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The TIR1/AFB family of proteins is a group of functionally diverse auxin

receptors that are only found in plants. TIR1/AFB family members are

characterized by a conserved N-terminal F-box domain followed by 18

leucine-rich repeats. In the past few decades, extensive research has been

conducted on the role of these proteins in regulating plant development,

metabolism, and responses to abiotic and biotic stress. In this review, we focus

on TIR1/AFB proteins that play crucial roles in plant responses to diverse abiotic

and biotic stress. We highlight studies that have shed light on the mechanisms

by which TIR1/AFB proteins are regulated at the transcriptional and post-

transcriptional as well as the downstream in abiotic or biotic stress pathways

regulated by the TIR1/AFB family.
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Introduction

Transport Inhibitor Response 1 and Auxin-Signaling F-box (TIR1/AFB) proteins are

plant-specific receptors that mediate diverse responses to the plant hormone auxin

(Dharmasiri et al., 2005; Parry et al., 2009). Upon binding indole-3-acetic acid (IAA), or

other hormones in the auxin class, TIR1/AFB proteins form a co-receptor complex with

Auxin/IAA (Aux/IAA) proteins (Salehin et al., 2015). Formation of this co-receptor

complex results in ubiquitination and degradation of Aux/IAA proteins via the 26S

proteasome (Pan et al., 2009; Salehin et al., 2015; Todd et al., 2020). Degradation of Aux/

IAA proteins releases their inhibition of auxin response factors (ARFs), which are

transcriptional regulators of auxin-responsive genes such as Aux/IAA (Strader and Zhao,

2016; Yu et al., 2022). In this way, TIR1/AFB proteins serve as positive regulators of

downstream auxin-responsive pathways upon the perception of auxin (Quint and Gray,

2006; Dezfulian et al., 2016; Takato et al., 2017).
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The first TIR1/AFB gene identified and shown to play an

important role in auxin-regulated processes, such as hypocotyl

elongation and lateral root formation, was TIR1 in Arabidopsis

(Ruegger et al., 1998). Subsequent studies identified TIR1/AFB

family members encoded in the genomes of algae, mosses, and

spermatophytes in addition to all land plants (Parry et al., 2009).

The large number of TIR1/AFB genes encoded in plant genomes

has allowed for functional redundancy and neofunctionalization

to evolve (Prigge et al., 2020). It is now clear that TIR1/AFB

proteins contribute to biological processes including regulation

of primary and secondary metabolism (Gomes and Scortecci,

2021), seed and root development (Pan et al., 2009; Ozga et al.,

2022), cell proliferation (Rast-Somssich et al., 2017), immunity

and stress responses in plants (Iglesias et al., 2010). In this

review, we highlight our current understanding of the structure

and function of TIR1/AFB family members with an emphasis on

possible mechanisms by which these proteins regulate abiotic

and biotic stress responses.
Structural and functional
specialization of TIR1/AFB family
members in Arabidopsis

Based on comparisons of land plant genomes sequenced to-

date, TIR1/AFB proteins can be divided into four phylogenetic

clades: TIR1/AFB1, AFB2/3, AFB4/5, and AFB6. Arabidopsis

contains six TIR1/AFB proteins from three out of the four

clades: TIR1, AFB1, AFB2, AFB3, AFB4, and AFB5 (Shimizu-

Mitao and Kakimoto, 2014). AFB6 orthologs are noticeably absent

in the core Brassicales species such as Arabidopsis as well as

Poaceae species such as rice and maize (Prigge et al., 2020).

The specific functions of TIR1/AFB family members vary

considerably across and within clades. For instance, AFB4 and
Frontiers in Plant Science 02
AFB5 are in the same clade yet exhibit distinct specificities for

auxin (Prigge et al., 2016). Yeast two-hybrid and immunoblot

assays demonstrated that IAA3 binds TIR1, AFB1, and AFB2 with

different affinities but binds AFB5 very poorly at 0.1 mM IAA.

Distinct motifs are necessary for the assembly of TIR1/AFB-IAA

coreceptor complexes (Villalobos et al., 2012). Here, we generated

a phylogenetic tree containing all TIR1/AFB family members

from Arabidopsis and used Motif ENRichment Analysis

(MEME) to identify conserved protein motifs (Figure 1). We

believe the unique motifs present in TIR1/AFB proteins may

explain their preferential binding of certain IAA proteins

over others.

Our analysis showed that Arabidopsis TIR1/AFB proteins

contain different conserved motifs. These proteins consist of a

single F-box domain and eighteen LRR repeats (Prigge et al.,

2020). F-box domains are critical for the regulated degradation

of cellular proteins (Jain et al., 2007) while LRRs belong to an

archaic procaryal protein architecture that is widely involved in

protein-protein interactions (Martin et al., 2020). We found that

different TIR1/AFB family members contain unique motifs.

Motifs 1 and 12 are only present in AFB4 and AFB5, motifs

11 and 20 are only present in AFB2 and AFB3, motif 14 is only

present in AFB3, and motif 9 is only found in AFB4. The

presence and absence of certain motifs indicates that TIR1/

AFBs may have different functions.

