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Grzebelus and Baránek. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Review
PUBLISHED 01 December 2022

DOI 10.3389/fpls.2022.1080993
A review of strategies used to
identify transposition events in
plant genomes

Marko Bajus1, Alicja Macko-Podgórni2, Dariusz Grzebelus2
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Transposable elements (TEs) were initially considered redundant and dubbed

‘junk DNA’. However, more recently they were recognized as an essential

element of genome plasticity. In nature, they frequently become active upon

exposition of the host to stress conditions. Even though most transposition

events are neutral or even deleterious, occasionally they may happen to be

beneficial, resulting in genetic novelty providing better fitness to the host.

Hence, TE mobilization may promote adaptability and, in the long run, act as a

significant evolutionary force. There are many examples of TE insertions

resulting in increased tolerance to stresses or in novel features of crops

which are appealing to the consumer. Possibly, TE-driven de novo variability

could be utilized for crop improvement. However, in order to systematically

study the mechanisms of TE/host interactions, it is necessary to have suitable

tools to globally monitor any ongoing TE mobilization. With the development

of novel potent technologies, new high-throughput strategies for studying TE

dynamics are emerging. Here, we present currently available methods applied

to monitor the activity of TEs in plants. We divide them on the basis of their

operational principles, the position of target molecules in the process of

transposition and their ability to capture real cases of actively transposing

elements. Their possible theoretical and practical drawbacks are also

discussed. Finally, conceivable strategies and combinations of methods

resulting in an improved performance are proposed.

KEYWORDS

transposable elements, transposon mobilization, course of transposition, detection
methods, eccDNA, bioinformatics tools
Introduction

Transposable elements (TEs) were found and described in the early 1950s by Barbara

McClintock in maize, as entities causing chromosome breakage, with breaking points

capable of changing their chromosomal positions (Mc Clintock, 1950). The importance

of her observation has eventually been recognized as fundamental and finally, more than
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30 years after publishing her seminal paper, McClintock was

awarded the Nobel prize (Ravindran, 2012).

TEs are abundant structural genome components inhabiting

genomes throughout the course of life evolution (Chuong et al.,

2017). Initially, TEs were considered unnecessary or even

harmful components of the genome (Sotero-Caio et al., 2017).

At present, it is commonly accepted that their interactions with

the host genome are far more complex and still not fully

understood. In plants, TEs are important drivers of genome

evolution, propelling phenotypic variability in the course of crop

domestication and improvement. Their representation in plant

genomes varies, ranging from approximately 20% in small

genomes, such as Arabidopsis to more than 80% in maize

(Kim, 2017).

TEs are divided into two classes, according to their

mechanism of transposition: Class I (retrotransposons) and

Class II (DNA transposons). Retrotransposons use an RNA

intermediate to be copied and subsequently inserted as a novel

copy at a new position in the genome, which results in an

increase of their copy numbers (Feschotte et al., 2002).

Retrotransposons are further subdivided into those harboring

long terminal repeats (long terminal repeat retrotransposons,

LTR-RTs) and non-LTR retrotransposons, including Long

Interspersed Nuclear Elements (LINEs) and Short Interspersed

Nuclear Elements (SINEs). LTR-RTs are predominant in the TE

landscape of plant genomes (Satheesh et al., 2021). In contrast,

most DNA transposons physically excise and reinsert (a ‘cut and

paste’ mechanism), while those classified as Helitrons utilize a

‘rolling circle’ mechanism for their transposition. Thus,

transposition of Class II TEs does not involve any RNA

intermediate. DNA transposons are widespread and active

across many bacterial, archaeal and eukaryotic species, while

their activity in mammals is low (Rodriguez-Terrones and

Torres-Padilla, 2018). The distribution of TEs in plant

genomes has been reviewed in more detail by Sahebi

et al. (2018).

Most successful TE mobilization events are neutral or even

deleterious to the host. They can cause changes in the pattern of

gene expression and alter gene function by up- or down-

regulating adjacent genes following insertion into promoter

regions, introns, exons or downstream regions (Makarevitch

et al., 2015; Deneweth et al., 2022). Also, they may become a

source of small interfering RNAs (siRNAs) (Piriyapongsa and

Jordan, 2008; Gill et al., 2021). In order to protect integrity of the

host genome, TEs are silenced and the state is epigenetically

heritable (Fultz et al., 2015). In general, de novo silencing of

active TE involves DNA methylation and repressive

modifications of histones. These epigenetic marks are

maintained across subsequent mitotic divisions and

transmitted from generation to generation. Importantly,

precise mechanisms resulting in TE inactivation depend on

the location of a TE copy in the genomic context (Sigman and

Slotkin, 2016)
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In order to recognize TEs showing ongoing activity, it is

necessary to use tools targeting one of the molecules produced in

the course of mobilization, i.e. RNA transcripts, extrachromosomal

linear DNA (eclDNA), extrachromosomal circular DNA

(eccDNA), small RNA or TE-encoded proteins (Figure 1). It is

also important to monitor whether mobilized copies are competent

to successfully reintegrate with the host genome to produce novel

insertion sites.

