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Comprehensive transcriptome
analysis reveals heat-responsive
genes in flowering Chinese
cabbage (Brassica campestris
L. ssp. chinensis) using
RNA sequencing

Muhammad Ikram1†, Jingfang Chen1†, Yanshi Xia1*,
Ronghua Li1, Kadambot H. M. Siddique2 and Peiguo Guo1*

1Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, International
Crop Research Center for Stress Resistance, School of Life Sciences, Guangzhou University,
Guangzhou, China, 2The UWA Institute of Agriculture, UWA School of Agriculture & Environment,
The University of Western Australia, Perth, WA, Australia
Flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis

Tsen et Lee, 2n=20, AA) is a vegetable species in southern parts of China that

faces high temperatures in the summer and winter seasons. While heat stress

adversely impacts plant productivity and survival, the underlying molecular and

biochemical causes are poorly understood. This study investigated the gene

expression profiles of heat-sensitive (HS) ‘3T-6’ and heat-tolerant (HT) ‘Youlu-

501’ varieties of flowering Chinese cabbage in response to heat stress using

RNA sequencing. Among the 37,958 genes expressed in leaves, 20,680 were

differentially expressed genes (DEGs) at 1, 6, and 12 h, with 1,078 simultaneously

expressed at all time points in both varieties. Hierarchical clustering analysis

identified three clusters comprising 1,958, 556, and 591 down-regulated, up-

regulated, and up- and/or down-regulated DEGs (3205 DEGs; 8.44%), which

were significantly enriched in MAPK signaling, plant–pathogen interactions,

plant hormone signal transduction, and brassinosteroid biosynthesis pathways

and involved in stimulus, stress, growth, reproductive, and defense responses.

Transcription factors, including MYB (12), NAC (13), WRKY (11), ERF (31), HSF (17),

bHLH (16), and regulatory proteins such as PAL, CYP450, and photosystem II,

played an essential role as effectors of homeostasis, kinases/phosphatases, and

photosynthesis. Among 3205 DEGs, many previously reported genes

underlying heat stress were also identified, e.g., BraWRKY25, BraHSP70,

BraHSPB27, BraCYP71A23, BraPYL9, and BraA05g032350.3C. The genome-

wide comparison of HS and HT provides a solid foundation for understanding

the molecular mechanisms of heat tolerance in flowering Chinese cabbage.

KEYWORDS

heat stress, transcriptome, differentially expressed genes, cluster analysis, flowering
chinese cabbage, RT-qPCR
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Introduction

Heat stress is an environmental factor affecting crop

vegetative growth, performance, and productivity worldwide,

even causing plant death (Caers et al., 1985; Song et al., 2014a).

According to a crop-based algorithm study, a 1°C rise in

seasonal temperature causes 2.5–16% direct yield losses for key

crops in tropical and subtropical regions (Lobell et al., 2008).

Furthermore, greenhouse gas emissions have increased

atmospheric temperatures by 0.3°C per decade (Jones et al.,

1999), indicating that extreme temperature and climate change

events will threaten food security by decreasing crop production

(Battisti and Naylor, 2009; Rosenzweig et al., 2014). Flowering

Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis

Tsen et Lee) is a commercial vegetable crop mainly cultivated in

southern parts of China (Chen et al., 2017). The demand for

flowering Chinese cabbage is increasing due to its rich source of

vitamin C, favourable taste, soluble fiber, phenolics,

glucosinolates, and other nutritional value (Huang et al.,

2017), but southern China’s high summer and autumn

temperatures seriously impair crop quality and production

(Fan et al., 2017). Heat stress adversely affects plant growth,

phenological stages, grain filling, pollen viability, even the

structural changes in tissues and cell organelles, loss of leaf

water, cell membrane damage, and photosynthetic membranes

(Yoshinaga et al., 2005). At a molecular level, heat stress also

affects the synthesis of primary and secondary metabolites,

antioxidant enzymes, and lipid peroxidation via the

production of reactive oxygen species (ROS). However, plants

have evolved various molecular and physiological mechanisms

during domestication to resist heat stress (Wahid et al., 2007;

Hasanuzzaman et al., 2013), such as accumulating different

metabolites (antioxidants, osmoprotectants, etc.) and

activation of signaling and metabolic pathways. Therefore,

understanding the mechanism of signaling cascades and

specific genes expressed in response to HT will be beneficial

for developing stress-tolerant varieties.

Transcription factors (TFs), signal transduction

components, and proteins related to metabolism are

responsive to heat stress (Grover et al., 2013). Recently, heat-

responsive siRNAs and miRNAs in flowering Chinese cabbage

have been reported (Yu et al., 2012; Song et al., 2021), with most

up-regulated under high temperature, and their target genes

with differential gene expression involved in responses to

temperature stimulus, cell membrane, signal transduction, and

mitogen-activated protein kinase (MAPK) signaling pathways

(Song et al., 2021). In Chinese cabbage, Song et al. (2016) used

RNA-seq datasets of heat treatments to identify 14,329 DEGs

and 9,687 novel LncRNAs, of which LncRNAs controlled 192

DEGs under heat stress. Transcriptome sequencing analysis of

Chinese cabbage (B. rapa ssp. pekinensis) inbred lines revealed

that heat stress affects many genes, including those linked with

membrane leakage, heat-shock proteins (HSPs), and enzymes
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that regulate ROS homeostasis (Dong et al., 2015). Heat-shock

transcriptional factors (HSFs), which stimulate the expression of

HSPs and other stress proteins, play a critical role in modulating

stress responses (Swindell et al., 2007; Dong et al., 2015; Liu et al.,

2018; Yao et al., 2020). The HSF gene family has been identified

in various species, including Arabidopsis (Nover et al., 2001),

tomato (Yang et al., 2016), soybean (Li et al., 2014), potato

(Dossa et al., 2016), and Chinese cabbage (Song et al., 2014b).

HSF and HSP family members are involved in several stress

response pathways, including heat, cold, osmotic, and salt, in

Arabidopsis (Swindell et al., 2007), with 21 HSFs cloned and

analyzed (Nover et al., 2001). In global transcription profiles,

many HSFs/HSPs were up-regulated in Brassica napus siliques,

with many other heat-responsive marker genes, such as ROF2,

MBF1c, DREB2a, andHsa32, involved in heat resistance in many

plants (Yu et al., 2014). Another study found that genes involved

in protein protection, biotic stress responses, oxidative stress,

programmed cell death, and metabolism were differentially

expressed during heat stress (Kotak et al., 2007). Only limited

transcriptome data are available for flowering Chinese cabbage

under heat stress relative to Chinese cabbage, maize, rice, and

Arabidopsis (Song et al., 2014a; Chen et al., 2017; Fan et al., 2017;

Huang et al., 2017; Ali et al., 2022).