Synthetic auxin herbicides are one of the most potent man-

made abiotic stresses that plants are subjected to (Gorina et al.,

2022). Picloram, 2,4-dichlorophenoxy acetic acid (2,4-D), and

dicamba are three of the most widely used chemical classes of

auxin. These herbicides function by binding to a hydrophobic

pocket within TIR1/AFB proteins (Meng et al., 2008; Guo et al.,

2021). Auxin binding TIR1 by filling in the bottom of TIR1 pocket,

which floor is made up of several key residues containing His 78,

Arg 403, Ser 438, Ser 462, and Glu 487 as shown in (Figure 2) (Guo

et al., 2021). Distinct amino acid residues exist in the AFB4/5 clade
FIGURE 1

Neighbor-joining phylogenetic tree (left) and conserved motif (right) analysis of TIR1/AFBs in Arabidopsis.
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compared with the TIR1/AFB1 and AFB2/3 clades at His 78 and

Ser 438: histidine is replaced by arginine and serine is replaced by

alanine. These differences demonstrate the diversity of TIR1/AFB

members and suggest a structural reason for their specialized

responses to different synthetic auxin herbicides.

Studies on Arabidopsismutants have demonstrated that some

members of the TIR1/AFB family are responsible for the

recognition of specific auxin herbicides (Grossmann et al.,

1996). For instance, the Arabidopsis afb4/5 mutant is resistant

to picloram whereas other tir1/afb mutants are still susceptible

(Walsh et al., 2006). The AFB4 protein itself was shown to be a

target of picloram based on in vitro binding assays (Prigge et al.,

2016). TIR1 has been shown to be a receptor for 2,4-D and

induces changes in gene expression when plants are treated with

low concentrations of 2,4-D (Sheedy et al., 2006; Walsh et al.,

2006). As anticipated, the Arabidopsis tir1 mutant is resistant to

2,4-D whereas AFB1, a member of the same clade as TIR1, has not

been implicated in 2,4-D resistance (Gleason et al., 2011).

In vitro assays demonstrated that TIR1 and AFB5 can bind to

dicamba (de Figueiredo et al., 2022). Of all the TIR1/AFB family

members in Arabidopsis, only the tir1-1 and afb5 mutants were

shown to be resistant to dicamba (Gleason et al., 2011). No studies

have yet implicated the AFB2/3 subgroup in auxin herbicide

sensitivity, which further demonstrates the structural and

functional specialization that exists in the TIR1/AFB family.

However, studies on the rice mutants Osabf2 and Osabf3

showed OsAFB2/3 genes are involved in the response to 2,4-D

resistance (Guo et al., 2021). These results suggest that more

studies should focus on the function of the AFB2/3 subgroup in

herbicide susceptibility.
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The role of TIR1/AFB family
members in abiotic and
biotic stress responses

Plants are sessile organisms challenged by a variety of abiotic

and biotic stresses from which they cannot escape. Abiotic stresses

are caused by environmental conditions such as drought, high

salinity, heat, and cold whereas biotic stresses are caused by living

organisms such as bacteria, fungi, viruses, nematodes, and insects

(Verma et al., 2016; Burns et al., 2018). Both abiotic and biotic

stress induce reactive oxygen species (ROS) production in the

form of hydroxyl radicals, hydrogen peroxide, and superoxide

anions (Singh et al., 2020). At low concentrations, many ROS

species function as signaling molecules in stress tolerance

pathways. However, elevated and sustained levels of ROS can

become toxic and lead to nutrient loss, resulting in metabolic

disruption, abnormal hormone metabolism (Rejeb et al., 2014;

Muchate et al., 2016), and growth inhibition (Gimenez et al.,

2018). Auxin plays an indispensable role in how plants rapidly

adapt to abiotic and biotic stress. As key auxin receptors in plants,

the TIR1/AFB family has been shown to be essential for abiotic

and biotic stress responses mediated by auxin.
Drought stress

Drought is an important abiotic stress that negatively

impacts plant development and results in reduced crop yield

and quality. The expression of many TIR1/AFB genes is
FIGURE 2

Multiple alignment of TIR1/AFB proteins in Arabidopsis adapted from Fu Guo et al. (Guo et al., 2021). Residues highlighted in gray are present in
more than 50% of aligned sequences. The key residues making up the active site of the TIR1 pocket are highlighted by red boxes. Accession
numbers of the genes encoding the proteins for the sequence alignment are as follows: TIR1 (At3g62980), AFB1 (At4g03190), AFB2 (At3g26810),
AFB3 (At1g12820), AFB4 (At4g24390), and AFB5 (At5g49980).
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influenced by drought stress, which suggests the TIR1/AFB

family may function in the drought tolerance pathway (Shu

et al., 2015; Sharma et al., 2018; Benny et al., 2019). Over-

expression and transcriptomic studies in Populus trichocarpa,

Arabidopsis thaliana, Oryza sativa, Zea mays, Solanum

tuberosum, Triticum aestivum, and Agrostis stolonifera have

demonstrated that many TIR1/AFB genes are responsive to

drought (Chen et al., 2012; Shu et al., 2015; Dalal et al., 2018;

Sharma et al., 2018; Benny et al., 2019; Zhao et al., 2019). Relative

water content (RWC) is used as a measure of plant water status

and is a meaningful index of water stress tolerance (Lo Gullo and

Salleo, 1988). PtrFBL1 is a TIR1 homolog in Populus trichocarpa.

