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Light traps have been widely used for automatic monitoring of pests in the field

as an alternative to time-consuming and labor-intensive manual investigations.

However, the scale variation, complex background and dense distribution of

pests in light-trap images bring challenges to the rapid and accurate detection

when utilizing vision technology. To overcome these challenges, in this paper,

we put forward a lightweight pest detection model, AgriPest-YOLO, for

achieving a well-balanced between efficiency, accuracy and model size for

pest detection. Firstly, we propose a coordination and local attention (CLA)

mechanism for obtaining richer and smoother pest features as well as reducing

the interference of noise, especially for pests with complex backgrounds.

Secondly, a novel grouping spatial pyramid pooling fast (GSPPF) is designed,

which enriches the multi-scale representation of pest features via fusing

multiple receptive fields of different scale features. Finally, soft-NMS is

introduced in the prediction layer to optimize the final prediction results of

overlapping pests. We evaluated the performance of our method on a large

scale multi pest image dataset containing 24 classes and 25k images.

Experimental results show that AgriPest-YOLO achieves end-to-end real-

time pest detection with high accuracy, obtaining 71.3% mAP on the test

dataset, outperforming the classical detection models (Faster RCNN,

Cascade RCNN, Dynamic RCNN,YOLOX and YOLOv4) and lightweight

detection models (Mobilenetv3-YOLOv4, YOLOv5 and YOLOv4-tiny),

meanwhile our method demonstrates better balanced performance in terms

of model size, detection speed and accuracy. The method has good accuracy

and efficiency in detecting multi-class pests from light-trap images which is a

key component of pest forecasting and intelligent pest monitoring technology.
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1 Introduction

Agriculture development has been limited by many factors,

especially the frequent occurrence of crop pests, which has

seriously affected agricultural production. Crop pest control

has always been a priority issue for agricultural producers, and

plays an important role in guaranteeing world food security and

normal economic development. Chemical pesticides have been

an important weapon in the fight against pests for a long time,

and agricultural workers need to configure pesticide species and

doses according to the population dynamics of pests in real-

world scenarios (Wang Q.-J. et al., 2020), to prevent food safety

and environmental pollution caused by pesticide overuse. In

traditional agricultural production, the way to obtain pest

population dynamics in the field mainly relies on manual

surveys. However, this approach is labor-intensive and has

some obvious drawbacks: inefficiency, subjectivity, error-prone,

and lagging information. For the sake of food security and yield,

it is desirable to develop an automatic pest monitoring method

with high efficiency and accuracy.

Fortunately, with the development of information science,

new problem-solving ideas are offered (Li X. et al., 2021), namely

precision agriculture in which information technology is

integrated with agricultural production. In this modern

production context, capturing images of pests using light traps

and then counting and evaluating them by automated pest

detection methods based on computer vision technology has

become a mainstream research hotspot (Jiao et al., 2022b). From

the algorithmic viewpoint, early research has focused on

machine learning frameworks, can be summarized in two

main steps: pest-related information extraction from images as

feature vectors and machine learning classifiers for classification.

Xie et al. (2015) adopted a sparse-coding histogram with

multiple feature modalities to represent pest images, and

multiple-kernel learning (MKL) techniques were used to fuse

multiple features, to form a multi-class classifier for the

identification of 24 classes of pests. Yao et al. (2012) exploited

the radial basis kernel function to extract features such as color,

shape, and texture of each pest in the pest image which was taken

as input to the Support Vector Machine (SVM) for the

identification of four species of Lepidoptera rice pests. Wen

et al. (2009) proposed a method based on invariant local features

for the identification of common pests in orchards, and

compared the identification results of multiple classifiers on

five pest datasets. On the whole, the above machine learning

based pest identification methods have achieved good

performance to some extent, but most of the work of

traditional algorithms aims at solving the part of the pest

detection issue, the classification problem, while few focus on

the more challenging localization problem. Besides, their

performance is overly dependent on the applicability of

manually extracted features to the target, making it hard to be

applied in practical scenarios.
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With the upgrading of hardware and software, the rapid

development of deep learning has been driven. Compared with

traditional machine learning, deep learning techniques based on

Convolutional Neural Network (CNN) have the potential to

become an effective approach to solve challenging tasks in

intelligent pest monitoring because of their efficient feature

self-learning and self-organizing strategy power (Xie et al.,

2021). Object detection techniques based on deep learning

employ one-stage and two-stage strategies. To improve the

pest identification accuracy, two-stage algorithms with higher

accuracy but slower detection speed than one stage algorithms

are usually used to monitor agricultural pests (Jiao et al., 2022a;

Zhao et al., 2022). For example, for detecting densely distributed

aphids in the field, Li et al. (2022) proposed a multi-branch

convolutional neural network (Mb-CNN) based on density map,

which extracts different scale feature maps by multiple branches

of the model for generating aphid density maps, and finally

estimating aphid numbers. However, this method has specificity

and unable to be transferred to the detection of multiple

categories of agricultural pests. Zhao et al. (2022) designed an

improved Faster RCNN (Ren et al., 2017) model based on multi-

scale feature fusion for detecting diseases of strawberries in

natural environments and achieved 92.8% mAP, but the larger

computational demands led to reduced detection speed. To

gather population information of tiny pests in agricultural

greenhouses, Li W. et al. (2021) developed an end-to-end

model based on Faster RCNN, TPest-RCNN for detecting

whitefly and thrips in sticky trap images. Liu et al. (2022)

proposed a two-stage CNN model based on global activated

feature pyramid network (GaFPN) for detecting six tiny pests in

field scenes. Through global activated module (GAM), the

channel and location attention are extracted at different layers

of the feature pyramid in a parallel manner to generate the

selected weight, to balance the feature pyramid network and

solve some obstacles of tiny pest detection. However, when the

pest has a complex background, GaFPN fails to filter out the pest

features, resulting in sub-optimal detection results. Zhang et al.