The approach used by B. McClintock can be viewed as the

first method of monitoring TE activity, as she observed that Ac

as an activator autonomous TE mobilized non-autonomous Ds

elements resulting in chromatid breakage. Fortunately, we have

come a long way since then, and new possibilities and

approaches are constantly emerging. The subject of the review

is to summarize methods used for the analysis of TE activity and

to discuss their advantages and specific applications. Special

attention is paid to the LTR-RTs, which are considered the most

abundant TEs in plant genomes (Deniz et al., 2019). The

described methods are divided on the basis of their

operational principles, the position of target molecules in the

process of transposition and their ability to capture real cases of

actively transposing elements. Their possible theoretical and

practical drawbacks are also discussed. Finally, conceivable

strategies and combinations of methods resulting in an

improved performance are proposed.
Detection of TE-derived transcripts

As LTR-RTs require the formation of an RNA intermediate,

it is the first target usable for the evaluation of their activity.

Generally, LTR-RT-derived RNAs can be identified using tools

similar to those used for monitoring gene expression, i.e.

techniques based on nucleic acid hybridization (northern

blotting, microarrays), PCR (RT-qPCR), or transcriptome

sequencing (RNA-seq).

Historically, northern blotting was used as the first method

of choice (Manninen and Schulman, 1993; Meyer et al., 1994;

Pozueta-Romero et al., 1995). With the development of new

technologies, its significance gradually declined due to the

complexity of protocols and necessity to ensure high amounts

of input RNA. Subsequently, methods based on RT-qPCR

started to be utilized to monitor TE activity in plants (Marcon

et al., 2015; Paz et al., 2015; Jiang et al., 2016; Voronova, 2019;

Usai et al., 2020). An important limitation of RT-qPCR is that it

targets individual copies or TE families grouping very similar

copies and specificity is provided by primers used for qPCR.

Hence, the assay requires prior knowledge about propensity of

the studied copy to be mobilized. On the other hand, it may be

problematic to design specific primers to investigate TEs from

different families (Morillon et al., 2002). Another limitation is

the fact that the target sequence may include nucleotide

substitutions and/or indels in transcripts produced from
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different copies. In such case, northern blotting seems to be a

good complementary method, as it may reveal the size

distribution of TE-derived transcripts, including full length

TEs (Böhrer et al., 2020).

A global analysis of TE-derived transcripts can be produced

with microarrays (Picault et al., 2009; Rocheta et al., 2016).

Comprehensive information about the whole spectrum of

actively transcribed TEs can also be captured by RNA-seq

based on massive parallel DNA sequencing technologies

(Gürkök, 2017; Oberlin et al., 2017; Qiu and Ungerer, 2018;

Vangelisti et al., 2019; Jiménez-Ruiz et al., 2020; Kirov et al.,

2020). RNA-seq data have been utilized and interpreted

differently in reports aiming at the description of global

activity of TEs. While some reports simply presented a

spectrum of TEs captured in RNA-seq reads (Gürkök, 2017;

Jiménez-Ruiz et al., 2020), in other reports, especially those

concerning plant species for which high quality reference

genomes were available, TE-derived transcripts were mapped

to the reference genome assembly (Li et al., 2010; Hollister et al.,

2011; Valdebenito-Maturana and Riadi, 2018). However, owing

to the fact that some TE families comprise numerous copies and

the evolutionary relationships among TE families can be

complex, interpretation of the RNA-seq data remains

challenging. Different strategies have been implemented, solely

or in combination, to confirm TE expression from RNA-seq

data, i.e. mapping TE-derived reads to a reference genome, a TE

pseudogenome and a model transcriptome (Lanciano and
Frontiers in Plant Science 03
Cristofari, 2020). Precision of the mapping process can be

significantly improved by using longer reads provided by

PacBio or Oxford Nanopore technologies (Sexton and Han,

2019). When using them it is much easier to predict if the

sequenced TE-derived transcript has a potential to complete its

full life cycle, or vice versa, whether it does not contain signs of

inactive forms such as chimeric transcripts. Available

bioinformatic tools and techniques for TE mapping to

reference genomes were recently reviewed by O'Neill

et al. (2020).