Overexpression of PtrFBL1 in P. trichocarpa resulted in higher

plant RWC values upon drought stress compared with non-

transgenic plants (Shu et al., 2015).

Gene expression analyses suggest that some TIR1/AFB family

members participate in drought responses in Arabidopsis. For

example, TIR1 and AFB2 are required for the inhibition of lateral

root growth by ABA or osmotic stress under drought stress (Chen

et al., 2012). In seedling studies, TIR1 was up-regulated under

drought stress as determined by RNA-Seq (Benny et al., 2019). In

addition to the well-studied Arabidopsis TIR1/AFB family, several

TIR1/AFB proteins have also been implicated in drought

responses in other species by transcriptional analysis. In rice,

TIR1 andAFB2 expression levels were significantly downregulated

in spikelets upon drought stress (Sharma et al., 2018). In maize

and the Solanaceous crops tomato and potato, RNA-Seq results

demonstrated that TIR1 expression increased in seedlings exposed

to drought stress (Benny et al., 2019). Drought-stressed roots of

the wheat genotype viz. Raj3765 had increased expression of

AFB2, suggesting AFB2 may play a key role in response to

drought (Dalal et al., 2018). Creeping bentgrass (Agrostis

stolonifera L.) overexpressing the rice pri-miR393a exhibited

improved tolerance to drought stress due to targeting and

suppression of AsAFB2 and AsTIR1 expression (Zhao et al., 2019).
Salt stress

Salt stress is a major environmental factor limiting plant

growth and productivity. Salt stress can lead to ionic stress,

osmotic stress, and secondary stresses such as oxidative stress

(Yang and Guo, 2018). Mutant, overexpression, and ectopic

expression studies of TIR1/AFB genes in Arabidopsis have

uncovered a key role for some of these genes in salt stress

tolerance. Expression of AtNAC2, which is typically induced by

salt stress, is unresponsive to salt stress in the tir1-1 mutant (He

et al., 2005). An Arabidopsis tir1afb2 double mutant exhibited

enhanced tolerance against salt stress compared with wild-type

plants as determined by a higher germination rate, greater root

elongation, and higher chlorophyll content (Iglesias et al., 2010).

The cucumber (Cucumis sativus L.) CsTIR1 and CsAFB1

proteins share 78% and 76% amino acid identity with their
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Arabidopsis homologs, respectively. However, ectopic

overexpression of CsTIR1 and CsAFB1 in Arabidopsis led to

higher germination and plant survival rates under salt stress

(Chen et al., 2017). Over-expression of the Arabidopsis AFB3 in

Arabidopsis resulted in better primary and lateral root

development and higher germination rates upon salt stress

compared with the wild type (Garrido-Vargas et al., 2020).

It certainly seems contradictory that a tir1afb2 double mutant

and overexpression of AFB3 or CsTIR1/CsAFB1 both enhance salt

stress resistance in Arabidopsis. This may be explained by increased

activity of antioxidant enzymes in the tir1afb2 mutant under salt

stress. Higher levels of ABA are also detected in tir1afb2 compared

with wild-type plants (Iglesias et al., 2010) while more lateral roots

are found in Arabidopsis transgenic lines overexpressing AFB3,

CsTIR1, or CsAFB1 (Chen et al., 2017; Garrido-Vargas et al., 2020).

This may contribute to differential participation of TIR1/AFB

family members and their tissue-specific functions (Iglesias et al.,

2010; Garrido-Vargas et al., 2020).

In addition to numerous studies in Arabidopsis, TIR1/AFB

proteins have also been implicated in salt stress responses in

other plant species. Overexpression of maize ZmAFB2 in

tobacco led to enhanced salt tolerance (Yang et al., 2013).

Eighteen TIR1/AFB genes have been identified in Brassica

juncea var. tumida with qPCR analysis, which showed that

some BjuTIR1/AFB genes are repressed by salt treatment (Cai

et al., 2019). Degradome and miRNA sequencing analysis

between salt-tolerant and salt-sensitive Fraxinus velutina Torr.

tree cuttings demonstrated that reduced expression of TIR1 by

miR393a explains the enhanced salt stress tolerance of this tree

species (Liu JN et al., 2022). Interestingly, AsAFB2 and AsTIR1

from creeping bentgrass may serve as a link between drought

and salt stress response pathways, both pathways rely on ionic

and osmotic homeostasis signaling (Zhu, 2002; Zhao et al.,

2019), and AsAFB2 and AsTIR1 have been implicated

involving in this process (Zhao et al., 2019). It is thus plausible

that some TIR1/AFB family members may serve as key

regulators of plant responses to multiple abiotic stresses.
Temperature stress

Temperature is one of the most important environmental

signals for plants. High and low temperatures have a variety of

effects that affect plant growth and development profoundly

(Sakamoto and Kimura, 2018). Expression data from different

plant species indicates that members of the TIR1/AFB family

participate in plant responses to temperature stress. For example,

the Arabidopsis tir1-1 mutant displays defective hypocotyl

elongation at elevated temperatures (Gray et al., 2003).