(2022) improved the YOLOv4 network (Bochkovskiy et al.,

2020) via attention mechanism and contextual information to

detect pest regions in maize with different growth cycles. In

addition to targeting specific agricultural pests, some studies

have reported advances in detection methods for multi-class

agricultural pests. Wang Q.-J. et al. (2020) established a

standardized dataset consisting of 24 classes of typical

agricultural pest images, and reported the detection results of

four advanced deep convolutional neural networks, among

which YOLOv3 (Redmon and Farhadi, 2018) had the best

performance, yet these methods have not taken into account

the specificity of agricultural pest images. Jiao et al. (2020)

proposed an anchor-free region convolutional neural network

(AF-RCNN) that could detect 24 types agricultural pests by an

end-to-end way. AF-RCNN has poor performance in detecting

some pests with few training samples. Tang et al. (2021)
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proposed a real-time detection model Pest-YOLO based on

YOLOv4 and improved CNN for agricultural pest image data

mining, and several comparative experiments had shown the

performance of Pest-YOLO. Wang et al. (2022) designed an

efficient channel and spatial attention network (ECSA-Net), and

an optimized image pre-processing algorithm, Sparse Mask

Super-resolution (SMSR), to construct an automatic pest

identification framework, that was applied to detect ten pests

in the natural environment. But it is not applicable to real-time

detection. Jiao et al. (2022b) developed a two-stage model,

adaptive feature pyramid network (AFFP-Net), and

experimentally showed that 77.0% accuracy was obtained on a

large pest dataset containing 21 pest classes. While the network

is computationally intensive and difficult to apply to mobile

terminals. Although promising, there are various scale

variations, dense distributions and complex background

samples in the light-trap pest dataset, and pest detection

methods in agriculture still have the necessity to be optimized.

Besides, these high-performance CNN models have more

parameters and large computation, which are not conducive to

the real-time monitoring of agricultural pests and limit the

application to mobile devices. Hence, the above methods still

fail to satisfy the practical needs of real-time pest monitoring.

YOLOv5 (Glenn, 2020) is a state-of-the-art one-stage deep

learning framework that achieves optimal performance for real-

time object detection. However, as for agricultural pest

detection, it lacks the ability to extract key features from pest

images containing large background noise and dense

distributions, and struggles to capture detailed features for pest

instances belonging to few samples and extreme small size. This

motivates the development of an improved YOLOv5 model for

monitoring agricultural pests that is to achieve a balance

between detection speed, accuracy and model size. Firstly, to

strengthen the discriminative and representative ability of the

network for pest features in complex backgrounds, coordinate

and location attention (CLA) module is designed to be fused into

the backbone. The channel attention map is decomposed into

two parallel one-dimensional feature vectors, so that location

information is embedded in the channel attention, and

combined with local channel attention to filter some noise,

some useful pest features dominate with more discriminative

cues. Then, in view of the scale variation of pests, we propose a

grouping spatial pyramid pooling fast (GSPPF) module to

further augment the multi-scale representation of pest features

through fusion multiple receptive fields of different scale

features. Finally, a post-processing algorithm soft-NMS is

introduced in the prediction stage to improve the detection

accuracy of the network for overlapping pests. The improved

model was comprehensively evaluated through extensive

comparative experiments. Experimental results show that the

proposed lightweight detection models, AgriPest-YOLO,

ou tpe r fo rms o the r advanced de t e c t ion me thods ,
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which improves detection accuracy while maintaining

detection efficiency.

The remainder of this paper is organized as follows. Section

2 contains a brief introduction of the material used in this study.

Section 3 elaborates on the proposed pest detection method.

Section 4 reports the comparison experiment results and

analysis. Finally, we conclude our work and discuss future

work in section 5.
2 Materials

We evaluate our methods on a pest dataset called Pest24

(Wang Q.-J. et al., 2020). Pest24 is a large-scale, multi-target

agricultural pest standardized dataset where all images were

collected by automated pest trapping devices in real field

environments. Pest24 has the following significant features: (1)

a large amount of data. The basic information in the dataset is

shown in Table 1, that involves 24 categories of typical pests of

field crops and contains 25378 images, including 12701 training

images, 5077 validation images and 7600 test images, all of

which have a resolution of 800×600 pixels. (2) Complex

background. The complexity of the wild environment brings a

lot of uncontrollable factors resulting in the appearance of

irrelevant noise in the pest images. As shown in Figure 1, (a):

The non-target pest has similar appearance with the target pest.

(b): The non-target background region is too large and the

relative size of the target pest is reduced. (c): Shadows, occlusion.

(d): Inflection points caused by light. (3) Pest scale, the pest size

is very small and the relative scale is mainly distributed in (0,

0.01), other than that, the pest scale is extremely variable, up to

around 1600. (4) Unbalanced distribution of sample categories.

The images and the number of instances of each category of

pests are shown in Table 1, which can be seen that Pest24

belongs to the long-tailed distribution dataset. (5) Dense

distribution and target adhesions. (6) Interclass similarity and

intraclass variation. Note that more than one kind of complex

background may appear in a single image, such as the

appearance of non-target pest background and occlusion in

Figures 1C, D, which is an image with oversized non-target

background in addition to the presence of reflected light points.

As can be observed from Figures 1E, F: dense distribution, target

adherence and complex background are not present alone in a

single image. In conclusion, these characteristics of the dataset

pose a great challenge for the accurate detection of pests.