In general, with respect to all TE-derived transcript targeting

techniques, it is necessary to be aware that there are issues that

can impact clarity of results when the primary interest is to

investigate only actively transposing TEs. It is because a

significant share of TEs is transcribed by PolII and processed

into 21~24 nt siRNA, involved in epigenetic silencing of TEs

(Tang et al., 2022). Moreover, stress-dependent genome

demethylation (Pandey et al., 2017; Liang et al., 2019) may

result in increased expression of TEs. Also, transcripts

containing sequences derived from TEs may also include

chimeric transcripts containing both TE and genic fragments,

e.g. those resulting from the initiation of transcription from a TE

promoter or from exonization of intronic TE insertions. Such

transcripts are obviously not an indication of ongoing

transposition activity, but still they can be abundant in RNA

samples. Besides, active post-transcriptional suppression

mechanisms by TE-derived sequences was also described
FIGURE 1

An overview of target molecules generated in the course of LTR-RT transposition and methods suitable for their detection. The meaning of
individual abbreviations is as follows: LTR-RT, Long Terminal Repeat Retrotransposon; RT-qPCR, Reverse Transcription – quantitative PCR; IN,
integrase; DSB, Double Strand Break; eclDNA, Extrachromosomal Linear DNA; eccDNA, extrachromosomal circular DNA; S-SAP, Sequence-
Specific Amplification Polymorphism; TD, transposon display; WGS, Whole Genome Sequencing; ALE-Seq, Amplification of LTR of eclDNAs
followed by Sequencing.
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(Fultz et al., 2015). The above-described drawbacks and the fact

that transcription is only an initial step in the process of

transposition suggest that monitoring TE-derived transcripts is

not an optimal strategy aiming at the identification of TEs

capable of completing new insertion. There is a serious risk of

misinterpretations and incorrect conclusions deeply discussed

also by Deininger et al. (2017). However, expression-based

assays can be used to support results concerning TE mobility

produced by using other approaches.
Detection of TE-encoded proteins

One of the possible manifestations of TE mobilization is

translation of TE-encoded proteins constituting an essential

transposition machinery. Thus, theoretically such proteins can

also be used for monitoring an ongoing process of TE

mobilization. It is necessary to emphasize that some types of

TEs, e.g. SINEs or MITEs, referred to as non-autonomous, do

not encode any proteins and utilize transposition machinery

provided by their autonomous counterparts, LINEs and related

DNA transposons, respectively. Historically, proteomic studies

related to TE activity were based on western blotting. Western

blot is an analytical technique used to detect a specific protein in

a mixture of all proteins extracted from a tissue sample. Thus, TE

mobilization-related experiments focus on a limited group of

TE-derived proteins, such as transposases (Torres et al., 2013).

The advantage of western blotting is that it can reveal events

where internal mutations within coding regions of a TE prevent

protein translation and subsequently hamper TE transposition.

Such cases remained unrevealed by the analysis of TE-derived

transcripts. Drawbacks of western blotting include limited

availability and sensitivity of reagents, potential nonspecific

activity of antibodies between related families of TEs, and

necessity to produce large quantities of the starting material.

One of the most promising approaches for proteomic

analysis is the application of methods based on mass

spectrometry (MS) that may provide broad-spectrum results.

Generally, MS is used to determine the mass of particles in order

to determine the elemental composition and chemical structure

of molecules, including complex substances, such as peptides. In

the case of peptide analysis, combination of liquid

chromatography (LC) with MS (LC-MS or LC-MS/MS),

allowing for broad-spectrum analyses even down to the level

of their amino acid sequences, are the most frequently used

techniques. Obtained sequences can subsequently be evaluated

with respect to the presence and the type of TE-derived proteins

in analysed samples (Maringer et al., 2017). For example, Vuong

et al. (2019) used MS to identify proteins of human TEs

belonging to the L1 family of LINEs. In turn, Wang et al.

(2008) used LC-MS/MS to study proteins activated by the

moss Physcomitrella patens upon high salinity stress, revealing

TE-derived proteins as being differentially expressed. Matrix
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Assisted Laser Desorption Ionization - Time of Flight (MALDI-

TOF-TOF) combined with MS was also used to reveal proteomic

background of sporadic flowering in bamboo species, suggesting

a direct relationship of TE activation and the induction of

flowering (Louis et al., 2015).

With respect to the fact that proteins are synthetized in initial

stages of the TE transposition process, it is necessary to realize that

proteomics, while allowing for detection of actively transposing

TE, also bears some limitations. Feschotte and Pritham (2007)

reported that ancient TEs were less likely to be actively

transposing, however they might still express proteins, especially

when they originated from domesticated TEs, and at present those

proteins fulfill essential host cell functions. Altogether, proteomic

techniques may provide unique insights to investigations on the

TE activity, e.g. involvement of TE-derived proteins in the

assembly of protein complexes. However, the employment of

complementary strategies is needed to obtain a comprehensive

landscape of actively transposing TEs. Proteomics Informed by

Transcriptomics (PIT) may be one such prospective strategy. In

this method, proteomic MS/MS spectra are searched against open

reading frames derived from assembled RNA-Seq transcripts. This

approach can reveal previously unknown translated genomic

elements or can also identify hotspots of incomplete genome

annotation. PIT was initially generated in general principle,

however, it can be easily tuned to investigate TE ongoing

activity (Davidson et al., 2017; Maringer et al., 2017).
Detection of extrachromosomal
linear DNA

The formation of extrachromosomal linear DNA (eclDNA)

molecules is inherent to the process of LTR-RT mobilization.