Expression of TIR1/AFB2 in rice spikelets was significantly

downregulated by heat stress, and the rice protein OsAFB6 can

suppress flowering, which is thought to be a temperature sensor

(He et al., 2018; Sharma et al., 2018). Finally, repression of TIR1
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expression in wheat impairs pollen exine formation in male

sterility under cold stress (Liu YJ et al., 2022).
Phosphorus and nitrate stress

Phosphorus (Pi) and nitrate (a main source of inorganic

nitrogen) are crucial nutrients for crop growth and development

that are mainly absorbed from soil by roots. Phosphorous deficiency

and excessive nitrate result in retardation of plant growth,

development, and productivity (Koide et al., 1999; Zhang et al.,

2017). The first TIR1/AFB protein found to be involved in Pi and

nitrate availability is TIR1 fromArabidopsis, which was shown to be

involved in pattern alterations of lateral root formation and

emergence in response to phosphate availability (Perez-Torres

et al., 2008). The expression level of TIR1 is also induced under

low Pi conditions (Mayzlish-Gat et al., 2012).

Regulation of root system architecture by external nitrate is

mediated by AFB3 in Arabidopsis as demonstrated by afb3

insertional mutants (Vidal et al., 2010). Integrated genomics,

bioinformatics, and molecular genetics revealed that the

expression of genes downstream of AFB3 are influenced by

external nitrate with the NAC4 transcription factor serving as

a key regulator of this network (Vidal et al., 2013). AFB3-

mediated activation of the two independent pathways in

response to nitrate suggests that AFB3 is a unique nitrate

response factor in Arabidopsis (Vidal et al., 2010). TIR1/AFB

family members were also found to be key players in response to

nitrate in other plant species. In Lotus japonicus, expression of

LjAFB6 is induced in response to exogenous nitrate (Rogato

et al., 2021). These studies indicate that AFB3 in Arabidopsis and

LjAFB6 in L. japonicus are potentially involved in plant

responses to stress caused by excessive nitrate.
Herbicide stress

Herbicides are small molecules that inhibit specific

molecular target sites within plant biochemical pathways to

affect physiological processes. Inhibition of these sites often

has catastrophic consequences that are lethal to the plant

(Dayan et al. , 2010). Synthetic auxin, triazine, and

organophosphorus herbicides are commonly used in

agriculture to control weeds (Todd et al., 2020; Bigner et al.,

2021; Striegel et al., 2021). Multiple members of the TIR1/AFB

family are involved in susceptibility to synthetic auxin

herbicides. Studies on Arabidopsis TIR1/AFB mutants have

revealed a role for these genes in response to classical auxin

herbicides. Recently, the afb5mutant was found to be resistant to

a new auxin herbicide, halauxifen-methyl, which preferentially

binds to AFB5 (Xu et al., 2022).

TIR1/AFB proteins also play a key role in the response to

auxin herbicides in other plant species. In rice, CRISPR/Cas9
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genome editing was used to generate Ostir1/Osafb2/Osafb3/

Osafb4/Osafb5 mutants that was resistant to 2,4-D. Osafb4

mutants are highly resistant to the herbicide picloram (Guo

et al., 2021). Expression of TIR1 in wheat is clearly higher in

Triticum aestivum than in Aegilops tauschii, resulting in less

sensitive to the herbicide 2,4-D (Yu et al., 2021).
Emerging evidence implicates TIR1/AFB
proteins in metal stress tolerance and
boron deficiency

In addition to the stresses described above, emerging

evidence suggests that TIR1/AFB proteins may be involved in

plant responses to metal, and boron deficiency. Aluminum

toxicity inhibits plant growth and development (Liu HB et al.,

2022). Inhibition of root morphogenesis under aluminum stress

decreased in Arabidopsis tir1 single and tir1 afb2 afb3 triple

mutants. Other genes in the auxin signaling pathway, such as

ARFs, were also shown to be involved in aluminum sensitivity

(Ruiz-Herrera and Lopez-Bucio, 2013). MicroRNAs targeting

and mediating the cleavage of TIR1/AFB transcripts were shown

to be essential for the aluminum stress response in Arabidopsis

(Mendoza-Soto et al., 2012). These results suggest TIR1, AFB2,

AFB3, and downstream auxin-responsive genes play an

important role in aluminum sensitivity in Arabidopsis.

Boron is an abundant and essential micronutrient required

by plants with deficiencies causing impaired plant growth (Park

et al., 2005; Duran et al., 2018). Boron deficiency is positively

correlated with the expression of many miRNAs. Gene

expression analysis indicates that a subgroup of miRNAs

regulate TIR1/AFB expression in Arabidopsis when boron is

limited. This leads to decreased expression of TIR1, AFB1, and

AFB2 but increased expression of AFB3 (Lu et al., 2015). Other

reports have demonstrated that application of a-(phenylethyl-2-
oxo)-indole-3-acetic acid (PEO-IAA), a synthetic antagonist of

TIR1, could partially or fully restore cell elongation in boron

deficient roots (Camacho-Cristobal et al., 2015).