Data has a substantial impact on deep learning. In order to

enrich the diversity of training samples in the Pest24 dataset,

improve model robustness and avoid overfitting. As shown in

Figure 2, there were several online data augmentation methods

adopted: (1) HSV: color-space augmentation (2) Filp: flipping

with 50% probability (3) Translate: translation factor of 0.1 (4)

Scale: the scaling factor is randomly picked between 0.5 and 1.5
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(when the scaling factor equals to 1, the image size remains

constant). (5) Mosaic data augmentation, blending four training

images to improve the generalization ability of the model, which

has helped to detect tiny pests. In the HSV color space
Frontiers in Plant Science 04
augmentation method, the original image is converted from

RGB color space to the color space consisting of three

components: hue, saturation, and value, then the color

transformation is performed by perturbing these three
TABLE 1 Description of the 24 categories of pest information from Pest24 dataset, including the number of images, instances and Scale for each
category.

Index Pest name Scale
Number of
images

Number of
instances

Index Pest name Scale
Number of
images

Number of
instances

1
Rice
planthopper

0.034 316 1511 15 Spodoptera cabbage 0.42 1707 2302

2
Rice Leaf
Roller

0.123 944 1240 16
Scotogramma trifolii
Rottemberg

0.28 3223 4679

3
Striped rice
borer

0.186 454 1285 24 Yellow tiger 0.398 1388 1686

5 Armyworm 0.394 3828 8880 25 Land tiger 0.639 369 475

6 Bollworm 0.281 9049 28014 28 Eight-character tiger 0.441 154 168

7 Meadow borer 0.226 5526 16516 29 Holotrichia oblita 0.334 90 108

8
Athetis
lepigone

0.13 7520 30339 31 Holotrichia parallela 0.255 3111 11675

10
Spodoptera
litura

0.458 1588 1951 32 Anomala corpulenta 0.249 5228 53347

11
Spodoptera
exigua

0.138 3614 7263 34 Gryllotalpa orientalis 0.95 3629 6528

12 Stem borer 0.277 1357 1804 35 Nematode trench 0.32 118 167

13 Little Gecko 0.57 2503 4279 36 Agriotes fuscicollis Miwa 0.114 1814 6484

14
Plutella
xylostella

0.043 531 953 37 Melahotus 0.158 239 768
Scale represents the average relative scale (the ratio of the size of annotated bounding box to the size of original image).
D

A B

E F

C

FIGURE 1

Some examples of pest images in Pest24, the red boxes are the pests that need to be predicted; pest detection from light traps is affected by
various factors, (A-C, E, F): non-target pest background, (C, F): accidental occlusion, (B, D): oversized non-target background, (D): inflection
points caused by light, (E, F): dense distribution.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1079384
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2022.1079384
components in the HSV color space (perturbation coefficients

are 0.03, 0.7, and 0.5, respectively), to enrich the color

information of the training samples.

3 Methodologies

3.1 The proposed AgriPest-YOLO for
pest detection

YOLOv5 network is continuously optimized from YOLO

series algorithm (Redmon and Farhadi, 2017; Redmon and

Farhadi, 2018; Bochkovskiy et al., 2020; Chen et al., 2021),

which is a typical one-stage object detection algorithm.

Compared with two-stage target detection algorithms, such as

the most widely used Faster RCNN, YOLO algorithm takes the

whole image as input without generating proposal region, that

greatly improves the detection speed and reduces the

computational cost. The YOLO algorithm transforms the

detection problem into a regression problem. The detection

principle is shown in Figure 3, where the input image is
Frontiers in Plant Science 05
divided into S×S grids, and each grid is responsible for

detecting targets in which the central point falls within this

grid, and then generating prediction bounding box information

and confidence scores through regression. The prediction

parameters consist of the prediction bounding box

information (center coordinates: X, Y; length and width: W,

H), the confidence score (Conf) and the probability of different

classes (Pred). The confidence score is calculated as follows:

Conf ij = Pr Objectð Þ � IoUtruth
pred (1)

where Conf ij denotes the confidence score of the i-th

predicted bounding box of the j-th grid, and Pr(Object) is 1

when the predicted bounding box contains pest and 0 vice versa.

IoUtruth
pred is the possible intersection over union (IoU) between the

predicted bounding box and the target ground truth. After

generating the prediction bounding boxes, the final prediction

results are generated by the post-processing algorithm non-

maximum suppression (NMS) filtering.

The main components of YOLOv5 network include

backbone network, SPPF, neck, and head. There are five
FIGURE 2

Examples of different data augmentation methods; HSV: color-space augmentation; Flip: the image is flipped with some probability; Translate:
the image is translated with some proportion; Scale: the image is scaled within some range; Mosaic: the four training images are stitched
together after random cropping.
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versions of YOLOv5 depending on the depth and width of the

network, including YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l,

and YOLOv5x. The lightweight model YOLOv5s has the better

overall performance among the five versions and meets the

demand of real-time detection. However, it ignores the

particularity of pest images, so we propose an improved

YOLOv5s network, AgriPest-YOLO, for real-time pest
Frontiers in Plant Science 06
detection. The overall structure is shown in Figure 4, and the

components are as follows:

3.1.1 Backbone network
Backbone network mainly consists of Focus and CSP. Focus

module is mainly used to perform slicing operation on the input

image to assure adequate feature extraction. In the latest version
FIGURE 3

The principle of YOLO detection; X,Y are the center coordinates of the prediction bounding box; H, W are the length and width of the
prediction bounding box; Conf, Pred are the confidence score and class probability, respectively.
FIGURE 4

Pest detection network AgriPest-YOLO structure, consisting mainly of backbone network, GSPPF, neck and head.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1079384
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2022.1079384
of YOLOv5s, Focus module has been replaced by a 6×6

convolution operation (C1 module in the Figure 4). CSP

draws on the structure of Cross Stage Partial Network

(CSPNet) (Wang C.-Y. et al., 2020), which has the benefits of

improving the learning capability of the network, reducing the

model size, breaking the computational bottleneck and solving

the problem of gradient information repetition. YOLOv5s has

designed two CSP modules, CSP1_X and CSP2_X for the

backbone network and the neck, respectively. CSP1 _X

consists of Convs (convolution operation + Batch

Normalization + SiLu activation function), X residual units

(BottleNeck1) and a connection function. We modify the

structure of CSP1_X and the proposed attention module CLA

is combined with it to form the CLA-CSP1_X module.

