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Introduction

Rice (Oryza sativa L.) is one of the most important food crops, feeding half of the

world’s population. Its yield relies on its agronomy traits, such as the number of panicles

(also known as effective tiller), the number of grains per panicle, and the grain weight.

Uncovering and elucidating the mechanism which could influence or regulate rice tiller

developments is thus interesting, because it would provide a theoretical foundation for

yield promotion.

Rice tillers are developed from the tiller buds located in the axils of leaves. The tiller

bud is composed of the axillary meristem and the leaf primordia generating from the

lateral meristem. Some of the tiller buds (including effective tillers and ineffective tillers)

are activated to grow and form new leaf primordia and finally develop as tillers bearing

panicles, whereas other tiller buds are found to stop growing after formation, without

elongation, but in dormancy (Oikawa and Kyozuka, 2009). Recently, many genes

regulating the growth and development of tiller buds in rice have been identified, so

the regulatory mechanism and factors underlying tiller bud growth has gradually

elucidated. Among these factors, plant hormone strigolactone (SL) and its biosynthesis

and signaling pathway genes play the most prominent role in dominating rice tiller

formation (Umehara et al., 2008; Gomez-Roldan et al., 2008). On the other hand, the

growth of tiller bud is affected not only by the endogenous hormone signal but also by the

environmental factors largely, such as water and nutrition.

Nitrogen (N) is one of the essential macronutrients needed by all plant species, and N

deficiency hinders plant growth, thus decreasing yield (Stitt and Krapp, 1999; Good et al.,

2004). A study on rice tiller formation has shown that the number of tillers in rice plant

was decreased significantly under low-N conditions, whereas it could be significantly
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increased with sufficient N supply. To date, several genes coding

such as nitrate transporters and transcription factors (TFs) have

been identified as they are relevant in tiller formation in response

to N supplies in the form of nitrate (NO3
−) and ammonium

(NH4
+) mostly (Liu et al., 2021).

Although SL plays the key role in regulating tiller formation,

little is known whether its biosynthesis and signaling genes are

involved in N-dependent tiller formation. Therefore, in this

opinion paper, we highlighted the emerging evidence to

support a potential role of SL in mediating tiller formation in

response to N availability. It further allows expanding the

knowledge of the molecular mechanisms underlying tiller

formation in response to environmental signals.
Nitrogen regulation of tiller number

Application of N fertilizer can accelerate the growth and

increase the number of rice tillers, when excessive N application

decreases the number of effective tillers (Haque and Haque,

2016). Nitrate/peptide transporter family (NPF/NRT) genes

have been reported to regulate tiller number and panicle

structure via modulating nitrogen absorption and transport

(Huang et al., 2018; Wang et al., 2018; Huang W.T. et al.,

2019). Overexpression of NRT2.3b, which encodes a nitrate

transporter, increased the panicle length, number of branches,

number of seeds per panicle, and seed setting rate (Fan et al.,

2016). NPF7.7 can increase the inflow of both NO3
− and NH4

+,

thereby promoting the number of effective tillers and effective

panicles of rice and grain yield (Huang et al., 2018). NPF7.1

overexpression or NPF7.4 knockout could promote rice axillary

buds’ outgrowth, thereby increasing the number of tillers in rice

(Huang W.T. et al., 2019). Additionally, the low-affinity nitrate

transporter NPF7.2 can activate the cell division of tiller buds,

thereby increasing the number of tillers and grain yield (Wang

et al., 2018).

Studies on amino acid transporters (AATs/AAPs) have also

suggested that they are involved in the regulation of tiller

development. Knocking out AAP3 can promote the growth of

buds and the number of effective tillers, thereby increasing rice

grain yield; AAP3 overexpression leads to the accumulation of

amino acids in vivo but inhibits the growth of tiller buds (Lu

et al., 2018). OsAAP5 can affect rice tiller number and yield by

regulating cytokinin (CK) biosynthesis (Wang et al., 2019). The

amino acid biosynthesis genes are also involved in the regulation

of tiller growth. The mutant of asparagine synthetase 1 (ASN1) in

rice reduces the concentration of asparagine and inhibits tiller

bud outgrowth, hence restraining the number of tillers. It

indicates that ASN1 is involved in the bioprocess regulating

rice tiller development (Luo et al., 2019b). Glutamine synthetase

GS1;2 functions in the primary assimilation of NH4
+ and

promotes the growth of tiller buds by regulating N-dependent

biosynthesis of phytohormone cytokinin (Ohashi et al., 2017).
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In addition to cytokinin, other phytohormones and several TFs

are also involved into the process of which N regulates tiller

outgrowth deeply. For instance, the gibberellin (GA) signaling

pathway was identified to be essential for N regulation on tiller

number (Wu et al., 2020). GA can reduce the epigenetic

modification and induce the expression of target genes by

promoting the degradation of APETALA2-domain transcription

factor NGR5, resulting in the inhibition of N-induced growth and

development of tiller buds; the excellent alleleGRF4 ngr2 can largely

increase tiller number and thus result in high NUE in the current

high-yielding rice (Li et al., 2018). Meanwhile, a MADS box

transcription factor OsMADS57, which is induced by nitrate,

interacts with TEOSINTE BRANCHED1 (TB1) and Dwarf14

(D14) to control the growth of axillary buds (Guo et al., 2013;