In recent years, next-generation sequencing technologies

have been developed and significantly reduced the cost and

increased the efficiency of genome sequencing. Therefore, the

entire genome of B. rapa (Chiifu-401-42) was sequenced using

Illumina GA II sequencing and annotated (Wang et al., 2011),

which provides the foundation to identify the heat-responsive

genes in flowering Chinese cabbage. Using RNA-seq, researchers

can identify the expressed genes, particularly those with low

abundance. To date, microarrays and RNA-Seq projects have

been undertaken in many species, including rice, Chinese

cabbage, maize, cotton, Arabidopsis, and vegetables, to detect

genes responsive to heat and cold stress (Grover et al., 2013;

Nakashima et al., 2014; Ikram et al., 2020; Song et al., 2021; Ali

et al., 2022). For example, in Arabidopsis, nearly 30% of DEGs

associated with abiotic stresses were identified, and 2,409 genes

were involved in salt, cold, and drought stresses (Kreps et al.,

2002). In wheat, 2% of genes were found to be associated with

cold stress (Winfield et al., 2010). In A. mongolicus, 9,309 and

23,419 up- and down-regulated genes were detected under cold

stress (Pang et al., 2013). In previous studies, various genes have

been functionally characterized for heat tolerance in different

crop plants, such as ZmWRKY106 (Wang et al., 2018), PpEXP1

(Xu et al., 2014), hsp26 (Xue et al., 2010), WsSGTL1 (Mishra

et al., 2013), and OsOr-R115H (Jung et al., 2021).

Our previous research identified expressed sequence tag-

simple sequence repeat (EST-SSR) markers in flowering Chinese

cabbage (Chen et al., 2017) and also detected significant SNPs/

genes for plant height (Ikram et al., 2022a; Ikram et al., 2022b; Li

et al., 2022) and wilt resistance (Lai et al., 2021) in tobacco. The

present study used RNA-seq based on the Illumina HiSeq2000
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platform to undertake a genome-wide analysis of gene

expression in leaves of HT (Youlu-501) and HS (3T-6)

flowering Chinese cabbage varieties under heat stress (0, 1, 6,

and 12 h) to (1) identify DEGs in HS and HT genotypes after 1,

6, and 12 h of heat stress: (2) annotate these genes based on gene

ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment analysis; (3) identify the expression pattern

of genes using Hierarchical clustering analysis; (4) identify TFs

associated with the DEGs and their role in heat stress. The

findings of this study will provide new insights into the heat

tolerance of flowering Chinese cabbage.
Materials and methods

Plant materials and
physiological parameters

Two natural flowering Chinese cabbage (Brassica campestris

L. ssp. chinensis var. utilis Tsen et Lee) varieties [3T-6 (heat-

sensitive) and Youlu-501 (heat-tolerant)] were obtained from

the Guangdong Academy of Agricultural Sciences, China. The

seeds of both accessions were sterilized and then germinated in a

growth chamber of our lab at the International Crop Research

Center for Stress Resistance (113.37_E, 23.05_N), Guangzhou

University, under the following condition: 28/22°C for 14/10 h

(day/night) with 80% relative humidity. Fifteen-day-old

seedlings at five-leaf stage were transferred into another

chamber at 38/29°C (14/10 h day/night) for heat stress. After

the heat-stress treatment, samples were collected at three time

points from fully expanded upper leaves of heat-sensitive (HS-

1h, HS-6h, and HS-12h) and heat-tolerant (HT-1h, HT-6h, and

HT-12h) plants. For the control (CK), leaf samples were

collected from HS (HS-CK) and HT (HT-CK) plants under

normal conditions at 25°C. The harvested leaf samples were

immediately frozen in liquid nitrogen and preserved at –80°C

until RNA extraction. The experiment had five replicates.

Peroxidase (POD), superoxide dismutase (SOD), and catalase

(CAT) were assessed as described in previous studies (Kono,

1978; Aebi, 1984). The fresh plants were taken at different times

to calculate the fresh weight in both varieties.
RNA extraction, cDNA library
construction, and sequencing

For transcriptome assembly, total RNA was extracted from

five biological replicates at CK, HS/HT-1h, HS/HT-6h, and HS/

HT-12h using TRIzol reagent (Takara Bio, Ostu, Japan),

following the manufacturer’s recommendations. The RNA was

pooled into a single sample in equal amounts to find the broad

gene library associated with heat resistance. DNase I (Takara

Bio, Ostu, Japan) was used to digest genomic DNA, and RNA
Frontiers in Plant Science 03
integrity and quantity were assessed using 1% agarose gel

electrophoresis and a microplate spectrophotometer (BioTek

Company, USA). cDNA libraries were prepared using RNA

with high purity. In brief, mRNAs were purified using poly-T

oligo-attached magnetic beads from total RNA. Following

fragmentation, first-strand cDNA was synthesized using a

random hexamer primer, followed by second-strand cDNA

synthesized using DNA Polymerase I and RNase H. The

paired-end Illumina sequencing required the purification and

ligation of the double-stranded cDNAs to adaptors. After PCR

amplification, library quality was verified on the Agilent 2100

Bioanalyzer system before sequencing the cDNA libraries using

the Illumina HiSeq2000 system by the Beijing Genomics

Institute (BGI) to generate 125 bp paired-end reads.
RNA-seq data analysis and annotation

Before library assembly, the raw reads were processed using

SOAPnuke v1.5.2 (https://github.com/BGI-flexlab/SOAPnuke;

Cock et al., 2009) to remove low-quality reads with >50% of

bases with Q ≤ 20 or >10% unknown (N) bases and adapter

sequences. The raw reads with quality check parameters were

transformed to clean reads for further analysis. Finally, clean

reads were mapped and aligned to B. rapa cv. Chiifu v3.0

reference genome (http://brassicadb.org/brad/; Wang et al.,

2011) using HISAT2 v2.1.0 (Kim et al., 2015) and Bowtie2

v2.2.5 (Langmead and Salzberg, 2012). For functional

annotation, all assembled gene sequences were aligned to

databases, including reference genome (BRAD database), NT,

NR, UniProt, Cluster of Orthologous Groups of proteins (COG),

KEGG, and GO using Trinotate software (http://trinotate.

github.io/) with E value ≤1e-5. The mapped reads were used

to measure expression levels in fragments per kilobase of exon

per million mapped fragments (FPKM) using RSEM software (Li

and Dewey, 2011). Pearson’s correlation coefficients for the eight

samples were estimated using the ‘cor’ function in R4.1.0 (http://

www.r-project.org/) software based on FPKM values, and a

correlation graph was drawn using the ‘ggplot2’ R package

(https://cran.r-project.org/web/packages/ggplot2/index.html).