3.1.2 SPPF
SPPF consists of multiple Max Pooling layers with kernel

size of 5×5 and Convs which enhances feature extraction

efficiency by fusing multiple receptive fields of deep feature

map. In the AgriPest-YOLO network, this module has been

replaced by the proposed GSPPF for further improving the

representation of multi-scale features of pests.

3.1.3 Neck
This part mainly consists of Feature Pyramid Network

(FPN) and Path Aggregation Network (PAN). PAN adds a

new bottom-up pathway to the feature pyramid network to

improve the utilization of feature information.

3.1.4 Head
Same as YOLOv4, YOLOv5s has inherited the head structure of

YOLOv3. In the training phase, the GIoU loss function (Rezatofighi

et al., 2019) as regression loss function of YOLOv5s is used to solve

the gradient disappearance problem caused by the non-intersection
Frontiers in Plant Science 07
of the prediction bounding box and the target ground truth. In the

testing phase, the traditional NMS method is used to filter the

redundant predicted bounding boxes. However, there are a lot of

pest overlaps in the dataset, so Soft-NMS has been introduced to

replace NMS, reduce the pest miss detection due to overlap.
3.2 Coordinate and local attention
mechanism

Attentionmechanismcanguide themodel topayattention to the

region of interest instead of the whole image. The pest datasets

generally have problems such as small size and complex background.

Based on the idea of coordinate attention (Hou et al., 2021) and

ParseNet (Liu et al., 2015), this paper proposes a novel soft attention

mechanism, coordinate and local attention mechanism (CLA), to

improve the recognition of these pests by the network. Firstly, the

long-termdependencies having location informationwhich are hard

to be captured by convolutional operations aremodeled by encoding

horizontally and vertically, follow by the location information are

embedded into the channel attention. And then the local channel

attention information is captured. Based on these learnable attention

information, the model selectively highlights the valid pest features,

filters somenoise, contributes to the recalibration of the features, and

improves the feature representation of the network. Moreover, the

module has a simple structure and generates little computational

overhead. The overall architecture of this attentionmodule is shown

in Figure 5.

Given an intermediate feature map X∈RC×H×W as input,

where the feature map height and width are H,W, respectively,

and the channel dimension is C. Firstly, one-dimensional

pooling operations with kernel sizes (H,1) and (1, W) are used

to encode along the horizontal and vertical directions of the

input feature map, respectively, then the output of the c-th
FIGURE 5

Architecture of CLA module; VGP and HGP are vertical and horizontal pooling operations respectively; BN is Batch Normalization; LReLU is the
Leaky ReLu activation function.
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channel in height h and width w respectively can be denoted as

follows:

zhc hð Þ = 1
Wo0≤i≤Wxc h, ið Þ (2)

zwc wð Þ = 1
Ho0≤j≤Hxc j,wð Þ (3)

where xc denotes the c-th channel feature map of the

intermediate feature map X . zhc (h)   and zwc (w)   denote the

different encoding results of xc , and contain the awareness

information of xc in horizontal and vertical directions,

respectively. Then both of the above generated feature maps

are aggregated by transpose and concatenate operations, and a

feature map F ∈ R
C
r�(H+W), which contains both horizontal and

vertical directional awareness information, is generated by

convolution operation and nonlinear activation, specifically

can be formulated as:

F = d Conv Zh,Zw
h i� �� �

(4)

where d is the nonlinear activation function Leaky ReLu, Conv is
the convolution operationwith convolution kernel parameter of C

r �
C � 1� 1   operation, and […,…] represents the concatenate

operation. Then the feature map F is split into two different feature

tensors, Fh ∈ R
C
r�H and Fw ∈ R

C
r�W   along the spatial dimension,

andthe twofeature tensorareoperatedbydifferentkernel convolution

operations to obtain attention weights in different directions,

gh∈RC×H×W and gw∈RC×H×W , which are formulated as follows:

gh = s Conv _ h Fh
� �� �

(5)

gw = s Conv _w Fwð Þð Þ (6)

Where s is the sigmoid activation function, Conv_h and

Conv_w are the convolution kernel parameters as C � C
r � 1�

1,  C � C
r � 1� 1 for the convolution operation.

