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Agriculture, Zagazig University, Zagazig, Sharkia, Egypt
Introduction: Crops are affected by various abiotic stresses, among which heat

(HT) and drought (DR) stresses are the most common in summer. Many studies

have been conducted on HT and DR, but relatively little is known about how

drought and heat combination (DH) affects plants at molecular level.

Methods: Here, we investigated the responses of sweetpotato to HT, DR, and

DH stresses by RNA-seq and data-independent acquisition (DIA) technologies,

using controlled experiments and the quantification of both gene and protein

levels in paired samples.

Results: Twelve cDNA libraries were created under HT, DR, and DH conditions

and controls. We identified 536, 389, and 907 DEGs in response to HT, DR, and

DH stresses, respectively. Of these, 147 genes were common and 447 were

specifically associated with DH stress. Proteomic analysis identified 1609, 1168,

and 1535 DEPs under HT, DR, and DH treatments, respectively, compared with

the control, of which 656 were common and 358 were exclusive to DH stress.

Further analysis revealed the DEGs/DEPs were associated with heat shock

proteins, carbon metabolism, phenylalanine metabolism, starch and cellulose

metabolism, and plant defense, amongst others. Correlation analysis identified

6465, 6607, and 6435 co-expressed genes and proteins under HT, DR, and DH

stresses respectively. In addition, a combined analysis of the transcriptomic and

proteomic data identified 59, 35, and 86 significantly co-expressed DEGs and

DEPs under HT, DR, and DH stresses, respectively. Especially, top 5 up-
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regulated co-expressed DEGs and DEPs (At5g58770, C24B11.05,

Os04g0679100, BACOVA_02659 and HSP70-5) and down-regulated co-

expressed DEGs and DEPs (AN3, PMT2, TUBB5, FL and CYP98A3) were

identified under DH stress.

Discussion: This is the first study of differential genes and proteins in

sweetpotato under DH stress, and it is hoped that the findings will assist in

clarifying the molecular mechanisms involved in sweetpotato resistance to

heat and drought stress.
KEYWORDS
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Introduction

Heat and drought stresses tend to occur together under natural

conditions, and are considered the most prevalent stresses in

terrestrial environments (Prasad et al., 2011; Vile et al., 2012).

These abiotic stresses adversely affect plant growth, resulting in

delayed growth, abnormal flowering, photosynthetic disorders, and

oxidative stress, amongst other effects (Jagtap et al., 1998; Mittler,

2006; Silva et al., 2010; Carmo-Silva et al., 2012). The physiological

adaptations of plants to the DH stress differ from those in response

to the single stressors of HT and DR (Shulaev et al., 2008). Rizhsky

et al. (2002) found that tobacco responds specifically to the DH

stress. For example, genes that are up-regulated under HT or DR

stress may be down-regulated under the combined stressors. Recent

studies have further confirmed that plants possess uniquemolecular

and physiological response mechanisms to the DH stress (Safronov

et al., 2017; Woldesemayat et al., 2018). It is well-documented that

HT and DR stresses can damage both the physiology and

metabolism of plant cells. These stressors can directly or

indirectly damage the cell membrane, destroying its structure and

causing the leakage of critical molecules and ions, as well as

damaging the functioning of the cell (Tommasino et al., 2018).

Reactive oxygen species (ROS) are produced in the electron

transport chain between Photosystems I and II (PSI and PSII,

respectively) in the chloroplast. When plants are subjected to HT

and DR stresses, excess excitation energy is produced, leading to

ROS accumulation and potential damage to the photosystem

(Demmig-Adams and Adams, 1992). Rubisco is a carboxylase in

the C3 photosynthetic pathway. Decreases in photosynthesis

associated with HT and DR stresses are closely related to the

inactivation of Rubisco. As Rubisco reduces plant carbon

assimilation under HT and DR stresses, there is an excess of

excitation energy for the light response and a consequent increase

in ROS production (Law and Crafts-Brandner, 1999).

Advances in biotechnology have allowed the identification of

molecular factors involved in stress tolerance, elucidating the
02
plant underlying mechanisms to stress. To date, numerous

stress-associated molecules and pathways have been identified.

One of the key pathways is the abscisic acid (ABA) pathway

which regulates the plant response to DR. This pathway can

produce ROS and increase the levels of cytosolic calcium,

together with activating ion channels to trigger stomatal

closure (Flexas and Medrano, 2002; Safronov et al., 2017). The

response to HT relies on various pathways, all of which involve

the participation of heat shock proteins (HSPs) (Wang et al.,

2004). Under HT stress, most HSPs are able to avoid misfolding

and consequent aggregation, allowing them to refold during

recovery. The mechanisms responsible for this vary between the

HSP families (Rampino et al., 2009). For instance, HSP60 and

HSP70 bind to protein intermediates, preventing aggregation,

and HSP101 can undergo renaturation and restoration of

function after earlier denaturation (Katiyar-Agarwal et al., 2003).

Sweetpotato (Ipomoea batatas (L.) Lam.) is an annual or

perennial plant belonging to the Convolvulaceae family, which is

the top 4 crop in China along with rice, wheat and corn (Yang

et al., 2017). It is a tropical food crop and has the advantages of

high yield and the ability to withstand stress, compared with rice,

wheat, and other major crops (Loebenstein and Thottappilly,

2009). To date, many genes linked to abiotic stress tolerance

have been identified and cloned in sweetpotato, such as IbDREB

(Kim et al., 2010), IbOr (Kim et al., 2013), IbP5CR (Liu et al.,

2014), IbGI (Tang et al., 2017), IbTC (Kim et al., 2019),

IbMYB116 (Zhou et al., 2019), and IbSUT (Wang et al., 2020).