The ‘prcomp’ function in R4.1.0 (http://www.r-project.org/) was

used to perform principal component analysis (PCA).
Differential expression and
cluster analyses

For HS and HT varieties, DEGs between control and heat-

stress conditions were calculated using the DESeq2 R package

(Love et al., 2014), a reliable and efficient package for detecting

DEGs between diverse samples. The significant DEGs between

heat stress and control conditions were identified at |log2(fold-

change) | > 2 and false discovery rate (FDR) adjusted P < 0.001.
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Further, significant DEGs in HS or HT were exposed to

hierarchical or K-mean clustering based on the hclust function

in R4.1.0 (distance: euclidean; method: ward.d), with log2FC

subjected as the input. Finally, DEGs were analyzed for soft

clustering based on fuzzy c-mean using the R4.1.0 package

‘Mfuzz’ (Kumar and Futschik, 2007).
Gene ontology and KEGG pathway
enrichment analysis of differentially
expressed genes

GO and KEGG enrichment analysis was undertaken to

reveal the functional annotation and pathways associated with

up- and down-regulated DEGs in each cluster or group. An

online tool (http://www.geneontology.org/) was used to conduct

GO enrichment analysis at FDR adjusted P ≤ 0.05, classifying the

DEG functions into three categories: cellular component,

biological process, and molecular function. Similarly, KEGG

pathway enrichment analysis was performed using the KEGG

database (https://www.genome.jp/kegg/pathway.html) with

significant criteria at an adjusted P ≤ 0.05 (Kanehisa and

Goto, 2000).
Validation of RNA-seq result by real-time
quantitative PCR

Ten genes were chosen randomly to confirm the reliability of

RNA-seq results using RT-qPCR. The RNA was the same as that

used for transcriptomic sequencing, with the relative expression

calculated using ABIPrism7000 RT-qPCR platform (Applied

Biosystems, USA). The PCR reaction volume was 10 mL with

1 mg cDNA, 5 mL SYBR Premix Ex Taq II (Takara, China), and

200 nM primers. Three technical and biological replicates for

each sample were measured with the following protocol: 95°C

for 5 min, followed by 40 cycles of 95°C for 15 s, 60°C for 60 s,

and until 65°C to 97°C with a ramp rate of 0.02°C s–1 for

dissociation curve analysis. BraActin was used as housekeeping

gene to normalize the data. The relative expression level of all

selected genes at each time point was calculated using the 2−DDCT

method. The in-house R script was used to conduct a student t-

test at P ≤ 0.05 to find the significant differences between

time points.
Results

Plant phenotypic and enzymatic activities
under heat stress

Heat stress significantly altered plant growth and the

reproduction system. At the initial stage of stress, plant leaves
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exhibited moderate to high wilting symptoms. Twelve hours of

heat stress significantly decreased whole plant weight (g) in both

species relative to the control (Figure 1A). The heat treatment

significantly increased catalase (CAT), superoxide dismutase

(SOD), and peroxidase (POD) activities in plant leaves at all

time points, relative to the control, and more so in Youlu-501

than 3T-6 (Figure 1A).
Overview of transcriptomic
sequencing data

Libraries were constructed and sequenced on the

IlluminaHiseq2000 deep sequencing platform using the PE125

protocol (Table S1). Each library generated 21.94–24.90 million

raw reads. After removing joint contamination, low-quality

reads, and reads with unknown base (N) content, 21.86–24.81

million clean reads (99.42–99.963%) were collected (Table S1).

The clean Q30 base rates of the eight samples ranged from

89.71–91.04%. Of the clean reads, 88.59–92.06% total and 73.06–

76.72% unique reads were mapped to the B. rapa reference

genome (Table S1), with 46,250 predicted B. rapa genes

(Figure 1B). The PCA revealed an overall 86.80% (PC1 =

73.40% and PC2 = 13.40%) variation in gene expression

datasets, with the heat-stress conditions (HS-1h/HR-1h, HS-

6h/HR-6h, and HS-12/HR-12) clustered or grouped nearby but

separated from their corresponding control HS-CK/HR-CK

(Figure S1). Pearson’s correlation coefficient analysis based on

FPKM values of each sample revealed a significant positive

correlation between different time points; for example, HS-6h

and HT-6h highly correlated with other time points compared to

HS-12h and HR-12h (Figure 1C). The HS and HT varieties

significantly differed based on the log10 transformation of FPKM

(Figure 1D), with the FPKM values of most genes >10

(Figure 1E). Sixteen genes had FPKM values >2,000 in both

varieties at all time points.
Differential expression profiling of two
varieties under heat stress

DESeq2 software was used to investigate DEGs with FPKM

values >1. During heat stress, 30,842, 32,260, 32,926, 31,540,

32,635, and 33,113 genes were regulated for HS-1h, HS-6h, HS-

12h, HT-1h, HT-6h, and HT-12h, respectively (Figures 2A, B).

The DEGs were selected using the following criteria of log2 fold-

change |log2(foldchange)|≥2 and FDR adjusted P ≤ 0.001.

Volcano plots identified the significant up- or down-regulated

genes during heat stress at each time point (Figure 2A), with

10,153 (1,115 up- and 9,038 down-regulated), 7,879 (4,438 up-

and 3,441 down-regulated), and 7,662 (5,349 up- and 2,313

down-regulated) DEGs in 3T-6 at HS-1h, HS-6h, and HS-12h

compared to the control (Figures 2A–C) and 13,704 (882 up-
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and 12,822 down-regulated), 5,161 (2,206 up- and 2,955 down-

regulated), and 7,438 (3,989 up- and 3,449 down-regulated)

DEGs in Youlu-501 at HT-1h, HT-6h, and HT-12h compared to

the control (Figures 2A–C).