LTR-RTs contain two ORFs, Gag encoding a coat protein, and

Pol encoding a polyprotein comprising four domains, i.e.

reverse-transcriptase (RT), RNase H (RH), aspartic protease

(AP) and integrase (INT). The life cycle of LTR-RTs begins

with transcription of an active LTR-RT copy by a host-encoded

RNA polymerase II, followed by synthesis of LTR-RT-encoded

proteins, formation of virus-like particles (VLPs) encapsulating

the RNA template, and its reverse transcription resulting in the

formation of eclDNA. Subsequently, eclDNA enters the nucleus

and integrates with the host genome (Havecker et al., 2004).

Thus, the detection of eclDNAs seems to be an exquisite

approach to mine for actively transposing LTR-RTs

(Grandbastien, 2015), as they represent the final intermediates

in LTR-RT retrotransposition (Figure 1). However, eclDNA can

occur in cells also as a result of other events, such as cell lysis-

originating eclDNA, as cells are constantly being lysed, or

extrachromosomal linear microDNA interspersed with

microRNAs (Sun et al., 2019). All these eclDNA sources may

contain LTR-RT sequences, but only in the case of linear

products resulting from the transposition process, the
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identified fragment is expected to be terminated with LTR

sequences, without additional fragments of genomic DNA

sequence. Thus, a stage allowing selection of LTR-RTs should

be included. A strategy based on PCR amplification utilizing a

primer annealing to the tRNA primer binding site (PBS) could

be used. It was originally applied to generate PCR-based iPBS

molecular markers (Kalendar et al., 2010), while later it became

the basis of SIRT (Sequence-Independent Retrotransposon

Trapping) – the first method using LTR-RT-derived eclDNAs

as targets (Griffiths et al., 2018). It took advantage from the fact

that eclDNA ends are blunt-ended and competent for ligation of

synthetic adaptors. Subsequently, using PCR primers

complementary to the adaptor and to the PBS, a segment

comprising the 5´LTR was amplified. When compiling

complementary PBS primers, they used the fact that actively

transposing LTR-RTs described in plants use predominantly as

the initiator methionine tRNA (Met-iCAT) (Wicker et al., 2007;

Kalendar et al., 2010). Thus, PBS sequences consist of 12

nucleotides complementary to the terminal nucleotides of the

MET-iCAT tRNA. To ensure specific PCR amplification,

the PBS-specific primers were therefore extended using the

knowledge that two terminal nucleotides of 5′ LTR mostly end

in cytidine and adenosine (Griffiths et al., 2018). The

disadvantage of the SIRT method is that it utilizes Sanger

sequencing and that PBS-anchored primers are specific to

particular LTR-RTs, which limits its usefulness for a global

analysis of all LTR-RT families. It also turned out that the

concept cannot be applied to large and TE-rich genomes,

To eliminate these disadvantages, the ALE-Seq (amplification of

LTR of eclDNAs followed by sequencing) approach was developed

(Cho et al., 2019). In comparison to SIRT, the ALE-Seq protocol

utilizes more versatile primers complementary to PBS (or their

combinations), high throughput sequencing, and is more elaborate

as it includes adapter ligation, transcription and reverse transcription

targeted to PBS domains. On the other hand, the ALE-Seq protocol

is markedly more selective and efficient than SIRT, which relies on

the single PCR amplification (Cho et al., 2019). The method is

relatively recent, its applicability has been proved by the

identification of actively transposing LTR-RTs in rice and tomato.

On the basis of subsequent clustering of sequenced reads some

retroelements were recognized as newly identified families for the

respective genome. To summarize, ALE-Seq has potential for future

use allowing reference-free annotation of new, active retroelements,

what is especially important in plant species for which no reference

genome assemblies are available (Satheesh et al., 2021).
Detection of extrachromosomal
circular DNA

Some LTR-RT-derived eclDNA molecules were shown to be

circularized. As integrase (IN) molecules are attached to LTRs of

eclDNAs, their homodimerization causes the formation of a
Frontiers in Plant Science 05
pseudocircular but unclosed structures. Following their

recognition as double strand breaks by DNA repair

machineries in the nucleus, they are ligated resulting in closed

extrachromosomal circular DNA (eccDNA) molecules

(Figure 1). As such, they do not directly participate in the

process of transposition and can be seen as mobilization by-

products, however, their presence provides information about

actively transposing LTR-RTs (Lanciano et al., 2017).

It should be stressed LTR-RT transposition is not a sole

source of eccDNAs; they can also occur as a result of other

cellular processes. They are common in eukaryotes and can be

very heterogenic in number, length, origin, and role as reviewed

by Cao et al. (2021).

The first methods of eccDNA detection, i.e. inverse PCR

amplification of LTR-LTR junctions and electron microscopy,

suggested that some circles originated from TEs, mostly LTR-

RTs (Hirochika and Otsuki, 1995) and Mutator-like class II

elements (Sundaresan and Freeling, 1987). Advances in

sequencing techniques contributed to the development of

efficient eccDNA detection methods along with the

bioinformatics tools for analysis of such data.