Furthermore, RNA-seq has been applied to sweetpotato

transcriptome study under single-stress conditions, including

salt (Arisha et al., 2020a), drought (Yang et al., 2018; Arisha

et al., 2020b), and cold (Ji et al., 2017; Ji et al., 2019; Xie et al.,

2019; Ji et al., 2020) stress using second- and third-generation

sequencing on Illumina platforms. Therefore, understanding the

strategies adopted by stress-tolerant sweetpotato can assist in the

elucidation of the molecular mechanisms underlying stress

tolerance in crops.
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To explore the mechanisms underlying tolerance to HT, DR,

and their combination DH in Ipomoea batatas, we used both

transcriptomic and proteomic analyses in controlled

experiments, measuring the expression of genes and proteins

in paired samples. Using Illumina HiSeq and data-independent

acquisition (DIA) technology, we identified differentially

expressed genes (DEGs) and proteins (DEPs) under HT, DR,

and DH stresses. The roles of these genes in response to the

stressors were analyzed and are discussed below.
Plant materials and methods

The purple-flash sweetpotato Xuzishu 8, a popular cultivar with

a high anthocyanin content, high yield, and good taste and drought

tolerance (Yan et al., 2022), was used for transcriptomic and

proteomic sequencing. The cultivar was bred by the Xuzhou

Institute of Agricultural Sciences in Jiangsu Xuhuai District,

Xuzhou City, China. The seedlings of Xuzishu 8 were planted in

the loamy and fluvo-aquic field (pH 8.2) in Xuzhou sweetpotato

research center (34°16’N, 117°17’E) on June 10th. After 60 d, the

plants were dug out and grown under hydroponic culture using

Hoagland solution. Then the plants were treated by HT (42°C), DR

(1 liter of 30% PEG6000 Hoagland solution), and DH (42°C and 1

liter of 30% PEG6000 Hoagland solution) in the growth chamber

with 90 mM/m2/s of light intensity and 50% relative humidity under

long day (LD) condition (16 h light/8 h dark). The fully opened

third unifoliate samples and storage roots samples with three

biological replications were collected during the treatments from

0.5, 1, 3, 6, 12, 24, and 48 h for transcriptomic and proteomic

analysis. Control specimens grown under hydroponic culture using

Hoagland solution were put in another growth chamber with 25°C,

90 mM/m2/s of light intensity and 50% relative humidity under LD

condition, and biological samples in triplicate were also collected at

the same time points. Samples were immediately frozen in liquid

nitrogen and then maintained at -80°C.
Total RNA extraction and experimental
design

Total RNA free of genomic DNA was extracted using a Total

RNA Extraction Kit (Generay, China), following the provided

protocols. Purity and quality were assessed by 1% agarose gel

electrophoresis and spectrophotometry (Nanophotometer,

IMPLEN, CA, USA) using the A260/A280 and A260/A230

ratios. RNA concentrations were determined with a Qubit®

RNA Assay Kit in Qubit®2.0 Fluorometer (Life Technologies,

CA, USA) and integrity was measured with the RNA Nano 6000

Assay Kit of the Agilent Bioanalyzer 2100 system (Agilent

Technologies, CA, USA). We then mixed equal amounts of

RNA samples from leaves and tuberous roots at each time point

under heat, drought, and their co-stresses to construct four
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sequencing libraries, namely, HT, DR, DH, and CK (control).

Each library was constructed and analyzed in triplicate resulting

in 12 sequencing libraries for 12 pooled samples.
cDNA library construction and
transcriptome sequencing

cDNA libraries were constructed using 5 mg of total RNA per

pool with the VAHTSTM mRNA-seq V2 Library Prep Kit for

Illumina®, following the provided protocol, and index codes were

used for sequence identification in individual samples. Poly-T oligo-

attached magnetic beads were used to purify mRNA which was

fragmented with divalent cations at high temperature in 5x

VAHTSTM First Strand Synthesis Reaction Buffer. The first-

strand cDNA was synthesized with a random hexamer primer

and M-MuLV Reverse Transcriptase (RNase H-) and second-

strand cDNA was synthesized using DNA polymerase I and

RNase H. Exonucleases and polymerases were used to convert

overhangs to blunt ends. The 3′-ends of the fragmented DNA were

adenylated and ligation of the adaptor was performed before library

preparation. The fragments were purified using the AMPure XP

system (Beckman Coulter, Beverly, USA) to allow preferential

selection of 150-200 bp fragments which were then treated with 3

ml of USER Enzyme (NEB, USA) for 15 min at 37°C and then for 5

min at 95°C. PCR used Phusion High-Fidelity DNA polymerase,

Universal PCR primers, and Index (X) primer and the products

were purified using AMPure XP, with quality assessment using an

Agilent Bioanalyzer 2100 system. The libraries were quantified and

pooled, and paired-end sequencing was conducted on HiSeq XTen

sequencers (Illumina, San Diego, CA, USA).
Analysis of transcriptomic data

After the conversion of the sequencer-produced images into

raw nucleotide reads, the quality of the reads was assessed using

FastQC (http://www.bioinformatics.babraham.ac.uk/projects/

fastqc/) and filtering was conducted using Trimmomatic (Bolger

et al., 2014). The clean reads were then aligned to the sweetpotato

reference genome (Yang et al., 2017) with HISAT2 (Kim et al.,

2015). The expression of genes was defined by the abundance of

their transcripts, which were quantified using StringTie (Pertea

et al., 2015), calculating the Fragments Per Kilobase per Million

(FPKM) values of the protein-coding genes and lncRNAs in the

samples. DEGs were identified using DESeq2 (Love et al., 2014)

using the criteria of FDR <0.05 and difference multiple |log2 FC| >1.
Quantitative real-time PCR

The samples for transcriptome sequencing were also used for

qRT-PCR, which was conducted on a StepOne Plus real-time PCR
frontiersin.org
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system (Applied Biosystems) using SYBR Green Master Mix

(Roche, Germany). Gene expression was calculated using the

comparative C(T) method (Schmittgen and Livak, 2008). The

reference gene was tublin of Ipomoea batatas. Three technical and

two biological replicates were used for each analysis. Primer

sequences are listed in Table S1.
Protein preparation

Proteins were extracted from the same 12 pooled samples used

for transcriptome sequencing. The plant material was pulverized in

liquid nitrogen and further homogenized in pyrolysis solution (7M

urea, 2% SDS, 0.1% PMSF, 65 mM DTT) with ultrasonication.

Supernatants were centrifuged (14 000 rpm, 30 min, 4 °C) and the

protein contents weremeasured by the BCAmethod (Walker, 1994).

After that, the proteins were reduced and alkylated using 50 ul DTT

(1 h, 55 °C) and 5 ul of 20 mM iodoacetamide (IAA; 1 h, room

temperature, in the dark), respectively. The proteins were then

precipitated for 2 h with 300 ul of precooled acetone and

hydrolyzed with trypsin (Promega) overnight. The resulting

peptides were dissolved in buffer A (buffer A: 20 mM ammonium

formate aqueous solution, adjusted to pH 10.0 by ammonia water)

and separated using a reverse column (XBridge C18 column, 4.6mm

x 250 mm, 5 um) connected to an Ultimate 3000 system (Waters

Corporation, MA, USA) using 5% to 45% solution B (20 mM

ammonium formate with 80% ACN, adjusted with ammonia to pH

10.0) for separation. Fractions were lyophilized before analysis.
Establishment of DDA database and DIA
data collection

The peptides were redissolved in an aqueous solution of 0.1%

formic acid aqueous solution and applied to an LC-MS/MS

Orbitrap Lumos mass spectrometer with an online nanojet ion

source (Thermo Fisher Scientific, Ma, USA). This spectrometer

operates in data-dependent acquisition (DDA) mode and switches

automatically between MS and MS/MS acquisition. The raw DDA

data were analyzed using a Spectronaut X (Biognosys AG,

Switzerland) with default settings, producing an initial target list.