Biotic stress from pathogenic
bacteria, fungi, viruses, nematodes,
and phytophagous insects

Biotic stresses are mainly caused by pathogenic species of

bacteria, fungi, viruses, nematodes, and insects that seek to

acquire nutrients from their plant hosts (Jagdale and Joshi, 2019;

Bhar et al., 2022). Damages caused by diseases and herbivory reduce

crop yield and quality by affecting photosynthesis and secondary

metabolite production in the host plant (Vo et al., 2021). Plants

have evolved numerous strategies to defend themselves against

these pathogens. These strategies rely on coordinated gene, protein,

and hormone regulation to allow plants to sense and adapt to biotic
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stresses (Atkinson and Urwin, 2012). Auxin is a critical signaling

component of the plant response to biotic stress, which suggests

that TIR1/AFB proteins have a role to play as well (Ghanashyam

and Jain, 2009; Bouzroud et al., 2018; Gidhi et al., 2022).

Plant pathogenic bacteria cause symptoms such as spots with

yellow halos or mucus-like materials, which negatively impact

agricultural production in many important crops (Zimaro et al.,

2011). The tomato bacterial pathogen Pseudomonas syringae

DC3000 (PtoDC3000) produces IAA to promote PtoDC3000

growth in plant tissues through suppression of SA-mediated host

defenses (Wildermuth et al., 2001; McClerklin et al., 2018;

Djami-Tchatchou et al., 2020). An Arabidopsis tir1afb1 afb4

afb5 quadruple-mutant exhibited elevated IAA levels and

reduced SA levels compared with WT (Djami-Tchatchou

et al., 2020). An analysis of a tir1 single mutant and tir1 afb2

afb3 triple mutant revealed that these TIR1/AFB family

members are targeted by diketopiperazines derived from

Pseudomonas aeruginosa during colonization of Arabidopsis

(Ortiz-Castro et al. , 2011). The planar structure of

diketopiperazines likely fits into the same pocket of TIR1 that

synthetic auxins bind (Ortiz-Castro et al., 2011).

Fungal plant pathogens are ubiquitous, highly diverse, and can

cause severe damage to many important crops (Termorshuizen,

2016). The Arabidopsis afb1 and afb3mutants are partially resistant

to the soilborne root pathogen Verticillium dahlia. Up-regulation of

pathogen-related gene 1 (PR1) in afb1 and pathogen defense factor

1.2 (PDF1.2) in afb3 may be responsible for afb1- and afb3-

mediated resistance, respectively (Fousia et al., 2018). Fusarium

head blight (FHB) of wheat, caused by Fusarium graminearum

Schwabe, results in large annual yield losses in wheat production

regions. RNAi-mediated knockdown of the TaTIR1 gene led to

increased FHB resistance (Su et al., 2021). Gene expression studies

also revealed that TaTIR1 expression is highest at 24 and 48 h post-

inoculation with the leaf rust pathogen Puccinia triticina Eriks

(Gidhi et al., 2022). A maize TIR1-like gene is involved in the Zma-

miR393b-mediated response to Rhizoctonia solani infection of leaf

sheaths (Luo et al., 2014). Eighteen TIR1/AFB genes have been

identified in Brassica juncea var. tumida using genome-wide

analysis. qPCR analysis demonstrated that the expression of some

BjuTIR1/AFB genes is influenced by Plasmodiophora brassicae

infection (Cai et al., 2019).

Although no involvement in biotic stress has been reported

for soybean TIR1/AFB proteins, TIR1/AFB proteins have been

implicated in root nodulation induced by the nitrogen-fixing

bacterium Bradyrhizobium japonicum (Cai et al., 2017).

Overexpression of GmTIR1 in soybean significantly increased

the number of inflection foci and nodules while GmAFB3A may

also play a minor role in this process (Cai et al., 2017).

Few studies to-date have implicated the TIR1/AFB family in

plant defense responses against viruses. However, one study has

shown that the rice dwarf virus (RDV) capsid protein P2 binds

OsIAA10 and blocks the interaction between OsIAA10 and

OsTIR1. This prevents 26S proteasome-mediated degradation of
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OsIAA10, resulting in plant dwarfism, increased tiller number,

and short crown roots in infected plants (Jin et al., 2016).

Nematodes are pathogens of Arabidopsis (Moradi et al.,

2021), apple (Fallahi et al., 1998), tomato (Khan and Khan,

1995), and wheat (Cortese et al., 2003), these species could move

through roots and be vector of some virus, caused root damage,

yield loss. The tomato Mi-1 gene confers isolate-specific

resistance against root-knot nematodes (Seah et al., 2007). Co-

localization of TIR1-like proteins with the Mi-1 protein was

observed (Seifi et al., 2011). TIR1-like transcript abundance in

roots and leaves of nematode-resistant tomato lines was lower

than in susceptible tomato lines, suggesting a possible role for

TIR1-like genes in nematode resistance (Seifi et al., 2011).

