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The number of studies on plant transcriptomes using ONT RNAseq technology

is rapidly increasing in recent. It is a powerful method to decipher

transcriptomic complexity, particularly alternative splicing (AS) event

detection. Citrus plants are the most important widely grown fruit crops.

Exploring different AS events in citrus contributes to transcriptome

improvement and functional genome study. Here, we performed ONT

RNAseq in 9 species (Atalantia buxifolia, Citrus clementina, C. grandis, C.

ichangensis, C. reticulata, C. sinensis, Clausena lansium, Fortunella hindsii,

and Poncirus trifoliata), accompanied with Illumina sequencing. Non-

redundant full-length isoforms were identified between 41,957 and 76,974

per species. Systematic analysis including different types of isoforms, number

of isoforms per gene locus, isoform distribution, ORFs and lncRNA prediction

and functional annotation were performed mainly focused on novel isoforms,

unraveling the capability of novel isoforms detection and characterization. For

AS events prediction, A3, RI, and AF were overwhelming types across 9 species.

We analyzed isoform similarity and evolutionary relationships in all species. We

identified that multiple isoforms derived from orthologous single copy genes

among different species were annotated as enzymes, nuclear-related proteins

or receptors. Isoforms with extending sequences on 5’, 3’, or both compared

with reference genome were filtered out to provide information for

transcriptome improvement. Our results provide novel insight into

comprehending complex transcriptomes in citrus and valuable information

for further investigation on the function of genes with diverse isoforms.
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1 Introduction

Citrus fruits have high nutritional value and appetizing

flavor. They comprise one of the most important types of fruit

crops, and are wildly cultivated in more than 114 countries all

around the world (Talon and Gmitter, 2008). Sweet orange

(Citrus sinensis), mandarin (Citrus reticulata), pummelo

(Citrus grandis), grapefruit (Citrus paradisi), and lemon

(Citrus limon) are the top 5 cultivated citrus species (Wang

et al., 2018). Due to the remarkable progress in genomics of

citrus has been made, genome sequencing of 130 accession of

various citrus species has been released including several key

species such as Clementine mandarin, sweet orange, pummelo,

citron, Ichang papeda, and Atalantia (Wang et al., 2017; Wu

et al., 2018). It is an invaluable reservoir for genes that can be

used to understand fruit development, metabolism of sugar or

acid, and stress responses as well as for fruit crop improvement.

Alternative splicing (AS) is a ubiquitous process to generate

different transcripts from the same gene, which modulates the

diversity of mRNA and gene expression (Laloum et al., 2018; Li

et al., 2022). Four major types of AS can be classified including

intron retention (IR), alternative 3’ splice site (A3), alternative 5’

splice site (A5), and exon skipping (ES) (Hu et al., 2022). In

plants, AS regulates plant development and stress responses. For

instance, flowering time is tightly regulated by AS, and such

critical development in plants is related to the transcription of

FLOWERING LOCUS C (FLC), which is modulated by different

isoforms of its anti-sense lncRNA (Marquardt et al., 2014). In

addition, when Arabidopsis seedlings were treated with abscisic

acid, AS patterns were dramatically changed as manifested by

the increased number of uncanonical splicing sites (Zhu et al.,

2017). The advent of high-throughput sequencing of RNA

(RNAseq) has allowed us to explore the complexity of

transcriptomes in different tissues and under certain

conditions (Dong and Chen, 2013). However, the technologies

are almost based on short-reads, which cause difficulty in

computation as it is often hard to distinguish short reads

derived from isoforms, particularly in plant genomes for

which whole genome duplication occurred frequently and

further blurred read assignment (Bernard et al., 2014;

Mehrotra and Goyal, 2014).

Although short-read sequencing technologies are still the

dominant method in transcriptomic studies, long-read

sequencing technologies are increasingly becoming the

powerful standard approach for de novo transcriptome

assembly, isoform expression quantification as well as AS

detection, which has greatly improved the study of

transcriptome complexities. Currently, the newly emergent

sequencing methods including Pacific Bioscience (PacBio)

long-read sequencing technology and Oxford Nanopore

Technologies (ONT), both provide high throughput full-length
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transcript sequences (Rhoads and Au, 2015; Bayega et al., 2018).