The first high-throughput method of sequencing eccDNA,

Circle-Seq, was developed for yeast and consisted of alkaline-

based extraction of circular DNA, followed by digestion of linear

DNA, eccDNA amplification using j29 DNA polymerase and

sequencing on the Illumina platform using SE mode (Møller

et al., 2015). Soon after, based on similar assumptions, a

standardized Mobilome-seq protocol of extraction and

Illumina SE sequencing of eccDNA from plant tissues was

established (Lanciano et al., 2017). Another approach, CIDER-

Seq (Circular DNA Enrichment sequencing) method, originally

developed for analysis of plants infected with viruses, utilizes

electrophoresis-based size-selection as the first step of sample

preparation, followed by random amplification of circular DNA

with j29 DNA polymerase, repair by DNA polymerase I and

sequencing using Single Molecule Real Time sequencing (Pacific

Biosciences) (Mehta et al., 2019).

The production of large amounts of sequencing data raises

the need for simultaneous development of analytical tools.

Circle-Map (Prada-Luengo et al., 2019) and Circle_finder

(Kumar et al., 2020) were developed for identification of

human tumor related eccDNA sequenced using short-reads

technology. The downside to these tools is that they both

require a reference genome as an input file and they were not

tested on plant data. Short reads can be also analysed using

ECCsplorer (Mann et al., 2022), a tool for mapping reads to the

reference genome, identifying genomic origin of eccDNAs on

the basis of read distribution, coverage, discordant mapping, and

split reads, but also enabling reference-free clustering of reads.

This helps to identify and annotate LTR-RTs enriched in

eccDNA libraries. eccDNA analysis from long reads is possible

using the CIDER-seq2 (Mehta et al., 2020). Although the

method was developed for identification and characterization
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of plant virus genomes, and includes the ‘annotate’ module that

is restricted to viruses annotation, part of the pipeline that

outputs eccDNA candidates and their genomic localization can

be used for the identification of LTR-RTs. Other long-reads

based tools, such as CReCIL (Wanchai et al., 2022) allow not

only efficient identification of circular DNA but also annotation

and Circos-based visualization of assembled circles, but its

performance was tested only on long-reads from mammals

eccDNA sequencing. Another tool, ecc_finder (Zhang et al.,

2021) is based on a pipeline applied for the analysis of

Mobilome-seq data originated from plant tissues (Lanciano

et al., 2017). The pipeline allows analysis of both short and

long reads and can be run in the reference genome and

reference-free modes.

The eccDNA identification was reported to be useful for

monitoring mobilization of previously known actively

transposing TEs in Arabidopsis, rice and tomato (Lanciano

et al., 2017; Benoit et al., 2019; Lanciano et al., 2021; Roquis

et al., 2021; Wang et al., 2021; Zhang et al., 2021; Mann et al.,

2022) and de novo identification of mobilized LTR-RTs, as

shown for potato (Esposito et al., 2019), poplar (Sow et al.,

2021) and carrot (Kwolek et al., 2022).

Mapping eclDNA or eccDNA sequencing reads to the

reference genome may provide a clue as to what is the TE copy

that has been undergoing mobilization. Ideally, a reference

genome highly related to the individual used for eclDNA or

eccDNA should be used. However, the typical properties of TEs,

such as their highly repetitive character and the fact that TE

families can be highly interrelated within a given species may

complicate conclusions driven from such analyses.
Identification of novel insertion
sites produced by actively
transposing elements

The life cycle of a TE is completed upon its insertion into a

new position in the host genome (Figure 1). Such de novo

insertions are thus present in the progeny while they are

absent in the ancestral plants. In earlier studies, these

uncommon events were recognized only when they resulted in

changed phenotypes. Obviously, these events represent a very

small proportion of the total number of successful transpositions

resulting in the integration occurring in genic regions.

Historically, the principles of positional (genetic map-based)

cloning were used to identify insertional polymorphisms in the

genome. However, mapping with high resolution requires

numerous mapping populations and many genetic markers,

thus it is costly and time consuming. It is therefore not suitable

for mapping newly transposed TEs, although one can find some

examples here as well (Bortiri et al., 2006). Identification of TE

insertion sites and resulting transposon insertion polymorphisms

(TIPs) can be also performed using marker systems derived from
Frontiers in Plant Science 06
conservative sequences specific to certain TEs (Kalendar and

Schulman, 2006) or by a modification of the amplified fragment

length polymorphism (AFLP) protocol (Vos et al., 1995). It is

based on comparing the distribution of copies of a particular TE

family in a collection of closely related accessions and works

especially well for TE families with a number of copies highly

uniform in their sequence, which is a proxy for recent or ongoing

transposition. Two AFLP modifications aiming at the

identification of TIPs have been developed, i.e. sequence-specific

amplification polymorphism (S-SAP), used for the identification

of LTR-RT insertions, where the final amplification is performed

with a retrotransposon-specific and a MseI-adaptor-specific

primer (Waugh et al., 1997), and transposon display (TD) using

two rounds of PCR with nested transposon-specific primers (Casa

et al., 2000; Grzebelus et al., 2007) and applied mostly to identify

TIPs produced by DNA transposons. Those methods have often

been used to identify TIPs derived from few known TE families.

