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Early leaf spot (ELS) and late leaf spot (LLS) diseases are the two most

destructive groundnut diseases in Ghana resulting in ≤ 70% yield losses

which is controlled largely by chemical method. To develop leaf spot

resistant varieties, the present study was undertaken to identify single

nucleotide polymorphism (SNP) markers and putative candidate genes

underlying both ELS and LLS. In this study, six multi-locus models of

genome-wide association study were conducted with the best linear

unbiased predictor obtained from 294 African groundnut germplasm

screened for ELS and LLS as well as image-based indices of leaf spot

diseases severity in 2020 and 2021 and 8,772 high-quality SNPs from a 48 K

SNP array Axiom platform. Ninety-seven SNPs associated with ELS, LLS and five

image-based indices across the chromosomes in the 2 two sub-genomes.

From these, twenty-nine unique SNPs were detected by at least twomodels for

one or more traits across 16 chromosomes with explained phenotypic variation

ranging from 0.01 - 62.76%, with exception of chromosome (Chr) 08 (Chr08),

Chr10, Chr11, and Chr19. Seventeen potential candidate genes were predicted

at ± 300 kbp of the stable/prominent SNP positions (12 and 5, down- and
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upstream, respectively). The results from this study provide a basis for

understanding the genetic architecture of ELS and LLS diseases in African

groundnut germplasm, and the associated SNPs and predicted candidate

genes would be valuable for breeding leaf spot diseases resistant varieties

upon further validation.
KEYWORDS

candidate genes, environmentally friendly, genomics, markerassisted selection,
oilseed, early leaf spot, late leaf spot
Introduction

Groundnut [Arachis hypogaea L. (2n = 4x = 40)] is an

allotetraploid originating from South America and is a grain

legume that is largely grown in the tropical and subtropical

regions of the world (Bertioli et al., 2016). It comprises of two

genomes with their origins coming from different diploid wild

ancestors (Bertioli et al., 2016). Groundnut plays a pivotal role in

the life of small-holder farmers in Ghana, and it is a suitable

vehicle for making improvements in the areas such as poverty

alleviation, food and nutritional security (Tyroler, 2018). It is a

good source of plant protein for resource poor-households who

are unable to buy animal protein. Groundnut also provides

vitamins, minerals and unsaturated oil for most Ghanaians

(Asibuo et al., 2008). Increase production and consumption of

groundnut will reduce the number of the over 800 million people

in many developing countries who are chronically hungry as well

as the about 2 billion people who suffer micronutrients

deficiencies (FAO et al., 2019). Globally, it provided 8, 3 and 2%

of oilseed produced, vegetable oil and protein meal consumed,

respectively (http://soystats.com/, accessed 03.07.2022).

Despite the importance of groundnut, its cultivation is

hindered by numerous biotic and abiotic factors. Early leaf

spot (ELS) caused by the fungus Passalora arachidicola (S.

Hori) and late leaf spot (LLS) also caused by the fungus

Nothopassalora personata (Berk. & Curt.) are the two most

destructive groundnut diseases in Ghana with a potential yield

loss of ≤ 70% (Naab et al., 2005; Denwar et al., 2021). Chemical

control of these diseases is not feasible in farmers field in Ghana

due to their inability to afford these chemicals and therefore ends

up not controlling the diseases (Nutsugah et al., 2007; Denwar

et al., 2021). Farmers often confuse leaf spots severities with

maturity indicator further affecting their mitigation measures.

Development and cultivation of leaf spot resistant varieties is

cheaper and environmentally friendly (Gaikpa et al., 2017).

Resistance is largely controlled by polygenes and influenced by

genotype (G), environment (E) and their interactions (G×E)

(Johnson, 1984; Wiesner-Hanks and Nelson, 2016). This makes

the traditionally commonly used screening methods for
02
identifying leaf spot resistant varieties in Ghana difficult due to

the partial and polygenic nature of these diseases (Dwivedi et al.,

2002; Pasupuleti et al., 2013). In addition, conventional

phenotyping procedures are laborious, time-consuming,

destructive, subjective, costly, inefficient and lack inter or

intra-rater repeatability (Araus et al., 2018; Awada et al., 2018).