The Ipomoea batatas database was searched by the Spectronaut

together with a database of contaminants derived by trypsin

digestion. The material was suspended in 30 ul of aqueous 0.1%

formic acid solution, of which 9 ul was mixed with 1 ul 10 x iRT

peptide segment. Sample separation was performed by nano-LC

and analyzed by on-line electrospray ionization tandem mass

spectrometry for data-independent acquisition (DIA).
Proteome data analysis

The raw DIA data were analyzed using the Spectronaut X

using default parameters and dynamic iRT retention time Data
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were extracted by Spectronaut X using extensive mass

calibration. The optimal extraction window dependent on the

iRT calibration and stability of the gradient was determined by

Spectronaut Pulsar (Kim et al., 2018). A cutoff Q-value (FDR) of

1% for the levels of precursors and proteins was set. A setting of

“mutated” was used for decoy generation; this resembles

“scrambled” while only applying random numbers of residue

positions (min=2, max=length/2). Precursors that passed

through the filters were used for quantification, with the top

three filtered peptides passing the 1% Q-value threshold being

used to determine the numbers in the major groups. After

Student’s t-test, the Benjamini and Hochberg method was

applied, and DEPs were filtered using the criteria of FDR

<0.05 and difference multiple |log2FC| ≥0.585 (Liu et al., 2020).
Functional annotation

Protein and gene annotations were determined using the

NCBI non-redundant (NR), Gene Ontology (GO), and Kyoto

Encyclopedia of Genes and Genomes (KEGG) databases. The

numbers of DEGs or DEPs were used to calculate p-values

(<0.05) and q-values (<0.05) using the total number of genes or

proteins as backgrounds. The p-value is a measure of the

significance of enrichment, while the q-value controls for the

FDR. P-values were determined by Fisher’s exact test and the q-

values were measured using the “qvalue” package in R.
Protein and RNA correlation analyses

Co-expression of genes and proteins was analyzed by the

determination of correlation coefficients, conducted in R

(version 3.5.1). Maps with nine quadrants were created to

illustrate alterations in gene and protein expression in the

transcriptomic and proteomic data, respectively, with the map

showing the quantification and enrichment of the genes or

proteins in each region of the map. Genes and proteins and

DEGs and DEPs in the transcriptome and proteome,

respectively, were assessed separately, and Venn diagrams were

used to illustrate the data.
Results

Transcriptome sequencing, quality
filtering, and assembly

Separate sequencing of 12 cDNA libraries was conducted on

the Illumina HiSeq 2000 platform, resulting in a total of

85,378,804,200 raw reads. When the adaptor sequences, low-

quality, and short reads, and rRNA reads were removed,

82,750,736,262 clean reads remained (Table S2). The GC
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content was 57–66%, Q20 92–97%, and the percentage of

unknown nucleotides (N%) was 0%. Then, the clean reads that

mapped to the reference genome were categorized into two

classes: uniquely mapped reads, namely, reads that mapped to

only one position in the reference genome, and multi-position

matches, namely, reads that mapped to more than one position

in the reference genome (Table S3).
Identification of DEGs

The level of gene expression in individual samples

was calculated as the FPKM. Using the criteria of FDR <0.05 and

|log2 of fold change (FC)| >1, 536, 389, and 907 DEGs were

identified in response to HT, DR, or DH stress, respectively, in

sweetpotato cv. Xuzishu 8, of which 162, 249, and 369 were up-

regulated, and 374, 140, and 538 were down-regulated (Figure 1A).

Venn diagrams were used to highlight overlapping DEGs expressed

among HT and DH, DR and DH, as well as HT, DR, and DH

stresses. Under HT and DR stresses, there was an overlap of 72 up-

regulated and 89 down-regulated genes. Similarly, there were
Frontiers in Plant Science 05
overlaps of 156 up-regulated and 119 down-regulated genes

under the combination of DR and DH stresses, and of 106 up-

regulated and 226 down-regulated genes under HT and DH

stresses. Of the 147 overlapping genes among the DR, HT, and

DH stresses, 62 were up-regulated and 85 were down-regulated.

Furthermore, top 10 common up- and down-regulated DEGs

(Table 1) were identified under HT, DR and DH stresses, of

which seven up-regulated DEGs including CHIT1B, TPM-1,

BXL1, dnajb6, HSP21, MLS and Os04g0179200, and one down-

regulated DEG CHX20 were overlapped. In addition, the

transcriptome of plants subjected to DH stress contained 169

specifically elevated genes and 278 genes that were specifically

reduced by this combined stress (Figure 1B).
GO and KEGG enrichment analysis

GO was used to determine the principal functional

classifications of the DEGs. Nearly 54%, 57%, and 55% of

DEGs under HT, DR, and DH stresses, respectively, were
B

A

FIGURE 1

Comparisons of DEGs. (A) Number of DEGs under all stress conditions. DEGs were defined by FDR <0.05 and |log2 of fold change (FC)| >1.
Yellow indicates up-regulation and blue indicates down-regulation. (B) Venn diagram illustrating the up-regulated (left side) and down-
regulated (right side) genes under HT, DR, and DH stresses. CK, control; HT, heat stress; DR, drought stress; DH, drought and heat stresses.
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associated with the ‘biological process’ category. Similarly, 17%,

