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Owing to iron chlorosis, pear trees are some of the most severely impacted by iron

deficiency, and they suffer significant losses every year. While it is possible to

determine the iron content of leaves using laboratory-standard analytical

techniques, the sampling and analysis process is time-consuming and labor-

intensive, and it does not quickly and accurately identify the physiological state

of iron-deficient leaves. Therefore, it is crucial to find a precise and quick

visualization approach for metabolites linked to leaf iron to comprehend the

mechanism of iron deficiency and create management strategies for pear-tree

planting. In this paper, we propose a micro-Raman spectral imaging method for

non-destructive, rapid, and precise visual characterization of iron-deficiency-

related metabolites in pear leaves. According to our findings, iron deficiency

significantly decreased the Raman peak intensities of chlorophylls and lipids in

leaves. The spatial distributions of chlorophylls and lipids in the leaves changed

significantly as the symptoms of iron insufficiency worsened. The technique offers

a new, prospective tool for rapid recognition of iron deficiency in pear trees

because it is capable of visual detection of plant physiological metabolites induced

by iron deficiency.

KEYWORDS
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1 Introduction

By the middle of this century, there will be significant food shortages as the world’s

population expands. To meet rising demands for food, agricultural yields must be increased

(Pretty et al., 2010). Meanwhile, 30% of the global population suffers from iron-deficiency

anemia, which is induced by inadequate iron consumption and low iron bioavailability

(Kassebaum et al., 2014). Iron is a crucial trace metal for plants and is necessary for both
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photosynthesis and chlorophylls synthesis. A substantial decline in

fruit productivity and quality will be caused by iron deficiency

because it will cause chlorosis, lower photosynthesis and respiration

rates, and inefficient water use (Larbi et al., 2006). Pear trees are some

of the most severely affected by iron deficiency, and large losses occur

each year because of chlorosis (Sanz et al., 1993; Therby-Vale et al.,

2022). Therefore, timely detection of iron deficiency in pear trees is

crucial for improving the healthy growth of pear trees, fruit quality,

and planting efficiency.

The standard approaches for the detection of iron content in

leaves, atomic absorption spectroscopy and inductively coupled

plasma-emission spectrometry, can accurately measure the total

iron content in leaves, but these operations are complicated, time-

consuming, and labor-intensive (Kucukbay and Kuyumcu, 2014;

Elango et al., 2021). Furthermore, there are limitations to using the

total iron content of leaves to discriminate the iron deficiency status of

plants. Studies have shown that iron-deficient leaves with intervein

chlorosis have total iron contents similar to those of iron-sufficient

leaves, which is known as the “chlorosis paradox” (Morales et al.,

1998; Romheld, 1998; Jimenez et al., 2009). Therefore, using the total

iron content to determine whether leaves are iron deficient

is inaccurate.

A chlorotic effect is caused by changes in metabolites, such as

pigments in the veins and leaf mesophyll, which are driven by iron

deficiency. As a result, occurrences of leaf iron deficiency can be quickly

determined using the quantity of chlorophylls and other leaf

metabolites (Li et al., 2006). Therefore, some researchers have

investigated the use of spectral reflectance to assess the

concentrations of leaf metabolites in plants. They discovered that

plant chlorosis is more strongly related to active iron content than

total iron content (Basayigit et al., 2015). Although reflectance

spectroscopy may identify iron deficiency in plant leaves quickly, the

wavelength band used is in the visible–near-infrared range. Molecular

compounds like chlorophylls have no fingerprints in this spectral range.

Therefore, this technology cannot specifically identify molecules such

as chlorophylls; instead, it relies on stoichiometric algorithms for

modeling and identification, which are low-migration and imprecise.

As a next-generation detection technology for agricultural

applications, Raman spectroscopy is advantageous because it allows

specific, multi-component analysis, is non-destructive, and rapidly

detects molecular compounds (Lew et al., 2020). Obvious

physiological changes caused by iron deficiency are significant

decreases in the content of leaf metabolites, such as chlorophylls

and lipids (Morales et al., 1991). The water-insensitive nature of

Raman spectroscopy enables the detection of these metabolites

without pre-processing in plant leaves. More importantly, Raman

spectroscopy can be integrated with a microscope to form a micro-

Raman spectrometer, which can generate maps of relative content

distributions of relevant leaf metabolites at a microscopic scale

(Baranski et al., 2005; Gierlinger et al., 2008; Heiner et al., 2018;

Zhang et al., 2020; Sasani et al., 2021).