Nanopore sequencing occurs in a flow cell, single-stranded DNA

or RNA molecules can be sequenced through the nanopore by

monitoring the change in the ionic current measured by a sensor

(Van Dijk et al., 2018). ONT shows several advantages over

other methods, such as extremely long sequencing reads, greater

flexibility in throughput and portability of sequencing

instruments, etc (Deamer et al., 2016). This approach has been

successfully implemented to explore the composition of plant

transcriptomes in rose (Li et al., 2020), Gnetum luofuense (Hou

et al., 2021), and oilseed rape (Li et al., 2022). Here, we have used

ONT for transcriptome sequencing of 9 citrus species and their

close relatives, including Atalantia buxifolia, Citrus clementina,

C. grandis, C. ichangensis, C. reticulata, C. sinensis, Clausena

lansium, Fortunella hindsii, and Poncirus trifoliata. In addition,

Illumina sequencing was also conducted. This study enables us

to explore the diversity and complexity of transcriptomes among

different species and provides valuable resources for future

research on citrus.
2 Materials and methods

2.1 Plant material and RNA extraction

Young leaves of each species were collected and immediately

frozen in liquid nitrogen. RNAprep Pure Plant Kit (Tiangen,

China) was used for total RNA extraction. Genomic DNA

contamination was removed by DNase treatment (Rapid Out

DNA Removal Kit, Thermo Scientific, Germany). Final RNA

quality and integrity were assayed using the Agilent 2100

Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA)

following the manufacturer’s instructions.
2.2 Library preparation and sequencing

For ONT transcriptome sequencing, the Oxford Nanopore

Technologies kit (SQK-PCS109) was used for full-length cDNA

library preparation. Sequencing was performed on the

PromethION 24 platform using flow cells (PAE33370). Guppy

software (Oxford Nanopore) was used for base calling. The

NanoFilt tool in the Nanopack package was used to filter and

preserve the sequences with length > 100 bp and quality > 7,

which were recognized as clean reads for subsequent analysis.

For Illumina sequencing, cDNA libraries were constructed using

the NEBNext Ultra RNA Library Prep Kit for Illumina (New

England Biolabs, Beverly, MA, USA) following the

manufacturer’s protocol. The libraries were sequenced on an

Illumina NovaSeq platform with the paired-end mode.
frontiersin.org
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2.3 Nonredundant full-length
reads identification

To generate the full-length isoform, Pychopper v2 (https://

github.com/nanoporetech/pychopper) was used to identify full-

length reads, which were then mapped to the reference genome

of each species respectively using Minimap2 v2.17 (Li, 2018).

Primarily mapped reads were obtained to remove redundancy

using cDNA Cupcake (https://github.com/Magdoll/cDNA_

Cupcake) with default parameters (i.e., identity < 0.9 and

coverage < 0.85). Additionally, we filtered out 5’ degraded

reads to obtain final non-redundant reads. Non-redundant

reads were annotated using Gffcompare (Pertea and Pertea,

2020) to distinguish different types of isoforms.
2.4 Functional annotation of novel
isoforms

Open reading frames (ORFs) of isoforms were predicted

using TransDecoder (Haas et al., 2013) based on nucleotide

composition, ORF length, and log-likelihood score. Novel

isoforms containing complete ORFs were extracted. The

resulting sequences were annotated by using Mercator4 v5

(Schwacke et al., 2019). These collapsed nucleotide sequences

were submitted to the online server and the resulting files

were downloaded.
2.5 LncRNA and AS prediction

Four different software were used to predict lncRNA,

including Coding Potential Calculator (CPC2) (Kang et al.,

2017), Coding–Non-Coding Index (CNCI) (Sun et al., 2013),

PLEK (Li et al., 2014), and Pfam (Mistry et al., 2021) with the

default setting. Finally, isoforms identified by all four tools and

larger than 200 bp without coding potential were selected as

candidate lncRNAs. Venn diagrams were drawn by R. Suppa

software (Trincado et al., 2018) and utilized to define AS events

with default parameters.
2.6 Quantification of gene expression

For Illumina sequencing, STAR 2.7.10 (https://github.com/

alexdobin/STAR) and featureCounts (Liao et al., 2014) were used

for reads alignments and gene/transcript counting, respectively.