Subsequently, Sankey and Venn diagrams demonstrated the

number of common and uniquely expressed genes at each time

point or between two consecutive time points (Figures 2B, D–F),

with 5,443 DEGs unique in all samples, and 7,025, 3,626, 2,382,

1,126, and 1,078 DEGs shared between two, three, four, five, and

six samples (Figure 2B). Additionally, 2,073 and 2,210 DEGs

were common at all time points of HS and HT genotypes,

respectively (Figures 2D, E), indicating higher number of

genes were regulated in heat-tolerant variety than sensitive. Of

these, 1,078 DEGs were co-expressed differently in the HS and

HT genotypes (Figure 2F), with 237 and 747 up- and down-

regulated, respectively, and 94 differentially regulated. After 6

and 12 h of heat treatment, 328/325 and 330/323 more DEGs
Frontiers in Plant Science 05
were up-regulated in HS/HT. Finally, 3,205 genes were

differentially expressed at 1, 6, and 12 h in 3T-6 or Youlu-501

(Figures 2B, D–F).
Functional annotation of DEGs
responsive to heat stress

GO enrichment analyses of up- and down-regulated genes in

HSandHTat 1, 6, and12h categorized theheat stress-related genes

associated with key biological processes. Figures 3, S2–S5 show the

top 25 GO terms in three categories. In HS, for HS-CK vs. HS-1h,

462 up-regulated genes were mainly involved in ‘response to

stimulus (GO:0009628),’ ‘cellular process (GO:0009987),’

‘primary metabolic process (GO:0044238),’ ‘response to abiotic

stimulus (GO:0009628),’ ‘developmental process involved in

reproduction (GO:0003006), ’ and ‘response to heat
A B

D E

C

FIGURE 1

Phenotypic effect and overview of RNA sequencing data based on heat-sensitive and heat-tolerant flowering Chinese cabbage varieties. (A) Plant
weight and enzymatic activities between control and stress conditions; (B) Number of transcripts and their sequence size; (C) Correlation analysis
between heat-sensitive and heat-tolerant varieties at different time points; (D) log10 transformation of FPKM values at 0, 1, 6, and 12 h; (E)
Distribution of genes based on FPKM values. The different small letters indicate the significant differences between the time points.
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(GO:0009408)’ (Figure 3A). In comparison, most of the 4,055

down-regulated genes were involved in ‘tissue development

(GO:0009888) , ’ ‘auxin-act ivated s ignal ing pathway

(GO:0009734),’ ‘cell part (GO:0044464),’ ‘intracellular part

(GO:0044424), ’ ‘cellular response to abiotic stimulus

(GO:0071214),’ ‘cell (GO:0005623),’ ‘intracellular (GO:0005622),’
Frontiers in Plant Science 06
and ‘cellular process (GO:0009987)’ (Figure 3A). For HS-CK vs.

HS-6h andHS-CK vs. HS-12h, 2,046 and 2,275 up-regulated genes

were significantly enriched in ‘anion binding (GO:0043168),’

‘nucleotide binding (GO:0000166),’ ‘response to temperature

stimulus (GO:0009266), ’ ‘purine nucleotide binding

(GO:0017076),’ ‘carbohydrate derivative binding (GO:0097367),’
A

B

D

E

F

C

FIGURE 2

Analysis of differentially expressed genes in flowering Chinese cabbage varieties in response to heat stress. (A) Volcano plots of all expressed
genes in heat-sensitive (HS) and heat-tolerant (HT) varieties at different time points relative to CK, with log2FC values drawn against –log10 (FDR)
adjusted P-values. Red and blue dots represent up- and down-regulated DEGs based on |log2(foldchange)|≥2 and FDR ≤ 0.001; gray dots
represent non-significant DEGs; (B) The Sankey diagram represents the number of common and unique DEGs between each stress point; (C)
Number of up and down-regulated DEGs identified under different heat-stress treatments relative to control HS and HT varieties; (D) Common
and unique DEGs under different heat-stress treatments in HS variety; (E) Common and unique DEGs in HT under different heat-stress
treatments; (F) Common DEGs in all heat-stress treatments in HS and HT.
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‘response to abiotic stimulus (GO:0009628),’ and ‘photosynthesis

(GO:0015979)’ (Figure S2). In contrast, 1,568 and 902 down-

regulated genes were mainly enriched in ‘metabolic process

(GO:0008152),’ ‘detoxification (GO:0071722),’ ‘intracellular

organelle (GO:0043229),’ ‘chloroplast (GO:0009507),’ and ‘RNA

binding (GO:0003723)’ (Figure S2). In HT, for HT-CK vs. HT-1h,

418 up-regulated genes were involved in ‘binding (GO:0005488)’

‘cellular process (GO:0009987),’ and ‘primary metabolic process

(GO:0044238)’, and 6,626 down-regulated genes were enriched in

‘leaf development (GO:0048366),’ ‘response to stimulus

(GO:0009628),’ ‘chloroplast outer membrane (GO:0009707),’ and

‘biosynthetic process (GO:0009058)’ (Figure 3B). Similarly, the

highest number of DEGs for HT-6h and HT-12 were involved in

‘response to stimulus (GO:0009628),’ ‘chloroplast (GO:0009507),’

‘cell periphery (GO:0071944),’ ‘auxin homeostasis (GO:0010252),’

‘membrane-bounded organel le (GO:0043227) , ’ and
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‘photosynthesis (GO:0015979)’ (Figure S3). The GO enrichment

analysis indicated that HT hadmore enriched DEGs for each term

thanHS; for example, 1,410HTand 415HS genes were involved in

‘response to stimulus’ (Figures 3A, B, S2, S3).