Next, local attention information is extracted along the

channel dimension by local attention consisting of 1×1

convolutional blocks in the CLA module, which helps the

network to detect locally distributed tiny pest targets. The local

context xlc(i, j) of the c-th channel feature map can be denoted as:

xlc i, jð Þ = d C2 d C1 xc i, jð Þð Þð Þð Þð Þ (7)

where C1, C2 are the convolution operations with

convolution kernel parameters C
r � C � 1� 1,  C � C

r � 1� 1

  respectively. Finally, the output feature map X′ of CLA can be

represented as:

x
0
c i, jð Þ = xc i, jð Þ � ghc ið Þ � gwc jð Þ � xlc i, jð Þ (8)

CLA attention module captures long-term dependencies

with precise location information and different scale channel

attention through the aforementioned behaviors, gains weight
Frontiers in Plant Science 08
coefficients of effective pest features and filters background noise,

which can effectively improve the recognition accuracy of pests

in complex backgrounds.
3.3 Grouping spatial pyramid pooling fast

Spatial Pyramid Pooling (SPP) is a common module for

YOLOv3,YOLOv4, constructed by four pooling operations with

different kernel sizes for extracting salient feature information and

improving the classification ability of themodel. The spatial pyramid

pooling fast (SPPF) in YOLOv5s is an improved version of SPP,

which ensures feature information extraction as well as significantly

improves computational efficiency,with277.8%growth compared to

SPP. To further intensify the network for multi-scale pest feature

extraction, based on the concept of scale dimensionality (Gao et al.,

2021), we designed the grouping spatial pyramid pooling fast

(GSPPF) instead of SPPF, as shown in Figure 6. The details of

GSPPF are as follows. For the input deep featuremap vi ∈ R
C
4�H�W ,

after passing through the Convs block, the input feature map is

uniformly divided into four groups, each of which is a subset of the

deep feature map vi ∈ R
C
4�H�W , where i∈{1,2,3,4} . SPPF works on

the latter three feature subsets with the purpose of fusing multiple

receptive fields, improving the representational power of the feature

subsets. The output yi−1 of the previous SPPFi−1 is added to the

current subset vi and then fed into theSPPFi to get theoutputyiof the

feature subset.Hence, yi and theoutputYofGSPPFcanbewritten as:

yi =

xi,                   i = 1  

SPPFi xið Þ,   i = 2

SPPFi xi + yi−1ð Þ,   2 < i ≤ 4

8>><
>>:

(9)

Y = Convs y1, y2, y3, y4½ �ð Þ (10)

GSPPF has the same position as SPPF in the network, and

functions on the deep feature map that contains more semantic

information but has lost part of the fine-grained information. The

module intensifies the multi-scale representation at a finer-grained

level. Through grouping the deep featuremaps, each feature subset is

treated as an independent feature map with SPPF to extract feature

information and expand the receptive fields to achieve feature

information reuse and multiple receptive field fusion of features of

different scales, which enriches the feature map representation and

facilitates the detection of complex multi-target and scale-variant

scenarios in the pest dataset.
3.4 Final prediction bounding box
optimization

In the testing phase, the detector often generates multiple

prediction bounding boxes for the same pest object, and the

redundant prediction bounding boxes are filtered out in the
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post-processing phase of YOLOv5s with the NMS approach

(Neubeck and Van Gool, 2006): selecting the highest scoring

prediction bounding box, and then searching for boxes in the

neighborhood that belong to the same category as the highest

scoring box but have an overlap greater than a predefined

overlap threshold for suppression. However, there is overlap

and mutual occlusion between pest targets, which manifests

during the prediction stage as the potential presence of multiple

pest objects in adjacent prediction bounding boxes. The

traditional NMS forces their scores to be zeroed and filtered

out, resulting in a large number of misses of pests. To refine the

prediction mechanism, we introduced Soft-NMS (Bodla et al.,

2017) into the model to improve the detection of overlapping

pests. When multiple predicted bounding boxes appear around a

pest, their scores are multiplied by a Gaussian function as

penalty weights instead of being zeroed directly. The specific

calculation is as follows:

Si = Sie
−
IoU Bboxmax    ,    bboxið Þ

a

2

(11)

where Si is the score of the i-th prediction bounding box,

Bboxmax is the prediction bounding box with the highest score,

bboxi is the adjacent bounding box, and the hyperparameter a is

set to 0.5.
3.5 Model evaluation metrics

In the object detection task, the metrics commonly

employed to evaluate the accuracy of the model are Precision,
Frontiers in Plant Science 09
Recall, Average Precision (AP) and mean Average Precision

(mAP). The specific calculation formula is as follows:

Precision =
#TP

#TP + #FP
(12)

Recall =
#TP

#TP + #FN
(13)

AP =
Z 1

0
Precision   d  Recall (14)

AP50 : 95 =
1
10

AP50 + AP55 +… + AP90 + AP95ð Þ (15)

mAP@0:5 =
1
Co

C
i=1AP

i (16)

mAP@ 0:5 : 0:95½ � =
1
Co

C
i=1AP

i
50 : 95 (17)

Where TP (true positive) represents the number of correctly

detected pest targets, FP (false positive) represents the number of

incorrectly detected pest targets, and FN (false negative) represents

the number ofmissed pest targets.C is the number of pest categories,

which in this paper is 24. For eachpest category in thedetection,AP is

the area under the Precision-Recall curve, APi is the AP of the i-th

category,mAP0.5 is the average of theAP of all pest categories.AP50,

AP55,…,AP90,AP95 are the mean of Precision under different Recall

when taking different IoU thresholds (thresholds from 0.5 to 0.95
FIGURE 6

Architecture of GSPPF module, MaxPool2D represents the max pooling operation with the kernel size of 5.
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with a step size of 0.05), respectively. AP50:95 is the average of the ten

values ofAP50,AP55,…,AP90,AP95 .mAP@[0.5:0.95] is the averagemAP

under different IoU thresholds. In agricultural pest detection tasks,

for more comprehensive and fairer measurement of pest detection

model performance, AP and mAP are usually adopted as the main

evaluation metrics. Thus, in this paper, we mainly discuss AP,

AP50:95, mAP0.5and mAP@[0.5:0.95] as reference metrics.
4 Results and discussion

4.1 Implementation details

4.1.1 Experiment platform
All experiments in this section were performed on one

NVIDIA Tesla V100 GPU with 32G of memory. The software

environment is Ubuntu 18.04, Python 3.8, and Pytorch. To

accelerate the training process, NVIDIA CUDA10.2 and

CUDNN7.6.5 neural network packages were used.