In this paper, we conducted micro-Raman spectroscopy on iron-

deficient pear leaves. The variation of metabolites, including

chlorophylls and Lipids, in leaves affected by iron-deficiency was

studied, providing a novel approach for revealing patterns of spatio-

temporal variation and mechanisms of changes in metabolites

accompanying iron deficiency.
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2 Materials and methods

2.1 Materials and instruments

In North China, we discovered that a high-quality pear cultivar

(Pynus bretschneideri Rehd.) grafted to quince A (Hardy as

interstock) suffered from iron deficiency chlorosis in calcareous soil

in early spring, and that the condition was even worse in late spring to

early summer. As a result, a high-density training system has been

developed in Beijing research and demonstration pear orchard since

2016. This orchard is located in Beijing, China, 40 meters above sea

level in the continental monsoon climate zone. The annual average

temperature is 10°C, and rainfall occurs mainly from July to

September, with an annual average precipitation of 550 mm. The

soil is a silt loam consisting of clay, silt, and sand in proportions of

5.4%, 64.7%, and 29.9%, respectively (Zhao et al., 2020).

When iron fertilizer is sprayed on the leaves of yellow pear trees, the

leaves can partially return to green, indicating that the yellow

symptoms are caused by iron deficiency. To test the feasibility of

Raman spectroscopy for visual characterization of iron-deficient leaf

metabolites, basal leaves, young leaves, and apical leaves were picked

from the same branch of Huangguan (Pyrus bretschneideri Rehd) pears

with iron-deficiency symptoms, representing healthy, mildly iron-

deficient, and severely iron-deficient leaves, respectively (Rustioni

et al., 2018). This is because the degree of leaf iron deficiency varies

at different positions on a branch, with iron deficiency first occurring

on the youngest leaves at the top (Bertamini et al., 2002; Tremblay et al.,

2012). The experiment included three groups of biological repetitions,

totaling nine leaf samples.

Chlorophylls content within plant leaves is often characterized by

soil–plant analysis development (SPAD) values. We used a handheld

SPADmeter (SPAD-502, Konica Minolta Sensing, Inc., Osaka, Japan)

to measure the SPAD values of healthy, mildly iron-deficient, and

severely iron-deficient leaves to provide a reference for the analysis of

the Raman spectral results. SPAD was measured three times per leaf.

The micro-Raman spectrometer (HORIBA HR Evolution,

Horiba, Japan) can acquire high-resolution Raman spectra from

leaves, because of its 800-mm focal length. During the experiment,

a 532-nm continuous laser (100-mW power) was the excitation light

source, the grating was set to 600 l/mm, the ND filter was set to 3.2%,

the single-point integration time was set to 0.5 s, and the single-point

accumulation number was set to 1. For the mapping, an area of

500mm by 500mm and 25mm steps were chosen, and every pixel

corresponds to one scan. These settings ensure non-destructive

Raman spectroscopic measurements of plant leaves.
2.2 Data acquisition and analysis methods

The Raman spectroscopic measurement process for pear leaves is

shown in Figure 1. Leaves picked from the pear orchard were placed in a

portable refrigerator and sent to the laboratory for micro-Raman

spectroscopic analysis within 1 hour. Two regions, the midrib and

vein, were selected for Raman spectral imaging in each of the healthy,

mildly iron-deficient, and severely iron-deficient leaves. Through the

displacement of the x-axis and y-axis of the object platform, the Raman

hyperspectral data were acquired for the leaf regions. Using a simple
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characteristic band-spectral imaging method, pseudo-color maps of the

content distributions of specific substances in leaves can be obtained

quickly. All spectral data were processed using Python. The resulting

graph was drawn with origin software and PowerPoint (PPT).

To analyze the Raman spectra, cosmic rays were removed firstly.