Feeding by phytophagous insects such as aphids leads to

reduced plant growth, reduced yield, water stress, dwarfism,

wilting, and transmission of economically important plant

viruses. In melon, genes like TIR1 and AFB2 are down-

regulated in response to aphid herbivory. Application of the

TIR1 inhibitor PEO-IAA to leaf discs resulted in significantly

decreased feeding by aphids, providing in vivo support for TIR1/

AFB in response to aphids (Sattar et al., 2016), suggested that

TIR1 may play a role in aphid resistance.
TIR1/AFB-regulated gene networks
in abiotic and biotic stress responses

In addition to the regulation of Aux/IAA genes, many other

proteins and genes regulated by TIR1/AFB family members have

been identified that act downstream of auxin perception. These studies

have contributed to our understanding of the mechanisms underlying

the function of TIR1/AFB proteins in abiotic and biotic stress. These

downstream genes and proteins include nascent polypeptide-associated

complex (NAC) family members, SA synthesis proteins, PR proteins,

PDF proteins and phosphorus transporters,

Auxin/indoleacetic acid (Aux/IAA) proteins play an

important regulatory role in plant development and stress

responses. TIR1/AFB proteins are essential regulators of the

expression of a large number of Aux/IAA genes (Gray, 2003).

For example, the rice Aux/IAA protein OsIAA20 mediates

abiotic stress tolerance in rice through the ABA pathway

(Zhang et al., 2021). Constitutive expression of OsIAA18 in

Arabidopsis led to improved salt and osmotic tolerance through

enhanced ABA biosynthesis and ROS scavenging (Wang et al.,

2021). The homeostatic expression of Aux/IAA is thought to be

one of the most important resistance mechanisms to auxin

herbicides mediated by TIR1/AFB proteins (Todd et al., 2020).

Aux/IAA proteins also play essential roles in response to

biotic stress. Silencing of GhIAA43 in cotton enhanced wilt

resistance and activated the expression of SA-related defense

genes (Su et al., 2022). Tobacco mosaic virus (TMV) replicase

proteins negatively regulate IAA26 through a ubiquitin-

mediated destabilization process to reduce TMV infection
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(Padmanabhan et al., 2005). The RDV capsid protein P2 can

bind OsIAA10 directly, which implicates OsIAA10 in the

defense response against RDV (Jin et al., 2016).

In addition to the Aux/IAA genes, many other stress-related

genes are also regulated by TIR1/AFB proteins in response to

abiotic and biotic stress. For example, the transcription factor

NAC4 is an important positive regulator downstream of the

AFB3 regulatory network, which plays an important role in the

regulation of nitrate uptake in Arabidopsis (Vidal et al., 2013). The

presence of a functional copy of NAC1 is required by the fungal

pathogen Alternaria alternata for full virulence in Arabidopsis

(Wang et al., 2020). NAC1 overexpression can restore lateral root

formation in the Arabidopsis tir1 mutant, whereas TIR1

overexpression results in increased NAC1 expression. These

results demonstrate that NAC1 acts downstream of and can be

positively regulated by TIR1 in Arabidopsis (Xie et al., 2000).

The SA-related genes PR1 and PDF1.2 are positive regulators of

plant disease resistance that are negatively regulated by TIR1/AFB.

A transcriptomic study in cotton demonstrated that knockdown of

GhTIR1 leads to a significant increase in the expression of SA-

related genes in response to Verticillium dahliae infection (Shi et al.,

2022). The Arabidopsis mutants afb1 and afb3 exhibit significantly

higher expression of both PR1 and PDF1.2 in response to

Verticillium dahliae infection (Fousia et al., 2018).

TIR1/AFB proteins act as mediators of low Pi uptake in

Arabidopsis (Perez-Torres et al., 2008; Perez Torres et al., 2009).

Pi deprivation increases the expression of TIR1 in Arabidopsis

seedlings (Perez-Torres et al., 2008). ARFwas regulated by TIR1/

AFB as described above. Knockout of OsARF12 enhanced the

expression of PHOSPHATE TRANSPORTER1(PHT1) genes

such as OsPHR2 in rice, suggesting that OsARF negatively

regulates the PHT1 gene family in rice (Wang et al., 2014).
Regulation of TIR1/AFB expression
and protein activity in response to
abiotic and biotic stress

Many TIR1/AFB genes are differentially expressed in response

to diverse abiotic or biotic stresses. Yet the underlying mechanism

of TIR1/AFB gene regulation remains unknown.

TIR1 expression is up-regulated or down-regulated in

Arabidopsis upon infection by plant pathogens such as

Verticillium dahlia and Botrytis cinerea (Llorente et al., 2008;

Fousia et al., 2018). Many plant pathogens manipulate host auxin

biosynthesis, inducing the degradation of AUX/IAA proteins

through TIR1-mediated ubiquitination to enable greater

infection (Wang et al., 2007). The Arabidopsis mutants afb1 and

afb3 have enhanced plant resistance against Verticillium dahlia.

However, the tir1-1mutant exhibits no increase in susceptibility to

Botrytis cinerea compared to wild-type Arabidopsis. These studies

indicate that TIR1/AFBs may be targeted by some pathogens.
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Plant-produced small molecules are key systemic

modulators of numerous biological pathways. Nitric oxide

(NO) is an important signaling molecule involved in

establishing resistance to plant stress. External NO represses

TIR1 expression and decreases Arabidopsis susceptibility to

Pseudomonas. syringae pv. tomato: a process believed to be

mediated by SA (Vitor et al., 2013). Hydrogen sulfide (H2S) is

a gaseous molecule involved in various responses to stress. H2S

negatively regulates the expression of TIR1, AFB1, AFB2, and

AFB3 in antibacterial resistance in Arabidopsis through a

miR393a/b-regulated mechanism (Shi et al., 2015).