Gene expression levels were estimated by transcripts per million

(TPM). For ONT RNAseq, the number of transcripts was figured

using Salmon (Patro et al., 2017), and gene expression levels were

calculated by TPM. The correlation between Illumina and ONT

RNAseq was calculated using Pearson correlation coefficient.
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2.7 Determination of common isoforms

To determine the common overlap of isoforms among 9

species, we ran blastn v2.13.0 (Camacho et al., 2009) on our own

server with E-value < 1E-10. Blast databases were constructed

using non-redundant reads of C. sinensis and isoforms of

additional eight species were blasted against the database. The

best hit for database entry of each species was kept to analyze the

common overlap of isoforms. Results were visualized by R.
2.8 Identification of orthologous genes

The primary protein sequences of 9 species were used as

input to construct ortholog groups and species tree using

Orthofinder (Emms and Kelly, 2019). Gene synteny analysis

and image of orthologous genes among 9 species were generated

using the jcvi program (https://github.com/tanghaibao/jcvi)

with the default parameters.
3 Results

3.1 Overview of ONT
transcriptome sequencing

We selected 9 species including A. buxifolia, C. clementina, C.

grandis, C. ichangensis, C. reticulata, C. sinensis, C. lansium, F.

hindsii, and P. trifoliata for this study. Leaves for each species were

harvested to prepare RNA libraries for ONT transcriptome

sequencing. In total, the size of clean reads obtained for

different species ranged from 5.59 to 6.26 gigabases (GB)

(Supplementary Table 1). Clean reads were processed with

Pychopper to identify full-length reads, resulting in between

5,030,899 and 8,319,455 full-length reads per species

(Supplementary Table 2). We used cDNA cupcake to collapse

redundant isoforms with degraded 5’ based on the genome

sequence of each species. The number of isoforms was

remarkably reduced, yielding 41,957 to 76,974 non-redundant

isoforms in different species (Supplementary Table 1).
3.2 Isoform characterization

ONT generates full-length reads without assembly which

allows us to explore the complexity of transcriptome more

accurately than does short-read sequencing. Non-redundant

isoforms of the 9 species were compared with their reference

annotation respectively using Gffcompare. This tool is able to

report multiple types of isoforms including known isoforms and

novel isoforms from predicted genes and isoforms from novel

genes, and the accuracy of splicing junction sites based on ONT
frontiersin.org
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sequencing showed high consistency with that predicted from

Illumina sequencing. Around 30% of isoforms were reported as

novel in all species (Figure 1A), which affirms that ONT RNAseq

is a powerful technology to detect novel isoforms in

transcriptomes. It is worth noting that isoforms characterized

from novel genes account for a small proportion of

transcriptomes (Figure 1A), however, the rate varies among

species and negatively correlates with the completeness of the

genome assembly.

We also determined the number of isoforms per gene, the

results showed that single isoform per gene was prevalent among

the transcriptome of 9 different species, which represents 34-

58% of their transcriptomes (Figure 1B). In addition, the isoform

density obtained from ONT RNAseq was shown (Figure 1C and

Supplementary Figure 1). Since some species were without

chromosome-level genome assembly, the top 50 largest

fragments were used for plotting.
3.3 Quantification of gene expression

To quantify gene expression, we compared RNAseq data of 9

species generated by ONT and Illumina. Standard gene

quantification tools do not apply for full-length reads, we

chose salmon to estimate the gene expression using reads

generated through ONT RNAseq by TPM. For Illumina

sequencing, TPM values of each gene were obtained as well.

When comparing ONT RNAseq and Illumina gene expression

quantification, the highest correlation value was observed in C.

sinensis (Figure 1D).
3.4 Prediction and functional annotation
of ORF and lncRNA

To further understand the biological roles of novel isoforms,

we firstly created subsets of novel isoforms (including novel

isoforms from predicted genes and isoforms from novel genes)

for each species. Open reading frames (ORFs) were predicted

using TransDecoder, and 26,058 to 69,640 ORFs were identified,

of which 11,300 to 47,648 complete ORFs were predicted in 9

species (Figure 2A). Length distribution of novel isoforms

containing complete ORFs was determined, showing that most

isoforms were less than 1,000 bp (Figure 2E). The largest mean

length of novel isoforms encoding complete ORFs was 353 bp in

C. reticulata, followed by 347 bp in F. hindsii, which were far

shorter than those of non-redundant reads. Furthermore, we

screened novel isoforms for putative long non-coding RNAs

(lncRNAs) using CPC2, CNCI, PLEK, and PFAM databases, a

total of 2,613 to 3,389 lncRNAs were predicted across 9 species

(Figure 2B). Furthermore, the number of exons within lncRNAs

was counted. LncRNA with 2 exons were overwhelming in all

species (Figure 2C). The results of lncRNA prediction by
Frontiers in Plant Science 04
individual method were shown in Figure 2D and

Supplementary Figure 2.