Because the leaf is a complex matrix, it contains many fluorescent

substances. Therefore, under the excitation by visible light (532 nm),

interference by fluorescence signals caused a baseline shift of the

Raman spectrum of the leaves. For data analysis, we used adaptively

iteratively reweighted penalized least squares (airPLS) for baseline

correction (Zhang et al., 2010). The corrected Raman spectra were

then filtered using the Savitzky-Golay filter method with an order of

1 and a number of points of 3. The relative concentration analysis

was based on baseline-corrected, smoothed spectra. All spectrum

was maximum normalized. In order to evaluate the variability in

intensity of the Raman features of the spectra of the leaves (healthy,

mildly iron-deficient and severely iron-deficient), pseudo-color

maps based on the intensity of the Raman band was generated

using Python. Statistical analysis was carried out with Excel.

ANOVA was used to compare individual peaks between iron-

deficient and healthy leaves.
3 Results

3.1 Raman spectral characteristics of
metabolites in leaves with different degrees
of iron deficiency

Figure 2A depicts the phenotype of the tested leaves. The healthy

leaves are dark green in color and have white veins. Iron-deficient

leaves are yellow–green in color overall and greenish near the veins.

The chlorophylls pigment in leaves gradually decreased as iron

deficiency worsened, and the leaves gradually changed from

yellowish green to yellow, exhibiting severe symptoms of iron

deficiency and chlorosis. Changes in leaf chlorophylls contents

caused by iron deficiency were also confirmed by SPAD

measurements (Figure 2B). The figure shows that the SPAD values

of healthy, mildly iron-deficient, and severely iron-deficient leaves

were approximately 35, 17, and 5, respectively. The results showed
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that as iron deficiency worsened, the SPAD value of leaves decreased

gradually, as did leaf chlorophylls contents (Yamamoto et al., 2002).

Figure 2C depicts the characteristic peaks analysis of the leaf Raman

spectra. We found four spectral peaks in the average Raman spectrum of

leaves: 1286cm−1,1353cm−1, 1266cm−1, and 1444cm−1. Table 1 shows the

attribution of peaks. The Raman peaks at 1286 cm−1 and 1353 cm−1 were

assigned to chlorophylls (Cai et al., 2002; Mandrile et al., 2019), while

those at 1266 cm−1 and 1444 cm−1 were assigned to lipids (Czamara et al.,

2015). The intensities of the Raman peaks at 1286 cm−1 and 1353 cm−1

decreased sequentially in healthy, mildly iron-deficient, and severely iron-

deficient leaves, as shown in Figure 2C, indicating that relative leaf

chlorophylls content gradually decreased as the degree of iron-deficiency

worsened. This result is consistent with the SPAD values shown in

Figure 2B. Furthermore, the intensities of the Raman peaks at 1266 cm−1

and 1444 cm−1 gradually decreased with increasing severity of iron

deficiency. This suggests that iron deficiency causes decreases in both

chlorophylls and lipids. This is because iron deficiency reduces the

soluble lipids content of the epidermis and also lipids in the vesicle

membranes. The variations in characteristic chlorophylls and lipids peaks

detected by Raman spectroscopy were correlated with the degree of iron

deficiency in leaves according to cross-analyses with leaf phenotypes and

SPAD values. Finally, Raman spectroscopy could detect physiological

changes caused by iron deficiency in pear trees in a non-destructive and

timely manner.
3.2 Spatial distribution of metabolites
around the leaf midrib at different levels of
iron deficiency

Figure 3 depicts the Raman spectral imaging results of metabolites in

the regions near the midribs of leaves with varying degrees of iron

deficiency. In mildly and severely iron-deficient leaves, the intervein was

chlorotic, whereas the area near the midrib and the veins remained green,

as seen in the microscopic images. This is consistent with symptoms of

interveinal chlorosis associated with iron deficiency (Bertamini et al., 2002).