One of the first attempts where the S-SAP method was

successfully applied to identify a newly inserted LTR-RT was

reported by Tahara et al. (2004). They identified Ty1-copia

retrotransposons in sweet potato activated in the callus. Similar

approach was used by Yamashita and Tahara (2006), where a

polymorphic S-SAP product was identified as a LINE

retroelement activated in meristem stem cells. There are

examples of S-SAP being successfully used also to identify

ongoing transpositions upon stress other than in vitro cultures.

For example, Woodrow et al. (2010) identified Ty1-copia

transposition in durum wheat under salt and light stress. The

effect of interspecific hybridization and polyploidization on the

actively transposing LTR-RT using S-SAP was evaluated by

Gantuz et al. (2022). Another TIP identification system named

palindromic sequence-targeted PCR (PST-PCR v.2) was proposed

by Kalendar et al. (2021). It relies on the use of capturing primers

targeting palindromic sequences arbitrarily present in natural

DNA templates in combination with a sequence –specific

primer. PST-PCR v.2 consists of two rounds of PCR. The first

round utilizes a combination of one sequence-specific primer with

one capturing (PST) primer. The second round uses a

combination of a single (preferred) or two universal primers;

one anneals to a 5′ tail attached to the sequence-specific primer

and the other anneals to a different 5′ tail attached to the PST

primer. The key advantage of PST-PCR v.2 is to quickly produce

amplified PCR fragments containing a portion of the template

flanked by the sequence-specific and capturing primers. The

approach allowed characterization of Ac transposon integration

sites (Kalendar et al., 2021). Lack of restriction digestion and

adapter ligation, i.e. steps required in S-SAP or TD, reduces the

cost and time of identifying new insertion sites.

All wet-lab methods are primarily useful for monitoring the

mobilization of previously identified TEs, e.g. under stress

conditions or in a range of genetically diverse accessions, since

they require the use of primers with a sequence specific to the

sequence of the investigated TE. Moreover, the specificity of the
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amplification and the reliability of the new insertion sites should

be confirmed by sequencing.

In 2004, the 454 technology became commercially available

next generation sequencing (NGS) platform. Since then, NGS

began to be widely applied to study plant TEs. In the early stages,

they were usually combined with other techniques based on PCR

amplification of regions specific to TEs. As an example, Monden

et al. (2014), produced a LTR-RT libraries derived from eight

strawberry cultivars, based on the primer binding site (PBS)

adjacent to the conserved 5′ LTR motif and sequenced them

using Illumina HiSeq2000. It allowed detection of cultivar-

specific LTR-RT insertion sites.

Another approach for genome-wide TIPs detection produced

by a single TE family includes AFLP-based enrichment of DNA

fragments in TE sequences followed by Illumina library

preparation and sequencing. The recently published TEAseq

pipeline (Lyu et al., 2021) developed for maize Ds transposons

consists of samples barcoding, TE enrichment, library preparation

and Illumina sequencing. The bioinformatics workflow for

sequencing data analysis starts from de-barcoding, next reads

containing the TE sequence are identified, the TE-portion of the

read is trimmed and the remaining portion of the sequence is

mapped against the reference genome to identify the insertion site.

The method was successfully used for the identification of 35,696

putative germinal insertion sites in over 1,600 Ds insertional

mutants. The major advantage of such approach is not only

more detailed information about the number of TE insertions

and the level of polymorphism among tested individuals but also

the availability of sequences of regions flanking insertions, that is

vital for verification of novel insertion sites and their

downstream analyses.

With the advent of high throughput sequencing technologies,

strategies have been developed tomine for TE insertion sites using

raw reads and a suite of bioinformatics tools is currently available

(Serrato-Capuchina and Matute, 2018; Vendrell-Mir et al., 2019;

Fan et al., 2022). Depending on the purpose of the analysis and the

type of investigated TEs, different tools and approaches are being

developed. Some tools like the TRACKPOSON (Carpentier et al.,

2019) can identify TIPs very quickly and efficiently using

discordant reads identified in the process of reads mapping

against a TE sequence for the identification of insertions based

on their position in the reference genome. It shortens time of the

analysis at the expense of the precise determination of the site of

insertion. Nevertheless, the identification of ‘insertion signatures’,

i.e. TE sequences in specified genomic windows rather than their

precise locations, might be the first choice for large-scale analysis

of LTR-RTs, including thousands of re-sequenced genomes, as

shown for the analysis of 3,000 rice genomes (Carpentier et al.,

2019). The method reports both reference and non-reference

insertions and does not require any prior TE annotation in the

reference genome.