The KEGG database was used to investigate the key genes

involved in KEGG pathways, with 2,389 and 1,453 up-regulated

and 3,390 and 4,286 down-regulated genes in HS and HT,

respectively, enriched in 39 KEGG pathways (adjusted P ≤

0.05), including ‘plant-pathogen interaction (ko04626),’

‘oxidative phosphorylation (ko00190),’ ‘sulfur metabolism

(ko00920),’ ‘steroid biosynthesis (ko00100),’ ‘nitrogen

metabolism (ko00910),’ ‘plant hormone signal transduction

(ko04075),’ ‘brassinosteroid biosynthesis (ko00905),’ ‘MAPK

signaling pathway - plant (ko04016),’ ‘circadian rhythm -

plant (ko04712),’ ‘carbon metabolism (ko01200),’ and

‘photosynthesis (ko00195)’ (Figures 3C, D, S4, S5). The HT
A B

DC

FIGURE 3

GO and KEGG enrichment analysis of up- and down-regulated genes in heat-sensitive (3T-6) and heat-tolerant (Youlu-501) flowering Chinese
cabbage. (A, B) The top 25 GO terms in three categories are listed at HS-1h vs. HS-CK and HT-1h vs. HT-CK at P ≤ 0.05; (C, D) The top 25 KEGG
pathways and their corresponding number of genes HS-1h vs. HS-CK and HT-1h vs. HT-CK at P ≤ 0.05. The x-axis represents the enrichment
factor, the y-axis represents GO/KEGG terms with the number of genes, and the blue to red color indicates the significance and number of genes.
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genes were more involved in signal transduction and MAPK

pathways than the HS genes (Figures 3C, D).
Cluster analysis of differentially
expressed genes

We used gene expression changes (log2FC value) to perform

hierarchical clustering for 3205 DEGs (Figures 2D–F) in

response to heat stress among flowering Chinese cabbage

varieties. The clusters with similar patterns of expression

change were identified using the hclust method. As a result,

we found three clusters of genes response to heat stress at three

time points relative to control and a black line representing the

mean changes in expression (Figures 4A–C and Table S2).

Cluster 1 contained 1,958 DEGs that were down-regulated in

both varieties at 1, 6, and 12 h, and the expression variations of

cluster 1 genes in Youlu-501 were comparatively more repressed

than in 3T-6 (Figures 4A, B; Table S2). Interestingly, cluster 2

included 691 DEGs, the expression changes were down-

regulated at 1h in both varieties compared to the control and

up-regulated at 6 and 12 h, but expression patterns of HT were

relatively higher than HS at 6 and 12 h stress condition

(Figures 4A, B; Table S2). A total of 556 DEGs were found in

Cluster 3, and most of them were up-regulated by heat stress in

both varieties. The difference in Cluster 3 was that the genes had

moderately greater induced expression levels in HS than in HT

during heat stress except for 12h (Figures 4A, B; Table S2).

Further, we investigated the biological functions of these

clusters using GO enrichment analysis (Figure 4C; Table S2). The

cluster 1 DEGs were mainly involved in cellular component

organization or biogenesis (91), biological regulation (143),

cellular process (394), developmental process (46), metabolic

process (379), and response to stimulus (165). The DEGs

belonging to developmental process (24), growth (10), response

to stimulus (54), localization (22), metabolic process (155), and

multi-organism process (17) were also significantly enriched in

cluster 2. In addition,DEGs in cluster 3,whichwereup-regulated in

both varieties, were involved in biological regulation (41), carbon

utilization (8), biogenesis (28), reproduction (7), and response to

stimulus (59). The fold-changeexpressionvalueswerehigher inHT

Youlu-501 than in HS 3T-6 (Figure 4A; Table S2). In brief, the top

15 potential DEGs expressed in all stages were identified, and their

homologous have been reported to play an essential role in heat

stress (Table 1).
Gene families associated with heat stress

Gene families, including HSPs, cytochrome P450 (CYP),

photosystem II (PSII), MAPK, and phenylalanine ammonia-lyase

(PAL), play a significant role in plant abiotic and biotic stresses.

HSP genes were clustered into two groups: (1) two genes up-
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regulated at high-stress conditions; (2) initially up-regulated and

then down-regulated under high stress (Figures 5A–F; Table S3).

Forty-two cytochrome P450 (CYP450) genes were differentially

expressed under heat stress, with 16 were up-regulated in both

varieties at 1, 6, and 12 h, including BraCYP98A3, BraCYP82G1

BraCYP83A1, BraCYP83A1, BraCYP72A13, and BraCYP94B3

(Figure 5A; Table S3). Of 16 DEGs, three genes (BraCYPBC1,

BraCYP97B3, and BraCYP77A4) were up-regulated at 1, 6, and

12 h, while the others were up-regulated after 6 and 12 h stress

(Figure 5A). Furthermore, BraA01g002420.3C (BraCYP84A1-X1)

was down-regulated under heat stress (Figure 5A), with similar

results obtained using RT-qPCR (Figure 5B). Photosynthesis is

mainly sensitive to heat stress, and photosystem II (PSII) is the

stress-sensitive site with its oxygen-evolving complex.

Three PSII genes [PSBQ3 (BraA02g017000.3C), PSBQ2

(BraA03g024820.3C), and Psb27 (BraA08g035330.3C)] were

negatively expressed in HS (Figure 5D; Table S3). Another gene,

PSBQ2 (BraA05g013730.3C), encoding PSII oxygen-evolving

enhancer protein 2, was up-regulated in HS and HT varieties.

Moreover, 5 MAPK and 2 PAL gene expressions significantly

differed in HS and HT after 1, 6, and 12 h. PAL1 and PAL3 have a

redundant role in flavonoid biosynthesis (Table S3).

BraA09g032810.3C (MPK-10) gene was down-regulated, while

other genes were up- and down-regulated at different time

points (Figure 5C).
Differential expression of transcription
factors during heat stress

TF families of flowering Chinese cabbage were retrieved from

the PlantTFDB database for enrichment analysis. We analyzed the

DEGs related to heat-responsive TFs, such as MYBs, ARFs, HSFs,

NACs, ERFs, and WRKYs families, which could be involved in

regulating genes during heat stress (Figures 6A–I; Table S4),

identifying 12 MYBs, 13 NACs, 11 WRKYs, 31 ERFs, 17 HSFs,

six ARFs, and 16 bHLHs TFs (Table S4). Apart from partial bHLH

TFs family members, heat stress significantly up-regulated most

gene family members of MYBs, NACs, WRKYs, and ERFs. For

example, BraA03g051480.3C (WRKY53) in HS at 1, 6, and 12 h,

with similar results obtained using RT-qPCR (Figures 6H, I).