Huang S. J. et al., 2019). Most recently, through a genome-wide

association study on nitrogen use efficiency and N regulation of

tiller number, TCP19, encoding a TCP transcription factor family

member, was identified to inhibit N-regulated tillering by

promoting DLT expression (Liu et al., 2021). The nitrogen-

induced LATERAL ORGAN BOUNDARIES DOMAIN (LBD)

proteins OsLBD37 and OsLBD39 can directly bind to the

promoter of OsTCP19 and inhibit its activity, and OsTCP19, in

turn, regulates tiller number and N use efficiency (NUE).

Strigolactone plays a central role in
the gene regulatory network of rice
tiller development

In rice, SLs are biosynthesized from b-carotene, which is

converted to carlactone (CL) by b-carotene isomerases

CAROTINOID CLEAVAGE DEOXYGENASE 7 (CCD7) and

CCD8, encoded by DWARF17 (D17) and D10, respectively (Zou

et al., 2006; Arite et al., 2007; Lin et al., 2009; Lopez-Obando

et al., 2015; Waters et al., 2017). CL is further catalyzed to several

types of SLs (Zhang et al., 2014). Finally, the SLs are percepted by

DWARF14 (D14), which triggers the formation of a complex of

D14, D3, and D53, leading to ubiquitination of D53 by the action

of D3 and downstream genes (Arite et al., 2009; Gao et al., 2009;

Liu et al., 2009; Jiang et al., 2013; Zhou et al., 2013; Lopez-

Obando et al., 2015; Waters et al., 2017). Importantly, the

mutants of SL biosynthesis genes D10 and D17 and SL

signaling genes D14, D3, and D53 all have increased the tiller

number, suggesting a negative regulation role of SL on

tiller number.

So far, several important factors dominating rice tiller

development have been found to interact with the SL pathway.

For instance, the well-known tiller-number suppressor, TB1,

interacts with MADS57 to regulate tiller number by

downregulating the expression of SL receptor gene D14 (Guo

et al., 2013). Ideal Plant Architecture 1 (IPA1), which encodes a

SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL)

family TF SPL14, plays a significant role regulating rice plant
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architecture (Jiao et al., 2010; Miura et al., 2010). Later, it was

identified as a downstream gene of the SL signal pathway and

relevant to tiller number (Song et al., 2017). IPA1 can directly

interact with D53, the key repressor of the SL signaling, and

IPA1 expression is suppressed by D53. On the other hand, IPA1

can bind to the promoter of D53 and activate its expression,

suggesting a feedback regulation between IPA1 and SL (Song

et al., 2017).

Previous studies also suggest crosstalk between SL and other

plant hormones during rice tiller development. For example,

auxin has similar negative regulation on tiller number as SL,

which suggests auxin may act in the upstream of the SL pathway.

This is supported by evidence that auxin can induce the

expressions of SL biosynthesis genes MAX3/D17 and MAX4/

D10 (Zha et al., 2019). GA has been found to regulate tiller bud

elongation via suppressing SL biosynthesis, which depends on GA

receptor GID1 and F-box protein GID2 (Ito et al., 2017).

Meanwhile, DELLA protein SLENDER RICE 1 (SLR1), one

suppressor of GA signaling, promotes tiller number by

interacting with D14 in an SL-dependent manner (Nakamura

et al., 2013). Genetic evidence also suggests that SL and

brassinosteroids (BRs) coordinately regulate rice tillering via

activating the D53–BZR1 signal complex which bind the

promoter of TB1 and repress its transcription (Fang et al.,

2020). On the other hand, there is also crosstalk between SLs

and abscisic acid (ABA) during rice tillering and plant adaptability

to the environment (Ruyter-Spira et al., 2013; Luo et al.,2019a).