Tools based on the usage of discordant reads and split-reads

report precise localization of insertion sites. That group of tools
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often requires high quality annotation of TEs in the reference

genome, which in case of non-model organisms may limit their

utility. In spite of higher computation demands, they can be

efficiently used for large-scale population studies. Evaluation of

this type of analysis make easier if another selective step is

included in the experiment, such as the principle of TE sequence

capture described firstly by Baillie et al. (2011) on the example of

retrotranspositions registered in the human brain. Subsequently,

this principle was used by Quadrana et al. (2016) in mining of

transposition events within sequencing data for 211 Arabidopsis

thaliana accessions. The SPLITREADER used here (Quadrana

et al., 2016) was utilised for a global analysis of LTR-RTs in 602

tomato accessions and TIP-based GWAS (TE-GWAS; TIP-

GWAS), that allowed identification of retrotransposon

insertions associated with important phenotypic traits, such as

flavor (Domıńguez et al., 2020), while insertional polymorphism

of class II MITEs in 3,000 rice genomes was analysed using

PoPoolationTE2 (Kofler et al., 2016) and TIP-based GWAS

showed association of particular MITE copies with MITE copy

number, suggesting that MITE subfamilies originate from few

“master” copies (Castanera et al., 2021). Another short read

based method, RelocaTE2 (Chen et al., 2017) was used to analyse

copy number and distribution of mPing, Ping and Pong class II

elements actively transposing in rice in 3,000 rice genomes

(Chen et al., 2019) and to detect de novo insertions of mPing

in 272 rice recombinant inbred lines (RILs) developed from a

cross between Nipponbare and HEG4 known to carry active

mPing (Chen et al., 2020).

The obvious prerequisite for their utilization is availability of a

high quality reference genome. The combination of high

throughput sequencing and in silico discovery of new TE

insertion events currently seems to be the most efficient strategy.

Nevertheless, the risk that some new insertions are not being

recorded still remains, but can be reduced by sufficient amount of

reads i.e. it is necessary to achieve a high sequencing coverage.

It is also possible to utilize a pan-genome approach, i.e. to

compare two or more genome assemblies representing the same

or closely related species, with the intention of finding TIPs

differentiating those genomes. However, availability of multiple

genome assemblies limits the usage of such approach to the

identification of TIPs and analyses of contribution of TEs to

genome organization, as shown for four maize genotypes

(Anderson et al., 2019), rather than for tracking or

identification of active TEs.

A further significant improvement in the identification of

TIPs may be achieved by the use of long-read NGS techniques,

such as the Oxford Nanopore technology (ONT) (Ellison and

Cao, 2020; Ewing et al., 2020). While short reads technologies

work well in identifying insertion sites of small TEs, such as

MITEs, long reads significantly improve the efficiency of analysis

of longer elements, especially LTR-RTs that are the most

abundant TEs in plant genomes. For example, the utility ONT

was shown for detection of novel insertions of actively
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transposing LTR-RTs in Arabidopsis; EVD (Debladis et al.,

2017) and ONSEN (Kirov et al., 2021), as well as for the

identification of TIPs in collections of insertional mutants of

Medicago and soybean (Song et al., 2021). Along with the

development of long read sequencing, tools dedicated to the

identification of insertions in such data are becoming available.

The first tool identifying TIPs in long read data was PALMER

(Pre-mAsking Long reads for Mobile Element insertion), based

on the alignment of reads to the genome and masking reference

insertions of the investigated TE family in the reads sequence.

Subsequently, the TE sequence is identified in the unmasked part

of the read and, based on the presence of specific features, the

software identifies ends of TE, and the remaining part of the read

is used to detect non-reference insertion sites (Zhou et al., 2020).

The method was successfully applied to the human genome and

it was adjusted to the most common human TEs (L1, Alu, SVA).

Hence it may not work for other types of TEs, e.g. those

abundant in plant genomes. Another pipeline, also developed

to screen actively transposing human TEs, utilizes a slightly

different strategy, as in the reads the portion mapped to the

genome is masked, while the remaining part is mapped to a TE

library, TE sequences are reconstructed and the remaining part

of the sequence is re-mapped to the reference genome to identify

non-reference insertions. In addition to TIPs identification, this

pipeline allows analysis of TEs methylation, that is called by the

software dedicated for identification of CpG methylation in

ONT reads (Ewing et al., 2020). The long read sequencing

methods produce reads overlapping full TE sequences and

their flanking reg ions , provid ing opportunity for

comprehensive characterization of those sequences. They also

allow identification of TEs insertions within repetitive regions.
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However, for the identification of novel insertions of actively

transposing elements, especially in plants, the Illumina platform

is still a method of choice, as efficient bioinformatic tools have

been available and the cost of sequencing is still much lower. The

Cas9-targeted sequence capture to enrich library with TE

sequences, in combination with long read sequencing, may be

an alternative solution, that would reduce the cost of sequencing

while still benefiting from the advantage provided by long reads

(McDonald et al., 2021).