While most abiotic and biotic stresses suppress the expression

of TIR1/AFB family members, some stresses can induce their

expression. In L. japonicus, LjAFB6 expression increased by 2.5-

fold after nitrate treatment (Rogato et al., 2021).Arabidopsis AFB3

was also found to be positively regulated by nitrate addition (Vidal

et al., 2010; Vidal et al., 2013). Infections of Plasmodiophora

brassicae in Brassica juncea var. tumida also induce the expression

of BjuTIR1/AFB and BjuTIR1 (Cai et al., 2019), but the

mechanism by which this process occurs is not yet clear.

Some members of the TIR1/AFB family involved in abiotic or

biotic stress responses are known targets of small RNAs. One of the

most well-studied small RNAs shown to target and repress TIR1/

AFB transcripts is MicroRNA393 (miR393) (Navarro et al., 2006).

In Arabidopsis, miR393 directly targets TIR1, AFB1, AFB2, and

AFB2 transcripts in response to abiotic stress (Vidal et al., 2010;

Chen et al., 2012; Iglesias et al., 2014). Regulation of AFB3 by

miR393 represents a unique nitrate-responsive module that is

induced by nitrate and repressed by nitrogen metabolites in

Arabidopsis (Vidal et al., 2010). Studies also indicate that miR393

negatively regulates TIR1, AFB2, and AFB3 in response to pathogen

challenge in several plant species (Navarro et al., 2006; Zhang et al.,

2019; Shi et al., 2022). Though studies indicate that miR393

negatively regulates TIR1 expression at the posttranscriptional

level (Parry et al., 2009), the relationship between miR393 and

TIR1/AFB transcripts needs to be investigated further.

In addition to regulated gene expression or posttranscriptional

level, TIR1/AFB proteins are also regulated post-translationally by

other proteins. The Arabidopsis TIR1 protein is stabilized by a

complex consisting of heat shock protein 90 (HSP90) and

Suppressor of G2 allele of skp1 (SGT1b), which itself is an HSP90

co‐chaperone, co-immunoprecipitation analyses further validated

that HSP90 interacted with TIR1 (Watanabe et al., 2016; Munoz

et al., 2022). So far, no other factors were found to positively or

negatively regulate TIR1/AFB proteins at post-translational level

under stress. Therefore, future study should explore factors that

regulate or interact with TIR1/AFB proteins.
Conclusions and perspectives

Phylogenetic, structural, and functional studies have

revealed that there are many homologs of TIR1/AFB proteins
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TABLE 1 TIR1/AFB proteins involved in abiotic and biotic stress in plants.

Plant species Name Subfamily stress reference

Arabidopsis (Arabidopsis thaliana) AtTIR1 TIR1/AFB1 salt (Chen et al., 2015)

AtAFB2 AFB2/3 Salt (Iglesias et al., 2010)

AtAFB3 AFB2/3 Salt (Iglesias et al., 2010)

AtTIR1 TIR1/AFB1 Temperature (Wang et al., 2016)

AtTIR1 TIR1/AFB1 Drought (Chen et al., 2012)

AtAFB2 AFB2/3 Drought (Benny et al., 2019)

AtTIR1 TIR1/AFB1 Low Pi (Perez-Torres et al., 2008; Mayzlish-Gat et al., 2012)

AtAFB3 AFB2/3 Nitrate (Vidal et al., 2010; Vidal et al., 2013)

AtTIR1 TIR1/AFB1 Herbicide (Sheedy et al., 2006; Walsh et al., 2006; Gleason et al.,
2011)

AtAFB4 AFB4/5 Herbicide (Gleason et al., 2011)

AtAFB5 AFB4/5 Herbicide (Gleason et al., 2011; Xu et al., 2022)

AtTIR1 TIR1/AFB1 Aluminum (Ruiz-Herrera and Lopez-Bucio, 2013)

AtAFB2 AFB2/3 Aluminum (Ruiz-Herrera and Lopez-Bucio, 2013)

AtAFB3 AFB2/3 Aluminum (Ruiz-Herrera and Lopez-Bucio, 2013)

At TIR1 TIR1/AFB1 Boron
deficiency

(Camacho-Cristobal et al., 2015; Lu et al., 2015)

AtTIR1/AFB1/AFB4/
AFB5

TIR1/AFB1, AFB4/
5

bacterium (Djami-Tchatchou et al., 2020)

AtAFB1 TIR1/AFB1 Fungi (Fousia et al., 2018)

AtAFB3 AFB2/3 Fungi (Fousia et al., 2018)

AtTIR1 TIR1/AFB1 Fungi (Ortiz-Castro et al., 2011)

AtTIR1/AFB2/AFB3 TIR1/AFB Fungi (Ortiz-Castro et al., 2011)

Rice (Oryza sativa) OsTIR1 TIR1/AFB1 Salt (Xia et al., 2012)

OsAFB2 AFB2/3 Salt (Xia et al., 2012)

OsAFB2 AFB2/3 Drought (Xia et al., 2012; Sharma et al., 2018)

OsTIR1 TIR1/AFB1 Drought (Xia et al., 2012; Sharma et al., 2018)

OsTIR1 TIR1/AFB1 Temperature (Sharma et al., 2018)

