1), then

decreased significantly in June, and maintained a similar

concentration throughout its developmental period after a

slight recovery in July (ca. 21.1 mg g dw-1). Cone [P] was also

highest in May (ca. 2.8 mg g dw-1) and maintained a similar

concentration of 2.3 mg g dw-1 after an initial drop in June.

Due to the relatively small changes in cone [N] and [P] as

cones matured, N and P content in cones were primarily

determined by biomass dynamics, with the lowest values in

May followed by a progressive increase during the growing

season (Figure 6). At the end of the growing season, in

reproductive branches, approximately 73.5% and 51.6% of the

N and P content were allocated into cones, 17.6% and 29.4% to

needles, 5.7% and 15.3% to the phloem, and 3.2% and 3.7% into

the xylem. In vegetative branches, 65.6% and 53.6% of N and P

was allocated into needles, 25.8% and 37.9% into the phloem,

and 8.6% and 7.5% into the xylem.

To further understand nutrient effects on cone production,

the linear relationships between cone number and end-of-season

twig size, N and P content of needle and twigs were explored via

regression analysis (Figure 7). Twigs length was unable to predict

cone number (R2 < 0.01, P = 0.777). By contrast, cone number

was positively correlated with twig diameter, N and P content in

needles and twigs of two-year-old twigs (R2 = 0.68, 0.64, 0.73,

0.65 and 0.62, respectively, all P < 0.001).

When evaluating the relation between cone number and

needle and twig [N] and [P], cone number was positively

correlated with [N] and [P] in needles and twigs of two-year-

old twigs (R2 = 0.78, 0.90, 0.78 and 0.31, respectively, all P < 0.05)

(Figure S1), indicating the wide range of [N] and [P] in twigs was

a significant predictor of cone number.
4 Discussion

Large amounts of mineral nutrients and carbohydrates are

consumed during a masting event (Kelly, 1994; Allen et al., 2017).

The plant life-history theory holds that reproduction and

vegetative growth compete for resources, so increased
Frontiers in Plant Science 07
reproductive effort leads to decreased vegetative growth (Wiley

and Helliker, 2012). Previous studies support this theory: trees

have lower secondary growth in masting than in non-masting

years (Vaast et al., 2005; Han et al., 2011), and fruit-bearing

branches grow less than branches without fruits (Han et al., 2011;

Miyazaki, 2013). However, this is not always the case (Sala et al.,

2012; Zhang and Yin, 2019). Contrary to our first hypothesis,

results show that the increase in biomass over the last stage of cone

maturation was significantly higher in reproductive branches than

in vegetative branches (Figure 4), denoting that cone development

did not limit the growth of reproductive branches. This

unexpected observation may be due to two reasons. First,

carbohydrates and mineral nutrients needed for cone

development come from vegetative branches (Miyazaki et al.,

2007; Zhang and Tanabe, 2008; Pasqualotto et al., 2019; Wu et al.,

2021), reducing their carbohydrate concentrations and growth.

Second, cones could be only formed in the branches storing larger

amounts of resources and thus growing (and reproducing) more

(Ichie et al., 2005; Yasumura et al., 2006). The latter hypothesis

would explain the correlation between cone number and branch

dimensions observed in a previous study (Yin et al., 2019) and

between cone number and branch diameter, N and P content

observed here (Figure 7). Consistent with this rationale, previous

studies in Nyssa sylvatica (Cipollini and Stiles, 1991) and

Rhododendron lapponicum (Karlsson, 1994) have reported

higher nutrient concentrations in reproductive branches before

the masting. In the long term, there may be a delayed cost of

reproduction, which does not affect the vegetative growth of

reproductive branches in the short term, but reduces it during

the following seasons (Newell, 1991; Sánchez-Humanes et al.,

2011; Sala et al., 2012). Delayed costs of masting in terms of

vegetative growth have been observed in Betula grossa (Ishihara

and Kikuzawa, 2009), Acer barbinerve (Zhao et al., 2019) and P.

albicaulis (Sala et al., 2012).

Because vegetative growth and cone development overlap

during the growing season, our second hypothesis anticipated

that cone maturation would reduce [N] and [P] in vegetative

tissues (needle, phloem and xylem) of reproductive branches to a

greater extent than in vegetative ones. Accordingly, [N] and [P]

in vegetative tissues of reproductive branches were significantly

lower, with the only exception being needle [P] in one-year-old

branches (Figure 2). A combination of the following factors are

likely responsible for this observation: 1) active remobilization of

N and P to cones from vegetative tissues, 2) a dilution of N and P

as reproductive branches grow bigger (than vegetative branches)

and, finally, 3) competition between cones and vegetative tissues

for N and P coming from the soil (Han et al., 2008; Tanentzap

et al., 2012). Similarly, the high N sink strength of seeds explains

N depletion in vegetative structures of fruit-bearing branches in

species such as Fagus sylvatica and Taxus baccata (Han et al.,

2011; Nowak-Dyjeta et al., 2017).