Based on the characteristic Raman peak of chlorophylls at 1353cm−1,

pseudo-color maps of relative chlorophylls content distributions near the

midribs were generated. In Figure 3C, the chlorophylls content in the

mesophyll region of healthy leaves is higher than in the region near the

midrib. As a result, the midrib and mesophyll regions can be

distinguished by chlorophylls distribution maps. When compared with

healthy leaves, mildly and severely iron-deficient leaves had lower

chlorophylls contents on the pseudo-color maps, making it more

difficult to identify the positions of the midribs. Because of the

difficulty of iron-ion transfer (Rustioni et al., 2018), the iron contents

in venous regions of iron-deficient plant leaves are higher than in the

inter-vein regions (Osório et al., 2014). This results in greater decreases in

chlorophylls contents in the intervein regions because they are more

susceptible to iron-deficiency stress than the midribs. In healthy leaves,

the chlorophylls contents between veins are higher than those of the

midrib and vein regions; iron deficiency causes lower chlorophylls

contents between the veins. Consequently, chlorophylls distribution is

uniform in Raman hyperspectral images, and veins cannot be identified.

The advantage of Raman spectroscopy is that it allows for single-

spectrum, multi-component analysis. Simultaneously, a distribution

map of the relative lipids content near the midrib was generated based
FIGURE 1

Schematic diagram of spectral-imaging measurement principles of the
micro-Raman spectrometer used for pear leaves.
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on the characteristic lipids peak at 1444cm−1. Iron deficiency can

cause a decrease in leaf lipids content, as shown in Figure 3D. There

are two main reasons for this: iron stress reduces the soluble lipids

content of the epidermis (Fernández et al., 2008); however, it also

reduces the lipids content of the thylakoid membrane. Furthermore,

the lipids content of the midrib was much lower than that of the

mesophyll region. This could be because there are no chloroplasts in

the midrib, resulting in reduced lipids contribution from thylakoid

membranes. Consequently, in Figure 3D, there is a clear difference in

lipids contents between the midrib and the mesophyll. This results in
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the pseudo-color map of lipids exhibiting relatively consistent

venation distribution in the visible light image in Figure 2B.

3.3 Spatial distribution of metabolites in the
leaf-vein region

Figure 4 depicts the results of a similar pseudo-color map analysis of

the area near the leaf veins. Like the midrib region, healthy leaves had

higher chlorophylls contents in the mesophyll and lower contents in the

veins. Because of differences in chlorophylls content distributions, it is
A B

C

FIGURE 2

Phenotypes, SPAD values, and Raman spectra of pear leaves with different levels of iron deficiency: (A) phenotypes of healthy, mildly iron-deficient, and
severely iron-deficient leaves; (B) SPAD values of leaves; (C) Raman spectra of leaves.
TABLE 1 Vibrational Bands and Their Assignments for Pear Leaf Samples.

band vibrational assignment

1266 d(=CH) (lipids)(Czamara et al., 2015)

1286 d(phenyl−OH) (phenolics)(Gill et al., 1970) + −d(CH)·n(CN) (chlorophylls)(Cai et al., 2002)

1353 undefined (chlorophylls)(Cai et al., 2002; Mandrile et al., 2019)

1444 a(CH2/CH3) (lipids)
(Czamara et al., 2015)
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possible to see similar structural textures of the leaf in Figure 4C as in

Figure 4B, allowing a clear distinction between the veins and mesophyll

regions. In Figure 4C, the chlorophylls content of the mesophyll gradually

decreases with the degree of iron deficiency in mildly and severely iron-

deficient leaves. The difference in chlorophylls contents between mesophyll

and veins in leaves was reduced as the degree of iron deficiency increased,

resulting in an unclear chlorophylls distribution profile in Figure 4C.

Consequently, a leaf texture structure similar to that shown in Figure 4B is

not visible. Similarly, Figure 4D depicts the lipids content distribution in the

vein-mapping region. The lipids content distributions in the vein-mapping

areas of the three types of leaves were more uniform than in the midrib-

mapping area. This could be because the veins are smaller in size, resulting

in a higher proportion of mesophyll.
3.4 Normalized intensities of chlorophylls
and lipids within the mapping area

The results of the preceding analyses show that micro-Raman

maps can visualize the metabolites (detected chlorophylls and
Frontiers in Plant Science 05
lipids) in leaves with varying degrees of iron deficiency. The

average normalized intensities of chlorophylls and lipids in the

mapping areas in Figures 3, 4 were calculated to more clearly

quantify changes in the relative contents of chlorophylls and

lipids with respect to the degree of iron deficiency in the mapping

area; these results are shown in Figure 5. In iron-deficient leaves,

including mildly and severely iron-deficient ones, the two

substances in the midrib and vein decreased significantly

compared with those in healthy leaves.