17%, and 19% of DEGs associated with HT, DR, and DH

stresses, respectively, were seen in the ‘molecular function’

classification, and 29%, 26%, and 27%, respectively, were

found under ‘cellular component’. Under HT, DR, or DH

stress, the top four classes of upregulated and downregulated

genes from ‘biological process’ level 2 GO terms were metabolic

process (GO:0008152), cellular process (GO:0009987), single-

organism (GO:0044699), and response to stimulus

(GO:0050896). In ‘molecular function’, the top classes were

catalytic activity (GO:0003824) and binding (GO:0005488)

under all conditions, while in ‘cellular component’, the top

three classes of up-regulated and down-regulated genes were

cell (GO:0005623), cell part (GO:0044464) and organelle

(GO:0043226). The DR stress condition showed greater

numbers of up-regulated than down-regulated genes in most

of the GO categories, while there were fewer up-regulated genes

under HT or DH stress (Figure 2).
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The GO annotations that showed significantly higher levels

of DEG enrichment (q < 0.05) under the HT, DR, and DH

treatments (Figure 3A) included aminoglycan catabolic and

metabol ic process (GO:0006026 and GO:0006022),

organonitrogen compound catabolic process (GO:1901565),

carbohydrate metabol ic process (GO:0044262 and

GO:0005975), citrate and tricarboxylic acid metabolic process

(GO:0006101 and GO:0072350), beta-mannosidase activity

(GO:0004567), hydrolase activity (GO:0004553 and

GO:0016798), and oxo-acid-lyase activity (GO:0016833),

amongst others. Categories showing significant enrichment in

down-regulated genes included phenylpropanoid biosynthetic

and metabolic process (GO:0009699 and GO:0009698),

secondary metabolite biosynthetic process (GO:0044550), cell

wall biogenesis (GO:0042546), ammonia-lyase activity

(GO:0016841) , and carbon-nitrogen lyase act iv i ty

(GO:0016840) (Figure 3B). Overall, these findings suggest that

sweetpotato shares a “cross-tolerance” in response to heat,
TABLE 1 Top 10 common up- and down-regulated DEGs among the overlapping genes in HT, DR, and DH.

CK-vs-HT CK-vs-DR CK-vs-DH

Symbol_id log2fc q-value Symbol_id log2fc q-value Symbol_id log2fc q-value

Up-regulated

TPM-1 18.445 2.585E-06 CHIT1B 20.046 2.357E-19 CHIT1B 18.689 9.01E-14

BXL1 16.475 9.333E-05 TPM-1 19.832 6.101E-18 TPM-1 16.908 1.571E-10

CHIT1B 15.201 3.913E-05 BXL1 12.223 0.0079 BXL1 13.147 0.0003

dnajb6 11.215 0.0198 dnajb6 11.648 0.0024 dnajb6 10.954 0.0015

HSP21 10.351 4.007E-06 Os04g0179200 10.079 7.92E-08 EDL3 10.646 4.244E-15

PR2 8.785 0.0018 CHI2 9.179 3.013E-10 HSP21 9.883 9.255E-10

MLS 8.092 4.571E-05 EDL3 8.951 2.028E-12 MAN2 9.513 1.406E-09

Os04g0179200 8.044 0.0056 HSP21 8.889 3.266E-06 ICL 9.055 1.38E-09

aq_1250 7.976 0.0037 aq_1250 8.631 2.178E-06 Os04g0179200 8.946 6.243E-05

CXE15 7.860 3.014E-05 MLS 8.223 2.942E-17 MLS 8.328 9.01E-14

Down-regulated

DFRA -13.870 3.350E-04 CHI3 -12.687 0.0070 FL -17.117 0.0017

XTH1 -12.615 8.290E-04 CHX20 -12.306 0.0089 RD22 -16.871 0.0011

CHX20 -12.306 0.0083 GSPO-A1 -8.423 4.126E-06 AED3 -15.480 1.181E-05

GSPO-A1 -10.838 4.118E-06 AED3 -7.441 4.341E-05 BGLU47 -12.526 0.0035

At4g28780 -9.877 5.718E-07 DFRA -7.227 0.0029 CHX20 -12.306 0.0081

CHSE -9.646 5.718E-07 At1g28590 -7.085 1.821E-04 CHSE -11.072 1.352E-08

ABP19A -9.302 3.010E-08 AED3 -7.085 5.768E-04 At4g28780 -9.999 2.055E-08

FL -9.230 1.458E-05 PHO1 -6.851 3.458E-04 ABP19A -9.993 1.451E-11

GSTF11 -9.198 3.516E-04 LSH1 -6.849 8.091E-06 NIR1 -9.314 1.167E-04

NIR1 -8.990 2.554E-05 ERF003 -6.731 1.294E-04 PALA -9.264 1.318E-09
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FIGURE 2

GO annotation of DEGs in response to HT, DR, or DH stress. Yellow indicates up-regulation and blue indicates down-regulation. CK, control;
HT, heat stress; DR, drought stress; DH, drought and heat stresses.
BA

FIGURE 3

Heatmap of the q- values for GO categories showing DEG enrichment under HT, DR and DH stresses compared with CK. (A) Functional
enrichment analysis of up-regulated DEGs under HT, DR, and DH stresses. (B) GO terms of down-regulated DEGs under HT, DR, and DH
stresses. The color scale ranges from white (no DEGs), light-red (DEGs with low q-values) to red (DEGs with high q-values). HT, heat stress; DR,
drought stress; DH, drought and heat stresses.
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drought, and their combination. However, an opposite trend was

found between DR and HT stresses, with the gene expression

trend under DH stress being closer to that of HT stress.

Of the significantly enriched GO terms (Table S4), the DEGs

specifically up-regulated in DH were mainly found in the

“environmental response process”, “RNA process”, and

“compound catabolic process” categories. “Environmental

response process” included the annotations cellular response to

oxidative stress and reactive oxygen species (GO:0034599 and

GO:0034614), response to iron ion (GO:0010039), response to

transition metal nanoparticle (GO:1990267), response to oxygen-

containing compound (GO:1901700), response to ethylene

(GO:0009723), and oxidoreductase activity (GO:0016730 and

GO:0016703). “RNA process” contained regulation of

transcription (GO:0006355), regulation of nucleic acid-templated

transcription (GO:1903506), and regulation of RNA biosynthetic

and metabolic process (GO:2001141 and GO:0051252).

“Compound catabolic process” included porphyrin-containing

compound catabolic process (GO:0006787), aromatic compound

catabolic process (GO:0019439), cellular nitrogen compound

catabolic process (GO:0044270), amylase activity (GO:0016160),

and galactosyltransferase activity (GO:0008378). GO enrichment

analysis of the potential functions of the genes down-regulated

under DH stress identified over 30 categories with significant

enrichments (q < 0.05) under DH stress, such as cell wall

organization (GO:0071555), anatomical structure development

(GO:0048856), beta-glucan metabolic process (GO:0051273),

cellulose metabolic process (GO:0030243), flavonoid metabolic

process (GO:0009812), and water transmembrane transporter

activity (GO:0005372).