4.1.2 Training settings
The default hyperparameters were set as follows: the initial

learning rate was 0.01, the weight decay was 0.0005, and the

momentum was set to 0.937. The remaining parameters were

adjusted as follows: the batch-size was set to 16, the iteration

period (epoch) was set to 300, and the input image size was set to

640×640 . The online data augmentation technique mentioned in

Section2wasused topreprocess the input imagesduring thenetwork

training. Furthermore, this paper used transfer learning, based on the

pre-trainingweights obtained fromtrainingYOLOv5son theCOCO

dataset were used to initialize the model parameters with the aim of

equipping the network with fast learning capabilities and

generalization (Li H. et al., 2021). Finally, the built-in anchor

adjustment function of YOLOv5 was employed to optimize the

preset anchor to match pest instances
4.2 Comparison with other advanced
detectors

To assess the overall performance of the proposed pest

detection method, we compared it with several advanced

detectors, including classical object detection models: Faster
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RCNN, Cascade RCNN (Cai and Vasconcelos, 2021),

Dynamic RCNN (Zhang et al., 2020), YOLOv4, YOLOX (Ge

et al. , 2021) and lightweight models: YOLOv4-tiny,

Mobilenetv3-YOLOv4, YOLOv5s. Among them, Mobilenetv3-

YOLOv4 is a lightweight version of YOLOv4 with the backbone

replaced by Mobilenetv3 (Howard et al., 2019), and YOLOv4-

tiny is a simplified version of YOLOv4. All comparison models

have the same experimental environment and the parameters are

consistent with the original settings in order to ensure the

credibility of the results. It is worth noting that when selecting

the backbone network for the two-stage comparison model, we

considered deeper backbone networks, such as ResNet101 (He

et al., 2016). However, the small size of pests in the dataset

contains less feature information, and deepening the network

layers has no benefits in recognizing tiny pests, but increases the

computational burden, so ResNet50 was selected as the

backbone of the two-stage comparison model. The results of

the quantitative comparison are reported in Table 2, it can be

seen that the proposed method outperforms the other advanced

detectors. From the concrete evaluation metrics, AgriPest-

YOLO achieves 71.3% mAP@0.5, 3.5% improvement compared

to YOLOv5s, 10.2% improvement compared to Cascade RCNN,

the best performing model in the two-stage models. Moreover,

to further investigate the localization performance of AgriPest-

YOLO in pest detection, mAP@[0.5:0.95] of each model calculated

at different thresholds are given in Table 2. The results in the

table show that AgriPest-YOLO still outperforms the detection

results of other models at more stringent IoU, such as compared

with YOLOv5s, YOLOv4 and Cascade RCNN, respectively,

improved 5%, 4.1%, and 8.5%, which indicates that AgriPest-

YOLO has less localization error for pest targets.

The goal of this paper is proposed a real-time lightweight

detection model for achieving a sound balance between

efficiency, accuracy and model size for agricultural pest

detection. Hence, not only the accuracy of detection but also

its size and detection speed should be discussed when evaluating

the pest detection model. We compare GFLOPs, parameters,

model size, and inference time of AgriPest-YOLO with other

detectors (the lightweight model and the better performing

classical object detection model in Table 2). For the fairness of

the comparison experiments, all detectors are run on the same

NVIDIA TeslaV100 GPU, and the input image size is set to

640 × 640 . The experimental results are shown in Table 3, from
TABLE 2 Comparison of pest detection results between different models.

Models
Faster
RCNN

Cascade
RCNN

Dynamic
RCNN

YOLOX YOLOv4
YOLOv4-

tiny
YOLOv4 YOLOv5s

AgriPest-
YOLO

Backbone
ResNet50-
FPN

ResNet50-FPN ResNet50-FPN CSPDarknet53 CSPDarknet53
CSPDarknet53-
tiny

Mobilenetv3 \ \

mAP@0.5(%) 59.4 61.1 59.1 51.4 68.2 53.34 55.49 67.8 71.3

mAP@[0.5:0.95]
(%)

36.47 38.4 36.84 31.88 42.8 28.5 30.6 41.9 46.9
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which it is observed that our approach achieves 8.8ms inference

time, 16.2 GFLOPs, 7.35 MB number of parameters and 15.1 MB

model size, with only a minor increase in computational

overhead. Compared with the YOLOv4 model in Table 2,

which has sub-optimal detection results, the inference time is

reduced by half, and GFLOPs, number of parameters and model

size are reduced to 11.42%, 11.47 and 5.86%, respectively, the

proposed method has a significant superiority in terms of

detection efficiency. Compared to the other five comparison

models, only inferior to the lightweight models YOLOv4-tiny

and YOLOv5s. However, the detection accuracy achieved with

our method obviously exceeds them. In summary, AgriPest-

YOLO has shown good results in several aspects in pest

detection tasks, while considering the lightweight to ensure the

detection accuracy and speed, the overall performance is more

superior and suitable for real-time pest detection tasks in

practical conditions.
4.3 Comparison of detection
performance on hard-to-detect pests