The mapping method was also found to be more stable than the

single-point acquisition method. The RSD of spectral characteristic

peak intensity of all single points in each leaf scanning area represents

the inaccuracy of single-point acquisition method. At the same time,

the RSD of the characteristic peak intensity of the average spectrum of

the scanning areas of the three samples in each category (healthy,

mildly iron-deficient, and severely iron-deficient) represents the

inaccuracy of mapping method. As shown in the Table 2, the RSD

of mapping is much smaller than that of single-point acquisition

measurement, so mapping method can improve the accuracy and

consistency of the results.
A B DC

FIGURE 3

Visible light images and Raman spectral images of midrib components in leaves with differing degrees of iron deficiency. (A)Visible light images of healthy
and iron-deficient leaves; (B) Microscopic visible light images of the midrib-mapping regions; (C) Pseudo-color maps of chlorophylls spatial distribution
in the midrib-mapping regions; and (D) Pseudo-color maps of lipids spatial distribution in the midrib-mapping regions.
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4 Discussion

In this paper, the feasibility of using the micro-Raman spectral

imaging method for detecting metabolites in iron-deficient leaves was

preliminarily explored, and visual detection of changes in the

distribution of leaf metabolites caused by iron deficiency was

discussed. Although the Raman spectral characteristics of

chlorophylls and lipids were not robust, we could still identify them

and relate temporal and spatial variations of their relative contents

with the degree of iron deficiency by Raman spectroscopy. We found

that iron deficiency resulted in decreased chlorophylls and lipids

contents in leaves, which was more pronounced in the

mesophyll regions.

Iron deficiency in pear trees can result in significant yield

reductions and even death. As a result, it is critical to determine the

physiological state of iron deficiency in pear leaves accurately and

precisely. Existing measurement methods primarily focus on

measurement of total iron content in leaves and reflectance

spectroscopy. The “chlorosis paradox” suggests, however, that total

iron content in leaves cannot accurately reflect the physiological state
Frontiers in Plant Science 06
of iron deficiency in plants, and the reflectance spectrum cannot

specifically identify changes in leaf metabolites caused by iron

deficiency. Compared with ICP-ES, the Raman spectral imaging

method proposed in this paper can visualize the physiological state

of iron deficiency in pear leaves with greater accuracy. It provides a

method for visual characterization of specific substances for studying

the mechanisms of plant responses to iron deficiency. Furthermore,

the ability to recognize temporal and spatial variations in metabolite

contents is expected to make different nutritional stresses

distinguishable. Plant nutrients such as nitrogen, magnesium, and

iron can cause leaf chlorosis, but there are subtle differences. The

distribution of chlorophylls in leaves is expected to distinguish stress

because of iron deficiency, magnesium deficiency, and nitrogen

deficiency (Bertamini et al., 2002; Tremblay et al., 2012; Rustioni

et al., 2018). These distinctions provide an opportunity for using

Raman spectroscopy for nutrient stress discrimination. Future

research will be focused on the use of Raman spectroscopy to

diagnose specific nutrient stresses in plants.

Plants also contain many fluorescent chromophores. The weak

Raman characteristics of many iron-deficiency-related substances
A B DC

FIGURE 4

Visible light images and Raman spectral images of vein-region components of leaves with differing degrees of iron deficiency. (A) Visible light images of
healthy and iron-deficient leaves; (B) Microscopic visible light images of the vein-mapping regions; (C) Pseudo-color maps of chlorophylls spatial
distribution in the vein-mapping regions; (D) Pseudo-color maps of lipids spatial distribution in the vein-mapping regions.
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may be obscured because of strong background interference by

fluorescence in leaf Raman spectra. Fortunately, we can detect

changes in chlorophylls and lipids contents in pear leaves caused by

iron deficiency. However, in the study of iron-deficiency mechanisms

in leaves, providing only temporal and spatial variation of these two

metabolites is insufficient; detection of variation in trace substances is

also required. Determining how to reduce the strong fluorescence

background and investigate high-resolution and high-sensitivity

Raman mapping technology for iron-deficiency-related metabolite

content maps is a critical and difficult task. In future work, shifted

excitation Raman difference spectroscopy (SERDS) can be used to
Frontiers in Plant Science 07
remove fluorescence interference by changing the acquisition method