Investigation of pathway enrichment using KEGG (Figure 4;

Table S5) showed thatmost of the enriched pathways were shared by

DEGs under HT, DR, or DH stress. Four hundred and four DEGs

from the three groups were associated with 98 different KEGG
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pathways in 18 clades under five major KEGG categories including

metabolism, environmental information processing, genetic

information processing, cellular processes, and organismal systems.

KEGG analysis was used to identify the pathways showing

DEG enrichment (q < 0.05). Gene-set enrichment analysis

showed that DEGs in the glyoxylate and dicarboxylate

metabolism, amino sugar and nucleotide sugar metabolism,

and the MAPK signaling pathway were significantly up-

regulated in all the stress categories. In addition, specific

pathways with DH-associated DEG enrichment were

diterpenoid biosynthesis, galactose metabolism, linoleic acid

metabolism, and porphyrin and chlorophyll metabolism

(Figure 5A). Pathways showing down-regulated DEGs tended

to be common to all the stress groups and included metabolic

pathways, flavonoid biosynthesis, secondary metabolites

biosynthesis, phenylpropanoid biosynthesis, phenylalanine

metabolism, and indole alkaloid biosynthesis. Four pathways

were unique to DH stress, namely, ascorbate and aldarate

metabolism, selenocompound metabolism, glycolysis/

gluconeogenesis, and glyoxylate and dicarboxylate metabolism

(Figure 5B). These GO and KEGG analyses suggested that

similar pathways were involved in the response to different

stress conditions, indicative of cross-tolerance to stress in the

sweetpotato. Furthermore, the combination of heat and drought

stresses appears to act synergistically to trigger specific

biochemical processes and molecular functions, in contrast to

the response seen to the individual stressors.
Proteomics analysis and identification of
DEPs

We then analyzed the functions of proteins responding to

HT, DR, and DH stresses using proteome sequencing. The DIA
FIGURE 4

KEGG analysis of DEGs in the HT, DR, and DH stress groups compared with CK. CK, control; HT, heat stress; DR, drought stress; DH, drought
and heat stresses.
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method integrates the benefits of the traditional proteomics

“shotgun” and selective reaction monitoring/multiple reaction

monitoring (SRM/MRM) approaches with absolute quantitative

mass spectrometry, and was used to investigate changes in

protein expression in response to HT, DR, and DH stresses.

Initially, we identified 50 457 precursors, 39 376 peptides, and

9862 proteins from 6189 protein groups in 12 pooled samples

(Figure S1A). GO analysis showed that these proteins were

associated with 48 functional groups including all three GO

categories of biological process, cellular component, and

molecular function (Figure S1B). Under biological process, the

highest enrichments were seen in metabolic processes (2451

proteins, 26.30%) followed by cellular processes (1991, 21.36%),

and single-organism processes (1597, 17.14%). Under molecular

function, the most enriched associations were catalytic activity

(2044, 51.25%) and binding activity (1639, 41.10%). The top

category under cellular components was cell parts (1678,

25.34%) (Table S6).

Overall, 1609, 1168, and 1535 DEPs were identified in the HT,

DR, and DH groups compared with the CK group, of which 541,

466, and 589 were up-regulated and 1068, 702, and 946 were down-

regulated, respectively (Figure 6A). A total of 271 up-regulated

DEPs were common to the three groups, while 135, 83, and 131

were exclusively up-regulated under HT, DR, and DH stresses. In

addition, 385 down-regulated DEPs overlapped between the

different groups, while 411, 135, and 227 were specific to the HT,

DR, and DH groups, respectively (Figure 6B). KEGG analysis of the

DEPs under HT stress showed that the four top pathways were

“Ribosome” (q-value 2.31e-7), “Nitrogen metabolism” (q-value

3.36e-7), “Phenylpropanoid biosynthesis” (q-value 1.38e-6), and

‘Biosynthesis of secondary metabolites’ (q-value 0.00128). The

additional nine pathways (q < 0.05) included ‘Porphyrin and

chlorophyll metabolism’, ‘Photosynthesis - antenna proteins’,

‘Metabolic pathways’, and ‘Cyanoamino acid metabolism’
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(Figure 6C, upper panel). The pathways identified for DR stress

were not only involved in several of the same biological processes as

those for HT stress, such as ‘Ribosome’ (q-value 2.5e-14),

‘Phenylpropanoid biosynthesis’ (q-value 0.0002), ‘Metabolic

pathways’ (q-value 0.0003), ‘Biosynthesis of secondary

metabolites’ (q-value 0.0013), ‘Thiamine metabolism’ (q-value

0.0024), and ‘Flavonoid biosynthesis’ (q-value 0.0121) but also

included two specific pathways, namely, ‘Amino sugar and

nucleotide sugar metabolism’ (q-value 0.0069) and ‘Starch and

sucrose metabolism’ (q-value 0.0355) (Figure 6C, middle panel).

The DH-stress group included ‘Ribosome’ (q-value 3.0e-41),

‘Nitrogen metabolism’ (q-value 0.0002), ‘Thiamine metabolism’

(q-value 0.0139), and Porphyrin and chlorophyll metabolism (q-

value 0.0333) which overlapped with both the HT and DR groups

(Figure 6C, lower panel).

The top 10 DEPs identified under HT, DR, and DH stresses

are shown in Table 2. Several up-regulated DEPs are common to

each stress, including PER72 which catalyzes the final step in

lignin biosynthesis, small heat-shock proteins HSP23.6 involved

in processing in the endoplasmic reticulum, ACT domain-

containing protein ACR11, actin binding protein VILLIN2 for

actin cytoskeleton and stem-specific protein TSJT1. Some stress

specific up-regulated DEPs are also found, such as Exo70A1

which is involved in targeted secretion at the plasma membrane

under HT stress, guanylate-binding protein GBP2 under DR

stress, cold and drought-regulated protein CORA under DH

stress, amongst others. As in HT stress, HSP23.6 and two

proteins (PER72 and PNC1) which are key enzymes catalyzing

the formation of lignin from monolignol, were also up-regulated

under DR stress. In contrast, few down-regulated DEPs were

shared between the HT, DR, and DH stress groups. Under HT

stress, some proteins associated with metabolite biosynthesis,

CYP51G1 (sterol 14-demethylase), TH1 (thiamine biosynthetic

bifunctional enzyme), and ANS (anthocyanidin synthase) were
BA

FIGURE 5

Heatmap of the q-value significance of KEGG pathways showing DEG enrichment in response to HT, DR, and DH stresses compared with CK.
(A) Up-regulated DEGs under HT, DR, and DH stresses. (B) Down-regulated DEGs under HT, DR, and DH stresses. The color scale ranges from
white (no DEGs), light-red (DEGs with low q values) to red (DEGs with high q values). HT, heat stress; DR, drought stress; DH, drought and heat
stresses.
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down-regulated. Under DR stress, several of the top 10 down-

regulated DEPs were found to be involved in ‘biological process’,

including the ubiquitin receptor RAD23B, HMGCL which is

responsible for the synthesis and degradation of ketone bodies,

starch branching enzyme I SBE1, and ANT17 which is involved

in the process of anthocyanin synthesis. Some specific top 10

down-regulated DEPs are found under DH stress, such as the

novel plant SNARE protein NPSN11, plasmodesmata callose-

binding protein PDCB2, and ABC transporter G family member

ABCG22, amongst others. Although the same ‘Flavonoid

biosynthesis’ pathway is annotated in each stress category,

three different down-regulated DEPs (ANS, ANT17, and AN3)

were specifically involved in the anthocyanin synthesis.
Correlations of RNA and protein
expression