In the field of multi-class agricultural pest detection, the pest

size and the number of instances present in the dataset have a

great impact on the model performance. Extreme small pests

and unbalanced distribution of pest categories are the main

attributes of Pest24, presenting new challenges in deep learning-

based object detection (Wang Q.-J. et al., 2020). These hard-to-

detect pests are mainly separated into three categories, Rice

planthopper (index 1), Plutella xylostella (index 14) and

Eightcharacter tiger (index 28), where Rice planthopper and

Plutella xylostella have very small sizes, with relative sizes of only

0.034 and 0.043, and the number of instances of Eightcharacter

tiger is very few with only 154, much lower than the average

number of category instances. To analyze the detection

performance of AgriPest-YOLO on pests falling into few

samples and tiny pests, these three categories of hard-to-detect

pests were selected for validation, and the results are shown in

Figure 7. This figure shows that for the extreme small pests, Rice
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planthopper and Plutella xylostella, there is still poor detection

accuracy for them, especially for the one-stage models YOLOv4,

YOLOv5s, which have the advantage in detection speed but the

recognition of pests is less than the two-stage RCNN series

models. In contrast, AgriPest-YOLO, benefiting from attention

mechanism and GSPPF module, has improved the ability to

represent more small pest features, and the performance on

extreme small pests is also better than other advanced models,

especially compared with the same one-stage YOLO series

models. For the few samples pest Eightcharacter tige, AgriPest-

YOLO performs well, achieving 45.5% AP, which exceeds by far

the other comparison models. This demonstrates that our

method can extract much more effective pest features in the

limited number of samples, resulting in better fitting of the

network during training. However, Figure 7B shows that higher

required IoU thresholds result in significantly reduced detection

performance on these hard-to-detect pests, especially for

extreme small pests. This indicates the lack of ability of

models to produce precisely predicted bounding boxes for

extreme small pests, and these will be improved in future work.
4.4 Comparison of detection
performance of pests in densely
distributed and complex backgrounds

In the Pest24 dataset, the dense distribution of pests and the

multiple complex backgrounds described in Section 2 are critical

factors that affect the detection performance. To investigate their

impact, we split the test set of the Pest24 dataset into two test

subsets, including the manually selected test set, test_dense,

consisting of 500 samples with dense distribution of pests and

the test set, test_complex, consisting of 450 samples with

complex backgrounds. Note that the two factors of dense

distribution and complex background may not necessarily

exist independently, and may contain both dense distribution

and multiple complex backgrounds in a single image.

Experimental results are shown in Figure 8. It can be seen that

the one-stage YOLO series algorithms are more advantageous in
TABLE 3 Comparison of pest detection efficiency between different models.

Models GFLOPs Parameters (MB) Model size (MB) Inference time (ms)

Faster RCNN 206.8 41.24 331.2 40

Cascade RCNN 234.6 69.0 553.3 49.5

YOLOv4 141.8 64.06 257.7 17.7

YOLOv4-tiny 16.2 5.93 22.6 4.44

Mobilenetv3-YOLOv4 17.0 11.43 56.9 11.2

YOLOv5s 16.0 7.08 14.5 6.1

AgriPest-YOLO 16.2 7.35 15.1 8.8
GFLOPS indicates Giga Floating-point Operations Per Second; Parameter indicates the total number of parameters of the model; Inference time indicates the inference time on one single
image.
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complex background or densely distributed pest detection, and

AgriPest-YOLO is the best performer among the YOLO series,

especially in detecting densely distributed pests, as shown in

Figure 9G, AgriPest-YOLO can recognize more of the correct

target pests. For pest detection in complex backgrounds, it can

be seen in Figure 8B that our proposed method still performs

well under stricter thresholds and can provide more accurate

localization information. As shown in Figures 9A, E, AgriPest-

YOLO hit more pest targets compared to YOLOv5s in the

complex background, more importantly predicting finer

bounding box coordinates.
4.5 Visualization of detection results

In this section, we visualize part of the pest detection

results to directly observe the strengths of our proposed pest
Frontiers in Plant Science 12
detection method, as shown in Figure 9. Table 4 presents the

number of real pest instances in each detection result image,

the corresponding detection results for the detected,

undetected and misdetected pests of different models.

Following the results in the figure and table, it can be found

via quantitative and qualitative analysis that the improved

model performs well in detecting pests with sparse or dense

distribution compared to the original YOLOv5s. When noises

(non-target pests with similar appearance) were present in

the images, as shown in Figures 9D, H, AgriPest-YOLO

presented better robustness as the attention module

emphasized the effective pest features and filtered out other

interferences. When images with dense distribution of small

pests are present, as shown in Figures 9C, G, AgriPest-YOLO

has more pests detected and fewer misdetection, which will be

helpful in the future for forecasting infestation trends by

counting different classes of pests.
A B

FIGURE 7

Detection results of different models for pests with few samples and extremely small pests. (A, B) illustrate the detection results under different
IoU thresholds respectively.
A B

FIGURE 8

Detection results of different models for pests in densely distributed and complex backgrounds. Test_complex is the test set for complex
background pests and test_dense is the test set for densely distributed pests. (A, B) illustrate the detection results under different IoU thresholds
respectively.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1079384
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2022.1079384
4.6 Ablation study

4.6.1 Impact of the proposed module on
detection performance

Our proposed pest detector based on YOLOv5s model

contributes four elements, including the attention and GSPPF

modules developed, the introduction of Soft-NMS as a post-

processing method, and online data augmentation methods to

enrich the samples. To further investigate the impact of each

element on pest detection, the results of the ablation study are

given in Table 5. First, the data augmentation method improved

pest detection result dramatically because online data

augmentation enriched the diversity of training data, which

facilitated small target pest detection. Then, the introduced

Soft-NMS working on the prediction layer reduced the missed

detection from overlapping pests and improved the mAP0.5by

0.9%. Finally, both the proposed CLA and GSPP presented the

positive impact in the pest detection results, improving the

performance to 71.3%. Besides, as seen from the mAP@[0.5:0.95]

computed at higher thresholds, the proposed methods

contribute to the generation of high-quality bounding boxes.
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4.6.2 Impact of different activation functions in
the attention module

Considering the special properties of pest detection tasks

such as small targets, dense distribution, and complex

backgrounds, it is necessary for the attention module to

select the suitable activation functions for optimal detection

performance. We selected several state-of-the-art activation

functions including ReLu6, Mish, SiLu, and Leaky ReLu, and

conducted multiple control experiments to investigate their

impact on the pest detection task. Experimental results are

reported in Table 6. It can be found that Leaky ReLu

activation function has the best performance because it

effectively addresses the gradient disappearance problem in

the dense object detection task and maximizes the weight

retention, to achieve the model performance improvement.