Functional annotation of novel isoforms was performed

using Mercator4. Mercator4 is a user-friendly, plant-specific

biological function annotation tool. The number of annotated

sequences in each “bin” for 9 species were collected and shown

in Supplementary Figure 3. The relative distribution is similar

among the 9 species. Major bins were described as enzymes,

biosynthesis and modification of RNA and protein, and

solute transport.
3.5 Evaluation of isoforms
among species

To identify cultivar-specific transcripts, the non-redundant

isoforms of C. sinensis were used as a blast database and

sequences of the remaining eight species were searched against

it. The best hit for database entry of each cultivar was selected

and the common overlap with all other cultivars was

determined. In total, 54,222 transcripts of C. sinensis were

used to build the database, of which about 5,600 were highly

similar to isoforms from the other eight cultivars (Figure 3).

However, 15,800 transcripts were unique to C. sinensis

(Figure 3), suggesting the potential genetic variations existing

between C. sinensis and other species.
3.6 Analysis of alternative splicing events

We identified seven types of AS events including A3, A5, AF

(Alternative first exon), AL (Alternative last exon), MX (Mutually

exclusive exons), RI, and SE in 9 species using SUPPA software.

The most abundant events were A3 (28.6%, 28.0%, 29.5%, 30.0%

and 28.5% in A. buxifolia, C. lansium, C. reticulata, C. sinensis and

P. trifoliata), RI (28.8%, 28.3%, and 27.8% in C. clementina, C.

grandis, and F. hindsii) and AF (39.2% in C. ichangensis)

(Figure 4A). In contrast, the least abundant event was MX in all

species (0.1% to 0.5%).

To explore the variation on the frequency of AS events in

orthologous genes across 9 species, ortholog groups were

constructed using Orthofinder, and we focused on 4,827

ortholog groups containing single copy genes originating from

all species. Different transcripts of these single copy genes were

identified according to ONT RNAseq data. Based on transcript

numbers, we screened out the largest ten ortholog groups

comprising between 128 to 248 transcripts, in which protein

sequences of C. sinensis were used as representative for

functional annotation (Supplementary Table 3). Unsurprisingly,

these proteins are enzymes, nuclear-related proteins and receptor.

Their multiple complex isoforms determine the varying functions.

Representative gene locus with high isoform diversification in C.

sinensis was illustrated in Figure 4B and syntenic network for
frontiersin.org
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FIGURE 1

Characterization of different isoforms identified in 9 species. Ab, Atalantia buxifolia; Cc, Citrus clementina; Cg, Citrus grandis; Ci, Citrus
ichangensis; Cl, Clausena lansium; Cr, Citrus reticulata; Cs, Citrus sinensis; Fh, Fortunella hindsii; Pt, Poncirus trifoliata. (A) Number of three
types of isoforms (isoforms from predicted genes, novel isoforms from predicted genes, and isoforms from novel genes) identified across 9
species. (B) Fraction of isoforms per gene across 9 species. (C) Chromosomal distribution of isoforms generated by ONT RNAseq, using (C)
sinensis as representative species. I: Isoform density of ONT sequencing; II: Known isoform distribution; III: Novel transcript distribution. (D)
Gene expression correlations between Illumina and ONT RNAseq. Scatter plot shows gene expression for each gene determined by Illumina and
ONT RNAseq for 9 species. Gene expression were given as Transcripts Per Million (TPM). Person r were calculated for each species.
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FIGURE 2