To determine the co-expression relationships between genes and

proteins under each stress condition, correlations between the

transcriptomic and proteomic results were analyzed. Initially, we

identified input 38 263 genes and 8891 proteins for HT, 38 465 genes

and 9079 proteins for DR, 38 048 genes and 8852 proteins for DH,

respectively. The Pearson correlation coefficients of the genes with

their encoded proteins were 0.0676 under HT stress, 0.1159 under

DR stress, and 0.1198 under DH stress (Figure 7). Venn diagrams

showed that 6465 co-expressed genes and proteins were present

under HT stress, of which 59 were both DEGs and DEPs

(Figure 8A). In the DR-stress category, 6607 genes were co-
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expressed with their proteins, and 35 of these were both DEGs

and DEPs (Figure 8B). In the DH category, there were 6435 co-

expressed genes and proteins, of which 86 were both DEGs and

DEPs (Figure 8C). Thus, we suggest that these co-expressed DEGs

andDEPsmay play critical roles in the defense against heat, drought,

and combined drought and heat stresses in the sweetpotato.
GO and KEGG analyses of co-expressed
DEGs and DEPs

GO analysis of the co-expressed DEGs and DEPs indicated that

‘cellular process’ and ‘metabolic process’ predominated. There were

89, 56, and 232 co-expressed DEGs and DEPs for the HT, DR, and

DH stress conditions, respectively, in the “cellular process” category,

and 173, 140, and 400 co-expressed DEGs and DEPs, respectively,

in ‘metabolic process’. In terms of “cellular component”, co-

expressed DEGs and DEPs with ‘cell’ and ‘cell part’ annotations

were present under all stress conditions. The highest numbers of co-

expressed DEGs and DEPs were seen in the ‘organelle’ category,

with 16 and 80 genes and proteins in the DR and DH conditions,

respectively. In “molecular function”, the highest number of DEG/

DEP co-expression was seen in ‘binding’ “catalytic activity”, with 64,

13, and 132 co-expressed DEGs and DEPs in ‘binding’, and 30, 16,

and 44 in ‘catalytic activity’ for HT, DR, and DH stresses,

respectively (Figure S2).

KEGG analysis showed enrichment of the co-expressed DEGs

and DEPs under HT stress in pathways associated with ‘Metabolic

pathway’, ‘Biosynthesis of secondary metabolites’, ‘Flavonoid
B

CA

FIGURE 6

Differentially expressed proteins analysis under HT, DR and DH stresses. (A) Numbers of up- and down-regulated DEPs. (B) Venn diagrams of
DEPs. Left: up-regulated DEPs; right: down-regulated DEPs. (C) KEGG pathways showing significant (q < 0.05) DEP enrichment for each stress
category.
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biosynthesis’, ‘Biosynthesis of amino acids’, and ‘Carbon

metabolism’. The top enrichment pathways under DR stress were

‘Metabolic pathway’, ‘Biosynthesis of secondary metabolites’, and

‘Phenylpropanoid biosynthesis’, while those under DH stress were

‘Metabolic pathway’, ‘Biosynthesis of secondary metabolites’,

‘Flavonoid biosynthesis’, and ‘Carbon metabolism’. There were

also several pathways that were specifically enriched under DH

stress, including ‘Protein processing in endoplasmic reticulum’,

‘Porphyrin and chlorophyll metabolism’, and ‘Indole alkaloid

biosynthesis’ (Figure 9).
Cross-validation of transcriptomic and
proteomic data

Transcriptomic and proteomic analysis was conducted using

RNA-seq and DIA, allowing cross-validation between the two
Frontiers in Plant Science 11
sets of data. A comparison of the significant DEGs and DEPs

(FDR < 0.05, simultaneously) showed that 47 DEGs/DEPs were

consistently expressed under HT stress, of which 11 were

consistently up-regulated and 36 were down-regulated under

HT stress. Similarly, there were 34 consistent DEGs/DEPs (18

up-regulated and 16 down-regulated) under DR stress and 72

consistent DEGs/DEPs (21 up-regulated and 51 down-

regulated) under DH stress (Table S7). The coverage of these

DEGs/DEPs against total co-expressed DEGs and DEPs for HT,

DR and DH were 2.70%, 2.29% and 4.04%, respectively. Scatter

plots were used to illustrate the comparisons between the

transcriptome and proteome in the different stress conditions

(Figure 10) demonstrating DEGs and DEPs that showed

consistency between the two data sets. The R-square values for

consistent DEGs and DEPs were 0.7041 for HT, 0.7858 for DR,

and 0.6978 for DH. These findings indicate strong agreement

between the two data sets. Furthermore, to verify the
TABLE 2 Top 10 up- and down-regulated proteins in HT, DR, and DH identified by DIA.