WRKY18 was down-regulated at the initial stress but up-regulated

under high-stress conditions in HT (Figure 6I). HSFs encoding

HSPs, as direct transcriptional activators of genes regulated by

heat stress, showed higher up-regulated expression levels in HT

than HS: BraA02g043370.3C encodes heat stress transcription

factor B-2a-like (HsfB-2a) and had higher expression levels at 1,

6, and 12 h in HS and HT (Figures 6F, G; Table S4). Similarly,

three bZIP TFs (BZIPHY5, BZIPHY5-X1, and BZIP61) were

differentially expressed after heat stress. Of 12 MYBs,

BraA07g030110.3C (MYB1R1) and BraA03g044990.3C (MYB44)

were up-regulated at 1, 6, and 12 h, with the remaining ten down-

regulated (Figure 6F; Table S4). Among 13 NACs, nine genes,
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including five NACs (BraA02g002870.3C, BraA03g053670.3C,

BraA07g004020.3C, BraA07g034350.3C, and BraA10g031880.3C)

were up-regulated in HS and HT at 1, 6, and 12 h, while

BraA06g027220.3C, BraA07g014500.3C, and BraA10g000880.3C

were up-regulated under high stress. In addition, most of the

auxin (ARFs) and ethylene-responsive transcription factor (ERFs)

up-regulated at 12h; for example, e.g., BraA01g030800.3C,

BraA06g041230.3C, BraA09g022610.3C, BraA09g022620.3C, and

BraA02g031120.3C, were down-regulated at initial stress (1h) and

up-regulated at 6 and 12 h in HS and HT (Figures 6A, C–I; Table

S4). These transcription factors possibly involve different

thermotolerance in the two genotypes (Table S4) and might

play essential roles in flowering Chinese cabbage heat resistance

during the reproductive stage.
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Validation of RNA-seq data by
quantitative real-time PCR

To verify the results of RNA-seq, ten genes with diverse

expression profiles, including up-regulated or down-regulated at

all stages and/or regulated in HT or HS, were randomly selected

for real-time qPCR to measure expression levels. Table S5 lists

the primer sequences of selected genes. The relative expression

level was calculated with 2−DDCT using BraActin as a reference

gene (Table S5). As a result, two TFs genes, WRKY53 and HsfB-

2a, had similar expression patterns as those in RNA-seq

(Figure 6G, I). In brief, all ten genes exhibited the same

expression profile, with high correlation coefficients observed

between RNA-seq data and RT-qPCR at HS-1h (r = 0.83, P =
A B C

FIGURE 4

Expression patterns of differentially expressed genes (DEGs) and their functional annotation in heat-sensitive (3T-6) and heat-tolerant (Youlu-
501) flowering Chinese cabbage in response to heat stress. (A) Hierarchical clustering analysis indicates DEG expression patterns in 3T-6 and
Youlu-501 after 1, 6, and 12 h of heat stress relative to their controls; (B) Cluster analysis shows that the lines reflect expression patterns for
each DEG at heat-stress time points. Black lines in each cluster indicate mean changes in DEG expression; (C) Gene ontology enrichment
analysis of DEGs in each cluster.
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0.0032), HS-12h (r = 0.86, P = 0.0013), HT-1h (r = 0.88, P =

0.0017), and HT-12 (r = 0.86, P = 0.0028), indicating the

consistency of RNA sequencing data (Figure 7).
Discussion

Flowering Chinese cabbage, domesticated from Chinese

cabbage with flowering stalk, is a major food due to its high

nutrient value (Wang et al., 2016). However, heat stress

significantly affects the yield of flowering Chinese cabbage.

Thus, developing new varieties with high heat resistance is

critical for solving this dilemma. In previous studies, stress-

associated genes have been reported and functionally annotated
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in different vegetable crops under biotic and abiotic stress

conditions, including high temperature, salt stress, heavy metal

stress, drought, nutrient deficiency, bacterial wilt, fungal stress,

and UV-B radiation (Gill et al., 2016; Gill et al., 2017; Cai et al.,

2020; Yao et al., 2020; Ikram et al., 2022a; Li et al., 2022). In this

study, the comparative transcriptome analysis between the heat

treatment and control in HS and HT accessions significantly

identified 20,680 DEGs (|log2(foldchange)|≥2, FDR ≤ 0.001)

(Figures 2, 3), and 3,205 putative candidate genes involved in

response to heat stress in flowering Chinese cabbage (Figure 4;

Table S2).

Heat stress affects flowering Chinese cabbage growth and

productivity and produces ROS in plant cells, causing oxidative

damage. In response to stress, a plant defense mechanism against
TABLE 1 List of top potential differentially expressed genes involved in heat tolerance in flowering Chinese cabbage.

Clusters Gene id Log2 fold-change Functional annotation

HS-
1h

HS-
6h

HS-
12h

HT-
1h

HT-
6h

HT-
12h

Annotation GO/KEGG pathways enrichment

Cluster3 BraA07g024750.3C 9.07 4.65 3.32 7.49 2.69 3.43 Abscisic acid
receptor PYL9-like

MAPK signaling pathway - plant (ko04016); Plant hormone signal
transduction (ko04075)

Cluster1 BraA09g028180.3C –

3.92
–4.92 –

6.18
–3.67 –6.00 –7.19 Sodium transporter

HKT1-like

Cluster1 BraA09g022320.3C –

4.50
–3.13 –

2.66
–4.92 –2.55 3.01 abscisic acid

receptor PYR1-like
MAPK signaling pathway - plant (ko04016); Plant hormone signal
transduction (ko04075)

Cluster1 BraA09g047180.3C -4.96 -6.50 -2.38 -4.78 -2.22 -3.83 stomatal closure-
related actin-binding
protein 3

microspherule protein 1 (K11674); cytoskeletal protein binding
(GO:0008092)

Cluster3 BraA10g001200.3C 3.67 7.01 3.98 -2.12 2.20 2.67 gibberellin 2-beta-
dioxygenase 6

Biosynthesis of secondary metabolites (ko01110); oxidoreductase
activity (GO:0016491); metal ion binding (GO:0046872)

Cluster2 BraA10g011520.3C -2.31 2.21 3.13 -3.24 2.12 3.06 abscisic acid
receptor PYL8-like

MAPK signaling pathway - plant (ko04016); Plant hormone signal
transduction (ko04075)

Cluster3 BraA10g016090.3C 3.12 5.68 5.87 2.90 3.98 4.63 temperature-induced
lipocalin-1-like

apolipoprotein D and lipocalin family protein (K03098);
transporter activity (GO:0005215)

Cluster3 BraA10g028350.3C 4.58 6.06 4.35 4.03 5.64 4.56 abscisic acid
receptor PYL5

MAPK signaling pathway - plant (ko04016); Plant hormone signal
transduction (ko04075)