Long read sequencing also improves genome assemblies in

TE-rich regions, TE detection, annotation and identification of

TIPs (Shahid and Slotkin, 2020), opening new perspectives for

better understanding of the TE biology and activity.

Based on the information provided, a screening was carried

out to estimate the popularity of selected perspective approaches

in the last period (see Figure 2). Here it is confirmed that the

frequency of their use is generally increasing, especially in the last

2 years, while the use of Oxford Nanopore technology seems to be

as most frequently used from compared approaches. Finally, the

most important advantages and disadvantages of all discussed

detection techniques were summarized (see Table 1).
Concluding remarks and
future perspectives

Historically, the importance of TEs in plant genomes has been

neglected. However, it turned out that their presence affects many

areas important for the life and development of plants, as well as in

terms of their possible use in the field of plant breeding. It puts

pressure on the availability of suitable analytical methods to trace the
FIGURE 2

Popularity estimation of selected perspective approaches based on the frequency of their use in recent scientific articles. * The number of
publications was generated by a search combining core keywords “plant + transposable + activ*” and keywords corresponding to individual
perspective approaches.
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pathways of actively transposing TEs. However, the interpretation of

results produced by the above-presented methods can be difficult

owing to the inherent properties of TEs. This review seeks to present

techniques that can be used to obtain information about mobilized

TEs and some pitfalls associated with the interpretation of results.

The methods were divided on the basis of the context of their use

with respect to the process of transposition.

Apparently, the use of some of the older methods mentioned

above can be expedient in some specific cases and can bring

unique information at relatively low price and experimental

demands. The most comprehensive results are seemingly

achievable by the methods based on massive parallel

sequencing, however, they have also their limits. One such

limitation is the fact that the created evaluation tools detect

only a limited part of TEs. Related to this is also the need for

thorough genomic TE annotation as an important prerequisite

for appropriate detection of new copies. Some of shortcomings

in the accuracy in bioinformatics data interpretation can be

significantly improved by NGS techniques producing long reads.

Generally, the strengths of one method are usually offset by other

shortcomings. To obtain a comprehensive picture, a

combination of methods based on different principles, seems

to be the most effective. One of such examples is a strategy

combining RNA-seq and MS, for which the designation

Proteomics Informed by Transcriptomics is used. From the

principle of the matter, a combination of methods targeting

molecules originating from the final stages of the transposition
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process of actively transposing TEs seems to be the most

suitable. Namely, it means to focus on methods aimed at

detecting novel insertion sites, eclDNA and eccDNA. From

this perspective, coupling WGS and analysis of the

intermediates or by-signals of actively transposing TEs, such as

eccDNA, ALE-Seq or multi-genomic comparisons, seems to be a

promising approach to reveal complete information regarding

TEs activity and their impact on host genome.
Author contributions

MBaj wrote first draft of the manuscript and perform

graphical support. AP wrote sections of the manuscript that

referred to current bioinformatics tools. DG contributed to

conception, compiled and revised author contributions. MBar

established conception and design, wrote some parts

of manuscript and revised author contributions. All

authors contributed to the article and approved the

submitted version.
Funding

This research was funded by Internal Grant of Mendel

University (IGA-ZF/2021-SI1007) and by the project

CZ.02.2.69/0.0/0.0/16_018/0002333 Research Infrastructure for
TABLE 1 Summary of approaches used to identify actively transposing elements.

Strategy used to
identify actively
transposing TEs

Main drawbacks Recommendations for efficient
targeting actively transposing TEs

Targeting TE-derived
transcripts

- existence of TE-derived transcripts not competent for transposition (chimeric
transcripts; transcripts involved in epigenetic silencing of TEs; post-transcriptional
suppression mechanisms by TE-derived sequences)

- combine with another technique targeting
products from the final phases of the
transposition process (e.g. eclDNA, eccDNA)

Targeting TE-derived proteins - non-transposing TEs can still express proteins
- requires equipment that is not so common in molecular genetics laboratories

- combine with another technique targeting
products from the final phases of the
transposition process (e.g. eclDNA, eccDNA)
- PIT (Proteomics Informed by Transcriptomics)

Targeting eclDNA - eclDNA can occur as a result of other cellular processes (e.g. cell lysis, existence of
micro-eclDNA)

- include a selective step to enrich TE-derived
eclDNAs (e.g. PBS complementary to MET-iCAT
tRNA)
- combine with high throughput sequencing
(ALE-Seq)

Targeting eccDNA - eccDNA does not directly participate in the process of transposition
- eccDNA can occur as a result of other cellular processes

- combine with high throughput sequencing to
identify novel insertion sites

Identification of novel
insertion sites by using TE-
based genotyping platforms

- laborious and time consuming and error-prone - use PST-PCR v.2 as a less laborious method

High throughput sequencing - availability of a high quality reference genome or a large set of resequenced
genomes of related accessions
- inaccuracies related to short reads provided by the Illumina technology (problems
with longer TEs, such as LTR-RTs; insertions in repetitive regions)

- use technologies producing long reads, e.g.
Oxford Nanopore
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