Information on identified ORFs and lncRNA. Atalantia buxifolia; Cc, Citrus clementina; Cg, Citrus grandis; Ci, Citrus ichangensis; Cl, Clausena
lansium; Cr, Citrus reticulata; Cs, Citrus sinensis; Fh, Fortunella hindsii; Pt, Poncirus trifoliata. (A) Number of total and complete ORFs within
novel isoforms in 9 species predicted using TransDecoder. (B) Number of lncRNA predicted by all four tools (CNCI, CPC2, PFAM and PLEK) in 9
species. (C) Number of exons within each predicted lncRNA in 9 species. Single exon lncRNAs were excluded. (D) Venn diagram of identified
lncRNAs by using four tools (CNCI, CPC2, PFAM and PLEK) in Citrus sinensis. (E) Length distribution of novel isoforms with complete ORFs for 9
species. Dashed lines show the mean length of isoforms for each species.
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single copy genes of the 9 species were shown in Figure 4C and

Supplementary Table 4.
3.7 Reference genome improvement

Since ONT RNAseq enables to identify features like TSS

(Transcription Start Site) and TES (Transcription End Site), we

screened the representative isoforms with the longest ORFs

identified by Gffcompare and discovered 1,034 to 4,467

isoforms with complete TSS and TES in all species. This result

improved the accuracy of genome annotation and may facilitate

future study in respective species (Supplementary Table 5).
4 Discussion

As plant research has entered the genomic era, numbers of

genome sequenced plant species have grown up with an

exponential rate over the past two decades with no slowdown

in sight. Citrus is one of the most widely grown fruit crops (Sun

et al., 2022). Several representative citrus genomes have been

released, which accelerate genetic studies and gene functional

exploration. In addition, decreasing the cost of high-throughput

sequencing technology has extended our understanding of the

transcriptome landscape in citrus. For instance, high-

spatiotemporal-resolution transcriptomes were used to profile
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Citrus sinensis fruit development and ripening based on four

fruit tissue types and six fruit development stages, which

provides insights into the molecular networks from young

fruits to ripe fruits (Feng et al., 2021). In another study,

RNAseq analysis was performed to identify 311 differentially

expressed genes (DEGs) in the bagged pomelo (Citrus grandis)

and controls during five fruit developmental stages. Most DEGs

were involved in the carotenoid pathway and lycopene

accumulation. The results facilitated the improvement of fruit

nutritional quality (Jiang et al., 2022). However, these studies

used short-read sequencing technology, which required

transcriptome assembly and failed to obtain full-length

transcripts and AS events. The emergent long-read sequencing

technology provides a significant chance to carry out studies on

full-length transcriptome and complex AS events. As a matter of

fact, comparative transcriptome analysis is a powerful approach

to gain insights into gene function and evolution (Xu et al.,

2022). In this study, we selected 9 species with reference

genomes respectively. ONT RNAseq was applied to generate

long-length reads, besides systematic analysis of genetic changes

in transcriptome, we also performed comparative transcriptome

analysis and inferred divergence and evolution of transcripts.

ONT RNAseq empowered the discovery of novel AS, as

generating a huge number of long reads without transcriptomic

assembly. Between 5.59 and 6.26 GB of cDNA were sequenced

for each species resulting in from 5,181,086 to 8,319,455 full-

length reads (Supplementary Table 2). Additionally, the

published citrus genomes were assembled by using short-

length sequencing technology, their annotations are not quite

thorough. Even for the well-annotated rice transcriptome, about

17% of isoforms could not find the functional description and

were considered as novel isoforms when long-read sequencing

was fulfilled (Schaarschmidt et al., 2020). Indeed, a large fraction

of novel isoforms were identified by using Gffcompare software,

the ratio is between 25.0% and 34.8% among 9 species.

For AS events detection, A3 events showed the largest

proportion in the current study, followed by RI and AF. The

three types of AS events are overwhelming in all kinds of AS

events. ONT RNAseq has been successfully applied to other

species to detect AS events. In resynthesized and natural B.

napus, a total of 9,296 and 10,820 AS events were identified (Li

et al., 2022), suggesting that long-read sequencing technology

can serve as an efficient method for transcriptome study and

functional genomics in different plant species.