OsAFB2 AFB2/3 Temperature (Sharma et al., 2018)

OsAFB6 AFB6 Temperature (He et al., 2018)

OsTIR1 TIR1/AFB1 Herbicide (Guo et al., 2021)

OsAFB2 AFB2/3 Herbicide (Guo et al., 2021)

OsAFB3 AFB2/3 Herbicide (Guo et al., 2021)

OsAFB4 AFB4/5 Herbicide (Guo et al., 2021)

OsAFB5 AFB4/5 Herbicide (Guo et al., 2021)

OsTIR1 TIR1/AFB1 Virus (Jin et al., 2016)

Wheat (Triticum aestivum) TaAFB2 AFB2/3 Drought (Dalal et al., 2018)

TaTIR1 TIR1/AFB1 Temperature (Liu Y. J. et al., 2022)

TaTIR1 TIR1/AFB1 Herbicide (Yu et al., 2021)

TaTIR1 TIR1/AFB1 Fungi (Su et al., 2021)

TaTIR1 TIR1/AFB1 Fungi (Gidhi et al., 2022)

Maize (Zea mays) ZmAFB2 AFB2/3 Salt (Yang et al., 2013)

ZmTIR1 TIR1/AFB1 Drought (Benny et al., 2019)

ZmTIR-like TIR1/AFB1 Fungi (Luo et al., 2014)

Soybean (Glycine max L.) GmTIR1 TIR1/AFB1 Fungi (Cai et al., 2017)

GmAFB3 AFB2/3 Fungi (Cai et al., 2017)

Melon (Cucumis melo L.) CmTIR1 TIR1/AFB1 Aphid (Sattar et al., 2016)

CmAFB2 AFB2/3 Aphid (Sattar et al., 2016)

Cucumber (Cucumis sativus L.) CSTIR1 TIR1/AFB1 Salt (Chen et al., 2017)

(Continued)
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TABLE 1 Continued

Plant species Name Subfamily stress reference

CsAFB2 AFB2/3 Salt (Chen et al., 2017)

Tomato (Solanum lycopersicum) SlTIR1 TIR1/AFB1 Drought (Benny et al., 2019)

SlTIR1 TIR1/AFB1 Nematode (Seah et al., 2007; Seifi et al., 2011)

Potato (Solanum tuberosum) StTIR1 TIR1/AFB1 Drought (Benny et al., 2019)

Mustard (Brassica juncea var. tumida) BjuTIR1 TIR1/AFB1 Salt (Cai et al., 2019)

BjuAFB3 Salt (Cai et al., 2019)

BjuTIR1 TIR1/AFB1 Fungi (Cai et al., 2019)

Crowtoe (Lotus corniculatus L.) LjAFB6 AFB6 nitrate (Rogato et al., 2021)

Creeping bentgrass (Agrostis stolonifera L.) AsTIR1 TIR1/AFB1 Salt (Zhao et al., 2019)

AsAFB2 AFB2/3 Salt (Zhao et al., 2019)

Fraxinus tomentosa (Fraxinus velutina
Torr.)

FvTIR1 TIR1/AFB1 Salt (Liu J. N. et al., 2022)
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FIGURE 3

TIR1/AFB regulatory network in response to abiotic and biotic stress. TIR1/AFBs response to abiotic or biotic factors in different signal
transduction pathways.
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with conserved domains. Many TIR1/AFB genes are

differentially expressed in response to diverse abiotic and

biotic stress (Table 1). Small molecules such as NO and H2S

regulate TIR1/AFB gene expression, MicroRNAs, such as

miR393, are some of the most well-studied regulators of TIR1/

AFB transcripts. The regulation of some TIR1/AFB family

members through protein-protein interactions and small

molecules is also indispensable (Figure 3). Future studies

should focus on identifying more factors that can regulate

TIR1/AFB family members at the transcriptional, post-

transcriptional, and protein levels. These studies will shed light

on the evolution of the TIR1/AFB family and identify new roles

for these proteins in plant abiotic and biotic stress responses.

TIR1/AFB proteins are known regulators of numerous stress-

related genes. The most well-studied examples of gene regulation by

TIR1/AFB proteins are theAux/IAA genes. Expression ofmanyAux/

IAA genes in response to abiotic and biotic stress is both directly and

indirectly controlled by TIR1/AFB proteins. Expression of NAC4 is

also regulated by TIR1/AFB proteins in response to nitrate uptake.

The general mechanism by which TIR1/AFB proteins

enhance abiotic stress tolerance is by reducing ABA

accumulation, increasing the abundance of ROS scavengers, and

affecting the activity of other factors such as Pi transporters. In

response to biotic stress, TIR1/AFB proteins promote the

expression of SA biosynthesis genes, PR genes, and PDF genes.

However, more studies need to be performed to determine the

role of specific TIR1/AFBmembers in the signaling and metabolic

pathways that modulate disease resistance. As the studies

highlighted in this review demonstrate, much knowledge about

the role of TIR1/AFB proteins in abiotic and biotic stress

responses has been generated. The next challenge for the field

will be deciphering the upstream and downstream events to draw

a more complete picture of TIR1/AFB-mediated regulation of

plant abiotic and biotic stress responses.
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