CK-vs-HT CK-vs-DR CK-vs-DH

Symbol_id log2fc q-value Symbol_id log2fc q-value Symbol_id log2fc q-value

Up-regulated

VLN2 15.582 0.0014 VLN2 15.752 0.0039 CORA-like 16.859 0.0429

At5g45670 15.426 0.0304 TSJT1-like 14.965 0.0010 VLN2 15.753 0.0023

TSJT1-like 14.805 0.0011 BPI 10.200 0.0052 TSJT1-like 15.647 0.0040

HSP23.6 6.418 0.0113 ACR11 6.460 0.0234 AVP1 12.735 0.0353

ACR11 5.902 0.0282 At5g58770 6.446 0.0194 HSP23.6 6.113 0.0123

PER72 5.188 0.0070 HSP23.6 6.206 0.0189 ACR11 6.064 0.0389

EXO70A1 4.969 0.0032 GBP2 6.133 0.0163 At5g58770 5.710 0.0178

MBD11 4.920 0.0198 SRC1-like 5.952 0.0325 PER72 5.163 0.0105

CYP82C3 4.862 0.0211 PER72 5.313 0.0091 MBD11 4.797 0.0222

PARA 4.817 0.0001 PNC1 4.957 0.0225 PARA 4.715 0.0329

Down-regulated

CYP51G1 -16.437 0.0028 RAD23B -14.953 0.0032 BRR2B -15.614 0.0200

BRR2B -15.696 0.0173 OsI_14861 -14.539 0.0461 RAD23B -15.063 0.0022

RPT2 -14.852 0.0037 At4g00740 -12.190 0.0026 NPSN11 -15.024 0.0015

SBT1.7 -14.083 0.0436 HMGCL -4.687 0.0398 ABCG22 -5.410 0.0060

TH1 -12.008 0.0031 URGT2 -4.123 0.0036 AN3 -4.215 3.32e-10

MCM2 -11.492 0.0413 OBERON1-like -4.113 0.0169 FSH2 -4.159 0.0050

FAD2 -8.193 0.0224 At1g28590 -3.926 0.0158 PDCB2 -3.997 0.0024

ANS -5.213 0.0312 SBE1 -3.808 2.07e-15 Os03g0108600 -3.984 0.0097

typA -5.112 3.83e-07 ANT17 -3.801 0.0072 At1g26850 -3.835 0.0007

UGT83A1 -4.633 0.0174 Os03g0108600 -3.725 0.0104 OBERON1-like -3.669 0.0497
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reproducibility and accuracy of the transcriptomic and

proteomic data, eight co-expressed DEG and DEP genes were

randomly selected for qPCR verification; these were G13246,

G14317, G23318, G27744, G33304, G38888, G42670, and

G26280. The results showed that the co-expressed DEG and

DEP genes from the transcriptomic and DIA data have similar

expression profiles under the different stress conditions

(Figure S3).
Discussion

Here, genes involved in the responses to HT, DR, and DH

stresses were identified by RNA-seq and DIA proteomic

analyses. Many of these genes were significantly (Table S7)

associated with the biosynthesis of secondary metabolites,

endoplasmic reticulum processing of proteins, glyoxylate cycle,

and starch and cellulose metabolism (Figure 11), amongst other

processes. This appears to be the first investigation into the

molecular effects of abiotic stresses in the sweetpotato using both

transcriptomic and proteomic approaches.
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Biosynthesis of secondary metabolites

Plant secondary metabolites (PSM) are key to plant survival

under biotic or abiotic stress conditions (Wink, 2016). Most

PSMs consist of phenolic acids, flavonoids, terpenoids, steroids,

and alkaloids, all of which have been implicated in regulating

plant defense mechanisms (Bourgaud et al., 2001). The present

study found several types of PSM-associated genes specifically

expressed in the HT, DR, and DH groups. One of these was 4-

hydroxyphenylpyruvate dioxygenase (HPD) which catalyzed a

key step in tocopherol biosynthesis (Dreesen et al., 2018) and

was found to be up-regulated in groups of HT, DR, and DH. a-
Tocopherol is known to be closely connected to the activity of

vitamin E which scavenges ROS and protects the integrity of

membranes (Ren et al., 2011). Recently, Kim et al. (2021) found

that sweetpotato plants overexpressed with HPD enhanced

tolerance to various abiotic stresses including DR and elevated

in a-tocopherol content compared with non-overexpressed

plants. Nevertheless, several genes associated with flavonoid

biosynthesis were observed to be down-regulated under all

three stress conditions, these included FL (G11743), CHI3
B

C

A

FIGURE 7

Log2 expression ratios in the transcriptome (y-axis) and proteome (x-axis). HT (A), DR (B), and DH (C) conditions. Significant alterations in
expression are indicated by color: blue, protein; green, transcripts; red, both.
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(G29792), CYP98A3 (G25739), and DHAPS-1 (G6925). It has

been found that raised temperatures led to reduced flavonoid

contents in the bark of the Norway spruce (Picea abies) (Virjamo

et al., 2014), and the flavonoid content of the bark chlorenchyma

was observed to decrease significantly under drought stress,

despite rehydration of seedlings. (Zhang et al., 2016).
Protein processing in the endoplasmic
reticulum

We also observed several co-expressed DEGs and DEPs that

are associated with the processing of proteins in the endoplasmic

reticulum under both HT and DH stress conditions. These genes

belonged to the HSP family and included HSP70 (G9639),

HSP70-5 (G13246), HSP15.7 (G27775), and HSP17.4B

(G39305). HSPs are chaperones that are involved in protein

folding and unfolding, both in normal conditions and in

response to elevated temperatures (Guo et al., 2014). HSP70 is

the most conserved member of the family, in terms of both

structure and function (Usman et al., 2015). Lee et al. (2009)

observed that HSP70 expression and the development of

thermotolerance were significantly associated. HSP70 has also

been implicated in thermotolerance in Oryza sativa (Sarkar

et al., 2013), while HSP70 expression in temperature-tolerant

pepper genotypes was found to be higher than in temperature-

sensitive varieties, confirming its role in protecting the plant

against heat stress (Usman et al., 2017). Here, HSPs in

sweetpotato were expressed at higher levels under HT and DH

stresses, consistent with the reports on other species.
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Glyoxylate cycle

Two enzymes characteristic of the glyoxylate cycle, namely,

isocitrate lyase (ICL) and malate synthase (MS), were found to

be induced under all three stress conditions. This suggests that

the abiotic stresses activated the glyoxylate cycle to promote the

activation of stress-associated proteins in response to adverse

environmental conditions. Both ICL and MS have been reported
B

C

A

FIGURE 8

Venn diagrams associations between, all expressed genes, all expressed proteins, DEGs (q < 0.05) and DEPs (q < 0.05) with stringent criteria
under HT (A), DR (B), and DH (C) stresses.
FIGURE 9

KEGG pathway analysis of co-expressed DEGs and DEPs under
HT, DR, and DH stresses.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1081948
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Tang et al. 10.3389/fpls.2022.1081948
to be induced in the cell senescence (Nishimura and De Bellis,

1991); plant senescence is known to be an important strategy for

ensuring species survival under abiotic stress conditions

(Gepstein and Glick, 2013). It has also been reported that ICL

is involved in tolerance to salt stress, finding that, in rice, the

OsICL transcript level was increased under salt stress (Yuenyong

et al., 2019), whereas ICL activity was decreased in Pinus pinea

seeds under salt stress (Sidari et al., 2008).
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Starch and cellulose metabolism