(Theurer et al., 2021); a Fourier-transform Raman spectrometer

excited by near-infrared light at 1064 nm or an ultraviolet micro-

Raman spectrometer can also be employed to avoid fluorescence

background interference (Gallimore et al., 2018; Nazari and Holtz,

2018). However, increasing the spectral resolution of the micro-

Raman spectrometer can improve its ability to detect more

substances in one measurement. In terms of operation time,

existing micro-Raman spectroscopy relies on the point-scanning

mapping mode, which takes a long time. More advanced Raman

techniques could be used to solve this problem. The spectral imaging
A B

FIGURE 5

The average normalized intensity of chlorophylls and lipids in the mapping regions: (A) chlorophylls; (B) lipids. *, p ≤ 0.05. H, healthy leaves; ID-M, mildly
iron-deficient leaves; ID-S, severely iron-deficient leaves.
TABLE 2 The RSD calculated in the single-point and mapping acquisition methods.

Method Single-point Mapping
RSD

Sample 1 Sample 2 Sample 3
Category

C
h
l
o
r
o
p
h
y
l
l
s

Healthy 0.521133 0.265841 0.237239 0.061481

Mildly 0.668272 0.428599 0.546086 0.263762

iron-deficient

Severely iron-deficient 0.435153 0.383717 0.412524 0.120858

L
i
p
i
d
s

Healthy 0.343743 0.416906 0.361109 0.038703

Mildly

iron-deficient 0.356453 0.337559 0.343417 0.077702

Severely

iron-deficient 0.334797 0.141416 0.500061 0.009228
fr
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properties of coherent anti-Stokes Raman spectroscopy (CARS) and

stimulated Raman spectroscopy are excellent (Hu et al., 2019; Xu

et al., 2022). CARS is used to study anti-Stokes scattering, which not

only reduces integration time but also significantly reduces the

influence of fluorescence, improving mapping quality and speed.

Similarly, because of the two-photon resonance effect, stimulated

Raman spectroscopy increases the cross-section of Raman scattering

and excitation efficiency, which can significantly improve the signal-

to-noise ratio (SNR) and avoid fluorescence interference. High SNR

means faster mapping speed, which is desirable when scanning larger

areas. Using the techniques described above, it should be possible to

detect more iron-deficiency-related metabolites in addition to

chlorophylls and lipids and to fully utilize Raman single-spectrum,

multi-component analysis.

5 Conclusion

Pear trees are grown widely and are valuable economic crops.

Because the trees are iron-sensitive, iron deficiency is a common

problem in pear cultivation, particularly in calcareous soils. Existing

methods for determining iron deficiency in plants are destructive,

necessitate complicated sample-preparation procedures, and do not

accurately reflect the physiological state of plants suffering from iron

deficiency. The Raman spectral imaging detection method proposed

in this paper can detect iron deficiency on a microscopic scale without

pre-processing and can accurately, non-destructively, and rapidly

visualize changes in the relative content distributions of

chlorophylls and lipids in pear leaves. To the best of our

knowledge, this is the first use of Raman spectroscopy to investigate

iron deficiency in pear trees. We have developed a new method of

microscopic spectral image characterization for the study of

physiological changes in pear leaves during iron deficiency. In the

future, Raman spectroscopy could be used to study iron deficiency in

other plant species. Additional characteristic peaks on the Raman

spectrum for characterizing other substances will be mined with the

advantage of single-spectrum, multi-component analysis. The

metabolite-specific changes caused by iron deficiency in plants will

then be studied in significant detail on a microscopic scale. It will be

helpful to understand the mechanisms of plant responses to

iron deficiency.
Frontiers in Plant Science 08
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