Under phosphorus (P) deficiency conditions, endogenous SL

content is elevated in wild-type seedlings, leading to attenuated tiller

bud outgrowth. However, this inhibition does not occur in the SL

signaling mutant (d3) and biosynthesis mutant (d10). It indicates that

SL signaling is involved in the coordination of tiller development and

P metabolism (Umehara et al., 2010). A recent study also revealed

that the SL signal pathway is involved in circadian-clock-regulated

tiller bud and panicle development in rice (Wang et al., 2020). The

D14 gene encoding SL receptor is transcriptionally induced by

CIRCADIAN CLOCK ASSOCIATED1 (CCA1), a core regulator

of the circadian clock, to repress the tiller number, whereas

PSEUDORESPONSE REGULATOR1 (PPR1), the suppressor of

the circadian clock, causes the opposite effects on D14 expression

and tiller development.
The potential role of strigolactones
on nitrogen regulation of
tiller development

The biosynthesis of SL is influenced largely by environmental

factors, such as nutrients in soil. The increased level of SLs was also

reported in response to P and N deficiency in many different
Frontiers in Plant Science 03
species. Yoneyama et al. (2007a) found that the nature SL

orobanchol exudate from red clover (Trifolium pretense L.) was

elevated in response to various nutrients (P, N, K, Ca, andMg) and,

in sorghum, the major SL 5-deoxystrigol was much higher under

low P and also N (Yoneyama et al., 2007b). A further study mainly

focused on P which is involved in the SL regulation of tiller

development. Under P-deficient conditions, the expression levels

of SL biosynthesis genes were upregulated, resulting in the increase

in 2′-epi-5-DS levels in rice seedlings. However, this effect was not

observed in the SL mutants d3 and d10 (Umehara et al., 2010).

Further studies suggested that the P levels are the real trigger of SL

induction, whereas the N effect on SL levels depends on the type of

plant, type of nutrient, degree of nutrient stress, and macronutrient

uptake strategy (Yoneyama et al., 2012; Yoneyama et al., 2013).

Furthermore, the SL signal has been recently found to

mediate the regulation of N in rice root development. N

deficiency led to an increased SL content in rice root tissues,

and N deficiency-induced root responses (i.e., increased seminal

root length and reduced lateral root density) were significantly

suppressed in SL biosynthetic and signaling mutants d10, d27,

and d3 (Umehara et al., 2010; Sun et al., 2014).

Because N is also an important restriction factor for the tiller

outgrowth, its regulation on SL was also investigated. Under

nitrogen-deficient conditions, the tiller number reduced in both

WT and d3 and d10 mutants. However, the reduction was much

severe in WT, which indicated that the responses to the N level

was insensitive in the SL mutant compared with WT (Luo et al.,

2018). To some extent, this phenomenon is like what occurred

under P-deficient conditions. However, in N-deficient conditions,

even at an early stage, the restriction of tiller outgrowth appeared.

This is possible due to the different observation systems or the

regulation pathways. SLs could also influence the translocation of

N which was proven with the altered N metabolic genes between

WT and d mutants (Luo et al., 2018). The restriction of tiller bud

outgrowth under N-deficient conditions was possibly caused by

the SL biosynthesis which was enhanced by the N deficiency; it

could also be caused by the influenced N translocation which is

regulated by SL as a signal.
Prospects

Tiller number is one of the important parameters and

agronomy trai ts determining rice NUE and yield .

Understanding the mechanism of its response to N availability

is thus necessary and indispensable for high-efficiency

agriculture in future. As the core regulator of tiller

development, the SL signal is essential in mediating tiller

development responses to various endogenous and

environmental signals. This is based on promising evidence

that several regulators, such as GA signal and TCP
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transcription factors, which mediate N-dependent tiller

development, also interact with SL signaling components.

Thus, we proposed a potential role of SL signals in regulating

tiller development in response to the available N concentration

underground, probably through the activation of the complex

signaling cascades (Figure 1). Further investigation could be

applied as, for instance, genetic approaches to explore SL

signaling components that specifically regulate N-dependent

tiller development and NUE; the possible molecular link

between well-known tiller regulators and SL signals may

be clarified.
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FIGURE 1

A proposed working model of SL signal on regulating rice tiller development in response to nitrogen. In this model, nitrogen supply increases
rice tiller number and outgrowth through the negative regulation of SL biosynthesis and signaling transduction. However, it is uncharacterized
whether specific transcription factors or kinases are activated by N to regulate SL signaling. Meanwhile, SL may also interact with well-known
regulators of tiller number (e.g., TB1, TCP19, and IPA1) or plant hormones (e.g., GA, ABA, and auxin) to regulate the tiller number in response to
external N supply. Furthermore, SL may also affect N uptake by root and N distribution in plant to regulate tiller number. TB1, TEOSINTE
BRANCHED1; TCP19, TCP transcription factor 19; IPA1, Ideal Plant Architecture 1; N, nitrogen; TF, transcription factor; SL, strigolactone; GA,
gibberellin; ABA, abscisic acid.
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