In line with our third hypothesis, we expected a progressive

depletion of N and P in vegetative tissues as cones mature. In
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FIGURE 4

Biomass of needle (A, B), phloem (C, D) and xylem (E, F) of one- (A, C, E) and two-year-old (B, D, F) twigs of Pinus koraiensis at five sampling
times (May, June, July, August and September, corresponding to DOYs 128, 172, 204, 237 and 258, respectively). One-year-old twig biomass
was nil in May. Bars and arrows represent the mean and corresponding standard error from five trees, respectively. Asterisks indicate significant
differences between branch types for a given harvest time; *, ** and *** indicate significance levels at P < 0.05, 0.01 and 0.001, respectively.
Different lowercase letters indicate significant differences between harvest times for a given branch type.
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effect, the [N] and [P] in the phloem, xylem and needles were

generally lower during mid-summer than in spring and, less so,

in late summer (Figures 2, 3). The summer decline in [N] and

[P] coincides with the fast shoot and cone growth, as similarly

observed in Quercus ilex and Q. faginea (Silla and Escudero,

2003). These results suggest that N and P invested in shoot and

cone growth exceed their root uptake rate, so N and P are being
Frontiers in Plant Science 09
depleted at this time (Dickson, 1989; Han et al., 2008; Nowak-

Dyjeta et al., 2017). At the end of the growing season, when the

nutrient demand relaxes, N and P pools are expected to

replenish. Deciduous species tend to store nutrients in the

branches (Tian et al., 2003), trunk (Cooke and Weih, 2005)

and roots (Millard and Grelet, 2010), while evergreen species

such as Korean pine primarily store nutrients in the foliage and
A B

D

E

C

FIGURE 5

Width (A), length (B), individual biomass (C), nitrogen concentration ([N]; D) and phosphorus concentration ([P]; E) in cones of Pinus koraiensis
at five sampling times (May, June, July, August and September, corresponding to DOYs 128, 172, 204, 237 and 258, respectively). Bars and
arrows represent the mean and corresponding standard error from five trees, respectively. Different lowercase letters indicate significant
differences among sampling times.
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branches (Nambiar and Fife, 1987; Millard et al., 2001;

Rodrıǵuez-Calcerrada et al., 2012). Consistently, when cones

were mature, and branches had stopped growing in the last

sampling date during late summer, [N] and [P] tended to

recover in the phloem, xylem and needles, with more marked

increases in vegetative branches (Figure 3), where the nutrient

sink strength for reproductive purposes is absent. Moreover, the

complete recovery of end-of-season [N] and [P] to spring values

in one-year-old needles (in contrast to the xylem) suggests that

current-year xylem replaces the needles in supplying the cones

with N and P during maturation (Figure 2).

Nitrogen and P are essential components of proteins and

nucleic acids required by reproductive organs, which underlies

growing evidence showing that N and P depletion after a masting

year prevents reproduction during subsequent years (Sala et al.,

2012; Han et al., 2014; Yin et al., 2019; Wu et al., 2022). The

preferential allocation of nutrients to cone development and seed

ripening in one-year-old reproductive branches was evidenced in
Frontiers in Plant Science 10
Figure 6: cone N and P content at the end of the growing season

accounted for 73.5% and 51.6% of the total nutrient content of

current-year branches, respectively. The progressive increase in N

and P content was related to a parallel increase in cone size, while

[N] and [P] were relatively constant as cones developed. Only in

spring (first sampling date), before the initial, fast increase in cone

size, were [N] and [P] significantly higher than in the rest of

sampling dates. This observation reflects a constant, significant

mobilization of nutrients from the soil and storage organs to cones

to maintain a stable nutrient status (Nowak-Dyjeta et al., 2017;

Wu et al., 2022). Reproductive structures are also nutrient-

enriched relative to vegetative biomass in other tree species such

as F. sylvatica (Han et al., 2011), Q. ilex and Q. faginea (Alla et al.,

2012), and P. albicaulis (Sala et al., 2012). Compared to cones,

poorer N and P allocation to needles and twig phloem and xylem

might hinder flower bud primordial development in subsequent

years, as reported in Fagus crenata (Han et al., 2008) and P.

albicaulis (Sala et al., 2012). The branches require a period of
A B

DC

FIGURE 6

Total nitrogen (N; A, B) and phosphorus (P; C, D) content in cone, needle, phloem and xylem of one-year-old twigs of reproductive (A, C) and
vegetative (B, D) branches of Pinus koraiensis. The area between lines with different colours indicates the nutrient content in needles, phloem,
xylem and cones. Values shown are mean ± SE averaged from five trees. Note that there were no one-year-old twigs in May when branches
were sampled.
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FIGURE 7

The relationship between cone number and twig length (A), twig diameter (B), nitrogen (N; C, E) and phosphorus (P; D, F) content in needles
(C, D) and twigs (E, F) of two-year-old reproductive branches of Pinus koraiensis. Data of cone number, twig size, N and P content were
obtained from the last sampling campaign (September; five trees × three twigs). Note that some panels show less than 15 points due to
overlaying data. Note the different scales for x-axes among panels.
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replenishment of nutrients after the mast event, which is

consistent with rare reproductive events of P. koraiensis (Smaill

et al., 2011; Sala et al., 2012). Taken together, our results denote

that the cone yield of Korean pine would substantially benefit

from species-specific designs of fertilization procedures.
5 Conclusions

The results of this study evidence that cone growth occurs at the

expense of nutrients primarily stored in needles and twigs of

reproductive branches of P. koraiensis. Needle, phloem and xylem

[N] and [P] in one- and two-year-old twigs of reproductive

branches were lower than those of vegetative branches. However,

twig growth was higher in reproductive than in vegetative branches,

suggesting that more vigorous branches tend to produce a larger

amount of cones. In fact, the number of cones increased with

increasing diameter, N and P content of reproductive branches,

with more than half of the N and P in reproductive branches being

allocated to the cones. These results suggest that cone development

demands a high nutrient cost. Thus, nutrients may need to

cumulate to certain levels before another mast event occurs.

These results can guide rational fertilization of P. koraiensis

plantations. Further studies should test whether periodic

fertilization promotes nutrient storage and reduces the intervals

between masting events.
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