Cluster3 BraA02g041550.3C 5.16 4.93 4.36 3.58 3.35 4.59 E3 ubiquitin-protein
ligase MIEL1

Ubiquitin mediated proteolysis (ko04120); cation binding
(GO:0043169); metal ion binding (GO:0046872)

Cluster1 BraA05g008340.3C -3.79 -8.87 -8.87 -3.12 -8.79 -8.79 indole-3-acetic acid-
induced protein
ARG7-like

Plant hormone signal transduction (ko04075); response to stimulus
(GO:0050896); response to hormone (GO:0009725); response to
auxin (GO:0009733)

Cluster1 BraA06g037940.3C -7.17 -10.75 -5.54 -4.92 -3.45 -7.65 pollen-specific
protein-like
At4g18596

Cluster1 BraA07g002070.3C -5.62 -5.62 -4.04 -5.09 -3.60 -4.24 putative RING-H2
finger protein
ATL49

E3 ubiquitin-protein ligase RNF38/44 [EC:2.3.2.27] (K19041);
intrinsic component of membrane (GO:0031224)

Cluster3 BraA05g042010.3C 8.06 5.70 8.80 5.97 3.29 4.39 protein
DETOXIFICATION
24-like

multidrug resistance protein (K03327); antiporter activity
(GO:0015297); transporter activity (GO:0005215)

Cluster1 BraA08g000300.3C -3.10 -4.78 -3.14 -2.98 -4.63 -3.50 cellulose synthase-
like protein E1

cellulose synthase A [EC:2.4.1.12] (K10999)

Cluster1 BraA05g032350.3C -3.28 -2.36 -5.58 -2.30 -4.73 -3.55 bidirectional sugar
transporter
SWEET2-like

solute carrier family 50 (K15382); cell wall organization or
biogenesis (GO:0071554); organic substance biosynthetic process
(GO:1901576)
HS, heat-sensitive; HT, heat-tolerant.
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oxidative damage activated antioxidant enzymes, including SOD,

POD, and CAT, that efficiently scavenge ROS (Wahid et al., 2007;

Hasanuzzaman et al., 2013). In this study, SOD, POD, and CAT

activities significantly increased under stress conditions compared

to the control, more so in the HT genotype than the HS genotype

(Figure 1A), as reported elsewhere (Wang et al., 2016; Song et al.,

2019). Wahid et al. (2007) also measured increasing SOD, POD,

andCATactivities in response to stress.UsingRNAsequencing,we

obtained 21.94–24.90 million raw reads from HS and HT

accessions at 0, 1, 6, and 12 h, with 73.06–76.72% of the clean

reads mapped to the B. rapa reference genome (Table S1) and

higher from Chinese cabbage leaf RNA sequencing (Zhao et al.,

2013) and flowering Chinese cabbage stalk RNA sequencing

(Huang et al., 2017). We compared the expression data of leaves

at 1, 6, and 12 h with the control, identifying 10,153, 7,879, 7,662,

13,704, 5,161, and 7,438 DEGs in HS-1h, HS-6h, HS-12h, HT-1h,

HT-6h, and HT-12h, respectively (Figures 2A–C). Further, these

genes were involved in cell division, cellular process, response to

stimulus, primary metabolic process, response to heat, the

developmental process involved in reproduction, photosynthesis,

detoxification, RNAbinding, and auxin homeostasis (Figures 3, S2,

S3) in line with previous studies (Wang et al., 2016; Cai et al., 2020;

Helal et al., 2021; Lai et al., 2021). In addition, most DEGs were
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enriched in the MAPK signaling pathway – plant, brassinosteroid

biosynthesis, plant–pathogen interaction, plant hormone signal

transduction, and circadian rhythm (Figures 3, S4, S5); these results

are similar to previous reports (Song et al., 2014a; Song et al., 2021).

Hierarchical clustering analysis identified three clusters

containing 1,958, 591, and 556 down-regulated, up- and

down-regulated, and up-regulated, respectively (Figure 4;

Table S2), involved in response to stimulus, biological

regulation, oxidation, reproduction, cellular process,

developmental process, and carbon utilization. These findings

indicate that heat stress caused oxidative damage, leading to the

up-regulation of genes to increase tolerance; for example,

BraA07g024750.3C and BraA10g001200.3C encoded abscisic

acid receptor PYL9-like and gibberellin 2-beta-dioxygenase 6,

respectively (Table 1), and their homologous genes have been

functionally characterized to mediate salt stress tolerance in

Arabidopsis (Hichri et al., 2016) and cassava (Chang et al., 2020).

BraA05g032350.3C encodes bidirectional sugar transporter

SWEET2-like and plays a role in the organic substance

biosynthetic process (Table 1). Moreover, cluster 3 DEGs were

involved in sugar metabolism and proline/polyamine

metabolism (Table S2), with the accumulation of sugar and

proline detected as osmolytes, enhancing heat stress resistance
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FIGURE 5

Heatmaps of up- and down-regulated genes in heat-sensitive (3T-6) and heat-tolerant (Youlu-501) Chinese flowering cabbage related to stress
at different times and confirmation of two DEGs through RT-qPCR analysis. (A) Number of DEGs of cytochrome P450 gene family at four heat-
stress time points; (B) BraA01g002420.3C (BraCYP84A1-X1 cytochrome P450 84A1 isoform X1) showing similar expression pattern in RNA-seq
data; Heatmaps of MAPK (C), photosystem II (D), and HSPs (E) related genes in HS and HT varieties under heat stress; (F) Confirmation of
BraHSP70-5 gene identified through RNA-seq using RT-qPCR analysis. Asterisks indicate significance between treatment and control using
Student’s t-test at **P < 0.01 and ***P < 0.001.
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(Wahid et al., 2007; Kumazaki and Suzuki, 2019; Song et al.,

2019). The Sid2-1 mutant was reported in Arabidopsis,

significantly increasing soluble sugars to improve drought and

heat stress (Kumazaki and Suzuki, 2019). Similarly, heat stress

increased proline content in leaves of soybean (Amirjani, 2010),

tomato (Rivero et al., 2004), chickpea (Chakraborty and

Tongden, 2005), and Arabidopsis (Zhang and Huang, 2013;

Gurrieri et al., 2020; Hoermiller et al., 2022). The cluster 2

DEGs (Figure 4 ; Table S2) are associated with late

embryogenesis abundant protein (Magwanga et al., 2018) and

ubiquitin (Qian et al., 2020a), which protect sub-cellular and

cellular structures from dehydration and oxidative forces.