Long-read sequencing also showed advantages in identifying

lncRNAs. Complete ORFs within novel isoforms were predicted

in 9 species. Four tools were used for the identification of

lncRNAs. A total of 2,613 to 3,389 lncRNAs were predicted by

all four approaches, which suggested the robustness of lncRNA

prediction using ONT RNAseq. Functional annotation of novel

isoforms revealed that sequences classified into groups related to

enzyme classification, biosynthesis, modification of RNA and

protein, and solute transport accounted for an overwhelming
FIGURE 3

Identification of common and specific transcripts across 9
species. Atalantia buxifolia; Cc, Citrus clementina; Cg, Citrus
grandis; Ci, Citrus ichangensis; Cl, Clausena lansium; Cr, Citrus
reticulata; Cs, Citrus sinensis; Fh, Fortunella hindsii; Pt, Poncirus
trifoliata. Database was built using non-redundant reads of Citrus
sinensis, sequence similarities were determined using blastn
search. The best hit for entry of each species was collected. The
15 largest categories were visualized in an UpSet plot. The
number of transcripts in each category was presented in the top
barplot. Entry size of different species was shown in the left
barplot. Black dots and vertical lines in the lower panel indicate
the species to which transcripts belong.
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FIGURE 4

Characterization of different types of alternative splicing (AS) events and evolution of orthologous genes in 9 species. Ab, Atalantia buxifolia; Cc,
Citrus clementina; Cg, Citrus grandis; Ci, Citrus ichangensis; Cl, Clausena lansium; Cr, Citrus reticulata; Cs, Citrus sinensis; Fh, Fortunella hindsii;
Pt, Poncirus trifoliata. (A) AS events were predicted using SUPPA. A3, Alternative 3’ splice sites; A5, Alternative 5’ splice sites; AF, Alternative first
exons; AL, Alternative last exons; MX, Mutually exclusive exons; RI, Retained intron; SE, Skipping exon. (B) The full-length reads representing the
complex isoforms were mapped to Cs_ont_2g001880 and Cs_ont_5g024910, which illustrates diverse isoforms can be found by ONT RNAseq.
The result was visualized by IGV. (C) A species tree generated by Orthofinder is shown on the left. Synteny analysis of ortholog genes among all
species is shown on the right. The top 50 largest genomic fragments were used to construct the synteny network. The light grey lines indicate
collinear blocks, the red line indicates ortholog single copy gene has highly abundant AS variation.
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proportion. The results indicated that copious transcripts

involve in these pathways remaining to be studied.

To explore common isoforms among 9 species, we used non-

redundant isoforms of C. sinensis to build a database for blast

searches of the rest species. By this method, we identified common

and species-specific isoforms in our datasets. A total of 15,800 C.

sinensis specific isoforms were yielded, followed by 5,600 common

isoforms in all species. The analysis illustrated that certain

transcriptomic variation and consistency exist among 9 species.

To deepen the understanding of evolutionary relationship of AS,

we performed phylogenomic analysis and filtered out single copy

ortholog groups. Numbers of AS events derived from such groups

were counted, top ten were selected for functional annotation

which represented highly diversity of AS events. These genes

expressing complex isoforms were characterized as enzymes,

nuclear-related proteins and receptors. Our results recapitulated

the finding in human B1a cells sequenced using Nanopore long-

read RNAseq, in which several B cell-specific surface receptors

expressed multiple complex isoforms were identified to confirm

the exceptional transcriptional diversity (Byrne et al., 2017).

We assessed the correlation of gene expression quantification

between ONT RNAseq and Illumina in 9 species. The highest

correlation value is 0.58 found in C. sinensis. While for

Arabidopsis (Cui et al., 2020) and human (Byrne et al., 2017)

whose genome annotations are much better, the correlation values

were greater than 0.8 in both cases. Therefore, we propose that

additional efforts should be made to improve citrus genome

annotation in the future. Another evidence occurred when we

visualized multiple isoforms generated from gene locus

Cs_ont_5g024910, gene structure variations were detected when

comparing reference genome annotation to full-length read

sequenced using ONT RNAseq (Figure 4B). For this reason, we

tried to improve genome annotation by discovering transcripts

with extending the length of 5’ or 3’ or both compared with the

reference genome. As a result, we find from 1,034 to 4,467

optimized transcripts, indicating the capability of genome

improvement by long-read sequencing.
Conclusion

ONT RNAseq allows us to profile complex transcriptomes in

citrus species. We discovered novel transcripts, analyzed

abundance AS events and attempted to improve the reference

transcriptome. To understand evolutionary variations on

isoform numbers of ortholog genes across different citrus

species, some enzymes and receptors were identified to show
Frontiers in Plant Science 09
high varied number of isoforms in different species. This result

can be used as a resource to explore environmental adaptation

across citrus related linages.
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