Moreover, the table gives a comparison of the results of two

attention mechanisms, coordinate attention (CA) and CLA,

on the pest detection task, where our proposed CLA is more

applicable in the pest detection task due to the complement of

local attention information when the parameters are

the same.
DA B

E F G H

C

FIGURE 9

Detection results of YOLOv5s and the proposed AgriPest-YOLO. (A, D, E, H) belongs to the test_complex test set, (B, C, F, G) belongs to the
test_dense test set.
TABLE 4 Detection results between YOLOv5s and AgriPest-YOLO for pests as shown in Figure 9.

Figs.No Total number of pests YOLOv5s AgriPest-YOLO

Detected Undetected Misdetection Detected Undetected Misdetection
Figures 9A, E 4 3 1 1 4 4 /

Figures 9B, F 95 83 12 20 90 5 13

Figures 9C, G 214 177 37 84 186 28 58

Figures 9D, H 54 44 10 26 49 5 13
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4.6.3 Impact of different data augmentation
methods on detection performance

To enrich the diversity in the training samples in the Pest24

dataset and to improve the robustness of the detector, five online

data augmentation methods were adopted, including HSV, Filp,

Translate, Scale, and Mosaic. We performed multiple

comparison experiments using the control variables method,

adding one data augmentation method to the training model at a

time, to validate the impact of different augmentation methods

for the multi-category pest detection task. The results are shown

in Table 7, where all data augmentation methods demonstrate

the positive impact on improving the pest detector performance.
4.7 Comparison of the robustness of
detection with different noise

To further investigate the quality of AgriPest-YOLO, we have

added different levels of Salt & Pepper noise and Gaussian noise in

all images of the test set and analyzed the detection results to

evaluate the robustness of AgriPest-YOLO. The Salt & Pepper

noise will generate random white or black dots on the images. The

noise level ranges from 0.005 to 0.05 in steps of 0.005. In addition,

the mean value of Gaussian noise is 0.1 with standard deviation of

0.05. Experimental results are shown in Figure 10. Obviously, as
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the noise intensity rises, the detection accuracy of the models

decreases, because the noise has strong effects on small pest

detection and it is hard for the model to extract enough pest

features in strong noise. In addition, the detection accuracy of

AgriPest-YOLO is always higher than that of YOLOv5s for

different levels of noise interference, and the accuracy gap in the

presence of noise interference is higher than that in the absence of

noise interference. Therefore, we can conclude that the improved

model, AgriPest-YOLO, has better noise immunity and robustness.
5 Conclusion

To address the limitations of multi-class agricultural pest

detection from light-trap images, this work proposes a lightweight

pest detection method called Agripest-YOLO. As part of our

proposal, a new attention mechanism was designed that can

improve pest feature extraction, filter out worthless features, which

can augment the detection performance of pests in complex

backgrounds. Then, GSPPF was developed to represent multi-scale

features of pests at a finer granularity level, achieve feature reuse and

multiple fusion of pest features of different scales, enrich multi-scale

representation of pest features, and thereby obtain better multiple

scales pest detection performance. Experimental results show that

AgriPest-YOLO outperforms other advanced methods in several
TABLE 7 The impact of different data augmentation methods on pest detection results.

HSV Flip Translate Scale Mosaic mAP@0.5(%) mAP@[0.5:0.95](%)

52.7 30.3

√ 53.2 30.1

√ √ 59.3 34.7

√ √ √ 63.1 37.8

√ √ √ √ 66.7 41.3

√ √ √ √ √ 67.8 41.9
The check mark indicates that the method in the same column has been selected.
TABLE 5 The impact of each major element of the proposed pest detection model on detection results.

YOLOv5s Data augmentation Soft-NMS GSPPF CLA mAP@0.5(%) mAP@[0.5:0.95](%)

√ 52.7 30.3

√ √ 67.8 41.9

√ √ √ 68.7 43.8

√ √ √ √ 70.6 45.6

√ √ √ √ √ 71.3 46.9
The check mark indicates that the method in the same column has been selected.
TABLE 6 The impact of different activation functions in attention mechanism on model performance.

Attention mechanism CA CLA CLA CLA CLA

Activation function ReLu6 ReLu6 Mish SiLu Leaky ReLu

mAP@0.5(%) 68.1 68.7 68.3 68.9 69.1

mAP@[0.5:0.95](%) 42.0 42.5 42.3 42.3 42.8
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aspects, improving the detection accuracy while considering

lightweight and detection speed. Furthermore, AgriPest-YOLO has

the advantage of recognizing densely distributed and complex

background pests. And it has broad application prospects due to its

lightweight design. However, AgriPest-YOLO still has limitations,

such as for the extreme small pest, Rice planthopper (index 1) and

Plutella xylostella (index 14), although it has been optimized, the

detection accuracy remains poor. In the future work, we will try to

further address the problem of extreme small pest identification

and localization.
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