Therefore, the transcriptomic results were similar to enzymatic

activities, and the DEGs related to different proteins in flowering

Chinese cabbage might be necessary for heat stress tolerance.
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In this study, we identified 42 CYPs DEGs involved in

primary and secondary metabolism, including BraCYP83A1,

BraCYP83B1, BraCYP71A1, BraCYP71B13, BraCYP71B2,

BraCYP71B37, and BraCYP71B9 regulated in HS and HT

(Figure 5; Table S3). BraCYP83A1 was up-regulated at all time

points (Figure 5), with a similar result reported in Arabidopsis that

the CYP83A1 was involved in flavonoid metabolism (Bilodeau

et al., 1999). Similarly, CYP71A1 genes were up-regulated in

Panicum virgatum under heat stress and responsible for the

synthesis of indole alkaloid (Li et al., 2013) and down-regulated

in Rhazya stricta at high temperatures (Obaid et al., 2016). One

gene (CYP71A23) in this study was previously identified using

genome-wide association study, which caused pollen sterility in

Brassica napus under heat stress (Rahaman et al., 2018). Similarly,

five MAPK genes were identified in this study, which are critical
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FIGURE 6

Heatmaps of transcription factor families involved in abiotic stress and validation of DEGs in heat-sensitive (3T-6) and heat-tolerant (Youlu-501)
flowering Chinese cabbage using RT-qPCR analysis. The up- and down-regulated genes of TF families: (A) ERFs, (B) NAC, (C) ARFs, (D) bHLHs,
(E) HSFs, (F) MYBs, and (H) WRKYs for different high-temperature treatments; (G–I) Confirmation of HsfB-2a and WRKY53 using RT-qPCR.
Asterisks indicate significance between treatment and control using Student’s t-test at *P < 0.01, **P < 0.01, and ***P < 0.001.
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regulators of plant growth in stress responses (Agrawal et al., 2002;

Rohila and Yang, 2007). TFs are essential regulators of genes,

involving many growth, developmental, and stress processes. The

published studies have reported that heat stress increased the

ethylene response, auxin response, zing finger proteins, MADS-

box proteins, AP2 domain, WRKY, and leucine zipper factors

(Chen et al., 2012; Zander et al., 2012; Kim et al., 2016;Wang et al.,

2016; Gu et al., 2018; Rehman et al., 2021). RNA-seq analysis of

HS and HT lines in rice and maize determined ethylene response

factors that increased stress tolerance (Thirunavukkarasu et al.,

2013; Minami et al., 2018). In this study, 31 ERFs were enriched,

with >12 up-regulated at 6 and 12 h, possibly playing a significant

role in heat tolerance (Figure 6A). Likewise, five WRKYs
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(BraWRKY18, BraWRKY53, BraWRKY23, BraWRKY25, and

BraWRKY40) were up-regulated in HS and HT at 6 and 12 h

(Figure 5; Table S4). Of these,WRKY25 was also reported for heat

tolerance in Arabidopsis (Chen et al., 2012), and WRKY26 and

WRKY33 were also reported for stress resistance (Chen et al.,

2012; Kim et al., 2016; Gu et al., 2018). Moreover, many other TFs,

such as MYB, NAC, bHLH, and ARF, were detected (Figure 6;

Table S4), indicating that TF families are directly related and

enhance heat stress tolerance in flowering Chinese cabbage.

HSPs are expressed more during the initial stage of stress than

long-termstress (Singh et al., 2019;Qian et al., 2020b). In this study,

only ten DEGs were annotated as HSPs, including BraHSP70-5,

BraHSP70-10, BraHSP70-8, and BraHSP70-6 up-regulated at 1h
A B
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FIGURE 7

Validation of ten differentially expressed genes in heat-sensitive (3T-6) and heat-tolerant (Youlu-501) flowering Chinese cabbage based on RT-
qPCR. The RNA-seq and RT-qPCR values in the form of log2 fold-change were plotted using linear regression analysis at (A) HS-1, (B) HS-12h,
(C) HT-1h, and (D) HT-12h. R and P indicate the correlation coefficient and corresponding P-value.
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and BraHSP70-6-90-1 and BraHSP70-17 up-regulated at 12h

(Figure 5; Table S3). Likewise, Wang et al. (2016) reported that

HSP70 andHSPB27were expressed inB. rapa after heat stress, with

HSP70negatively controlling the heat stress response.HSP70s have

been identified inmanyvegetables in response toheat stress, suchas

potato, tomato, cabbage, and pepper (Guo et al., 2016; Lee et al.,

2017; Liu et al., 2018). Studies have demonstrated thatHSFs are key

regulators of HSPs under heat stress (Wang et al., 2016; Liu et al.,

2018),with 35HSF genes inA, B, andC groups reported inChinese

cabbage (Song et al., 2014b).However, 17 BraHSFs genes identified

in this study, includingHsfB1, HsfB-2a, HsfA-7a, HsfB-1, HsfA-4a,

HsfA-7b), andHsfA-3, were up-regulated at 1, 6, and 12 h inHSand

HT (Figure 6; Table S4). Similarly, Scharf et al. (2012) identified

HSFA2 as amajor heat stress factor that inducesHSPs expression in

stressed plants. Moreover, overexpression of HSFA2 significantly

increased salt, heat, light, and drought stress tolerance (Guo et al.,

2016). A tomato HSFA1-a was identified as a master regulator for

heat response in rice (Mishra et al., 2018). Thus, the present study

increased our understanding of DEGs, their roles in stress, and

BraHSF genes under heat stress.
Conclusion

We compared the transcriptomes of HS and HT varieties of

flowering Chinese cabbage under heat stress. Approximately 3,205

geneswere differentially expressed,with 1,078DEGs identified at 1,

6, and12hafterheat stress inbothvarieties.Cluster analysis divided

these genes into three clusters containing 1,958, 591, and 556 genes,

which participated in response to stimulus, cell division, cellular

process, heat, programmed cell death, ribosome biogenesis, etc.

Finally, 15 potential heat-tolerant genes were identified based on

functional annotation and literature search. These results provide

useful genetic resources for understanding the heat-tolerance

mechanism in flowering Chinese cabbage, and these candidate

genes require further functional validation and cloning to

determine their actual role in heat tolerance.
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