We observed that HT, DR, and DH stresses affected the

starch synthesis pathway, leading to the down-regulation of

G24701 (ADP-glucose pyrophosphorylase beta subunit

IbAGPb1A), G35317 (starch branching enzyme I), and G6471

(starch phosphorylase) under HT stress. In addition, the

expression and translation levels of G6471 and G48653 (beta-
B

C
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FIGURE 10

Scatter plots of co-expressed DEGs and DEPs (FDR < 0.05, simultaneously) in the transcriptome and proteome under HT (A), DR (B), and DH (C)
stresses.
FIGURE 11

Heatmap of the fold change of DEGs/DEPs (FDR <0.05, simultaneously) in processes of biosynthesis of secondary metabolites, endoplasmic
reticulum processing of proteins, glyoxylate cycle, and starch and cellulose metabolism under HT, DR, and DH stresses. The color scale ranges
from navy (downregulated DEGs/DEPs), white (no DEGs/DEPs) to firebrick (upregulated DEGs/DEPs). HT, heat stress; DR, drought stress; DH,
drought and heat stresses.
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amylase) decreased under DR stress, and both mRNA and

protein levels of G6471, G35317, and G48653 were markedly

lower in comparison with those of the control under DH stress.

These results suggested that starch synthesis may be inhibited

under these abiotic stress conditions. Starch synthesis has been

found to be reduced under conditions of both temperature and

water stress, attributed to the closure of stomata and reduced

photosynthetic rates (Zrenner and Stitt, 1991; Thitisaksakul

et al., 2012). We also observed that the levels of cellulose

degradation-related gene expression increased significantly

under HT, DR, or DH stress; these genes included G14317

(PREDICTED: beta-D-xylosidase 1), G27744 (PREDICTED:

xylose isomerase), and G9941 (PREDICTED: beta-glucosidase

BoGH3B). These genes encode enzymes, and the consequent

increase in enzyme activity may be the result of cellulose

decomposition by the plant to provide additional carbon

sources for the synthesis of secondary metabolites allowing the

plant to resist environmental stressors such as HT, DR, and DH.

Thus, abiotic stressors can induce the reallocation of carbon for

the synthesis of protective molecules involved in osmotic

adjustment, protein stabilization, and stress response, among

other processes (Zanella et al., 2016; Ribeiro et al., 2022).
Correlation analysis of co-expressed
DEG and DEP genes under HT, DR, and
DH stresses

This is the first study investigating the expression of key

genes and metabolic pathways responsible for the sweetpotato

response to HT, DR, and DH stresses that has used a

combination of transcriptomic and proteomic data. The

results of the expression patterns and functions of the co-

expressed DEGs and DEPs, together with the above discussion,

showed that there are various genes associated with the

sweetpotato response to HT, DR, and DH stress conditions.

These genes included the tocopherol biosynthesis gene HPD

and ICL gene involved in the glyoxylate cycle under all stresses,

HSP family genes responding to HT and DH stresses as well as

the cellulose degradation gene BoGH3B under DR and DH

stresses. Analysis with Venn diagrams (Figure 1B, Figure 6B)

indicated that some of these genes were only up-regulated

under DH stress, including G9582 (PREDICTED: linoleate

13S-lipoxygenase 2-1, LOX2.1) and G39574 (PREDICTED:

clavaminate synthase-like protein, At3g21360). Of these,

LOX2.1 is a key gene in the jasmonic acid synthetic pathway

that is known to be involved in plant resistance to biological

stress conditions (Glauser et al., 2009; Davis et al., 2018).

At3g21360 catalyzes amino acids to form hydroxylated

amino acids, while hydroxyphenylglycine, (2S, 3R)-3-

hydroxyleucine and (2S, 3R)-3-hydroxyphenylalanine are
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classified as plant defensins (Choroba et al., 2000; Hibi et al.,

2015). Both LOX2.1 and At3g21360 belong to the subset of

plant genes known to be involved in the resistance to biological

stress; here, their expression levels were only found to be

significantly raised under conditions of DH stress. It is

documented that abiotic stress can adversely affect cell

viability, which, in turn, influences the expression of defense

genes in plants (Zarattini et al., 2021). A number of genes were

found to be specifically down-regulated under DH stress,

including the growth-related gene G294 (PREDICTED:

adenosine kinase 2-like, ADK2), which is involved in the

interconversion of cytokinin metabolism. Silencing of ADK

has been found to lead to impairments in root growth, the

appearance of small abnormally shaped leaves, and reduced

apical dominance (Schoor et al., 2011). In addition, G45403 (5-

methyl te trahydropteroyl tr ig lutamate–homocyste ine

methyltransferase, MHMT) was uniquely downregulated

under DH stress. This gene is involved in gamma-

aminobutyric acid (GABA) biosynthesis (Jiao and Gu, 2019),

and its expression has been observed to be lowered under

various abiotic stress conditions, including salt and heat stress

and combinations of the two (Li et al., 2011).

The combined effects of heat and drought stresses are

complex, and little is known of their consequences on

sweetpotato. Small number of co-expressed DEG and DEP

genes and low correlation between mRNA and protein levels

in this study for DH were observed. The probable reason might

be the low throughput of protein analysis compared to the high-

throughput transcriptome analysis. Previous studies have

confi rmed tha t some ce l lu l a r p roces se s , such as

posttranscriptional and translational regulation, and different

half-lives for mRNAs and proteins, could inhibit correlation

between the mRNA and protein levels (Varshavsky, 1996;

Grolleau et al., 2002; Becker et al., 2018). It was found that

sweetpotato plants exposed to DH stress not only expressed

genes and proteins observed to have raised expression under

high temperature or drought stress but also showed increased

expression of specific genes and proteins associated with

molecular regulation. Meanwhile, top 5 up-regulated co-

expressed DEGs and DEPs (At5g58770, C24B11.05,

Os04g0679100, BACOVA_02659 and HSP70-5) and down-

regulated co-expressed DEGs and DEPs (AN3, PMT2, TUBB5,

FL and CYP98A3) were identified under DH stress (Table S7).

The information provided by this study provides a valuable

foundation for the influence of DH stress on DEGs/DEPs, which

can benefit further research into the mechanism of DH stress

tolerance in sweetpotato. This suggests the possibility of

enhancing plant tolerance to different stresses through the

manipulation of genes and proteins associated with protein

stabilization, energy transport, and defense systems against

abiotic stress conditions.
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