To overcome errors and expenses by manual phenotyping, the

red-green-blue (RGB)-image method (which is the science of

making measurements through the use of an RGB camera),

together with conventional and marker-assisted selection (MAS)

may overcome the flaws of current breeding methods (Li et al.,

2014; Wang et al., 2017; Yang et al., 2020; Sarkar et al., 2021a). The

application of the RGB image method for screening has generated

much interest in agricultural research because of its importance in

crop production (Sie et al., 2022; Chapu et al., 2022). RGB image

method is more efficient, offers inter or intra-rater repeatability, is

easy to apply, is less expensive, non-destructive, and offers the

chance to take multiple measurements on a specific plant due to the

non-destructive nature of the technology (Araus et al., 2018; Awada

et al., 2018; Gill et al., 2022). Moreover, the application of the RGB

image method in phenotyping will allow the screening of a large set

of genotypes using a small fraction of the time that would have been

used in conventional phenotyping. For instance, previous studies

have shown the efficacy of the RGB imaging for assessment of a

number of diseases in several crops verticillium wilt (caused by

Verticillium dahliae Kleb) in olive (Olea europaea L.) (Sancho-

Adamson et al., 2019), yellow rust (Puccinia striiformis f. sp tritici)

in wheat (Zaman-Allah et al., 2015; Zhou et al., 2015), and lethal

necrosis (caused by a combination of maize chlorotic mottle virus

(MCMV) and sugar cane mosaic virus (SCMV) in maize (Zea mays

L.)) (Kefauver et al., 2015).

In the last decade, there has been rapid development of next-

generation sequencing, high-throughput genotype data together

with phenotypic data for utilization to identify marker-trait

associations via genome-wide association study (GWAS)

(Varshney et al., 2019; Varshney et al., 2020). Compared to

linkage mapping, GWAS has emerged as a powerful tool to

detect markers (single nucleotide polymorphisms (SNPs))

closely linked to quantitative trait loci (QTL), based on the
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principle of linkage disequilibrium (LD) between genetic

markers and QTL that affect the trait (Geng et al., 2015). By

this strategy, Zhang et al. (2020a) detected a total of 46 and 28

QTL for ELS and LLS, respectively, with Efficient Mixed-Model

Association eXpedited (EMMAX), while Pandey et al. (2014)

detected 6 QTL for ELS and 1 QTL for LLS. In contrast, seven

and five major QTL for ELS and LLS have been detected

and reported on chromosomes 2 and 3, respectively (Chu

et al., 2019). In addition, Shaibu et al. (2021) detected 25 SNPs

for ELS in mini-core collection of 168 accessions in Nigeria by

efficient mixed-model association (EMMA) and compression

mixed linear model (CMLM).

The statistical model adopted is one of the setbacks to the power

of detection in GWAS (Gupta et al., 2014; Ibrahim et al., 2020;

Yoosefzadeh-Najafabadi et al., 2022). Traditional popular statistical

models (single-marker genome-wide scan models), mixed linear

model (MLM), and general linear model (GLM), among others,

have a number of limitations such as the stringent threshold of

significance and mapping power (Wen et al., 2018). To overcome

these limitations, several multi-locus models have been developed

and utilized for GWAS in several crops (Zhang et al., 2019; Karikari

et al., 2020; Berhe et al., 2021; Vikas et al., 2022). Among them

include a multi-locus random-SNP-effect mixed linear model

(mrMLM) (Wang et al., 2016), a fast mrMLM (FASTmrMLM)

(Zhang et al., 2018), a fast mrMLM efficient mixed-model

association (FASTmrEMMA) (Wen et al., 2018), polygene-

background-control-based least-angle regression plus empirical

Bayes (pLARmEB) (Zhang et al., 2017), Kruskal-Wallis test with

empirical Bayes under polygenic background control (pKWmEB)

(Ren et al., 2018) and integrative sure independence screening

expectation maximization Bayesian least absolute shrinkage and

selection operator model (ISIS EM-BLASSO) (Tamba et al., 2017).

The multi-locus models have become the state-of-the-art

procedure to identify genetic bases for complex traits due to their

power of detection and robustness (Zhang et al., 2019).

Therefore, the present study applied the six multi-locus

models to identify genomic regions and potential candidates

associated with ELS and LLS diseases. A total of 294 groundnut

accessions were collected from different African countries and

screened in two years with manual scoring of ELS and LLS

together with 5 imaged-based indices and area under disease

progression curve (AUDPC) for both diseases. The results from

this study lay the foundation for MAS to speed up breeding for

leaf spot-resistant cultivars.
Materials and methods

Planting materials and
experimental condition

Two hundred and ninety-four African groundnut collections

(Supplementary Table S1) were planted during the main
Frontiers in Plant Science 03
planting season, from June 2020 to September 2020 and June

2021 to September 2021 at the experimental site (09° 25′ 41″ N,
00° 58′ 42″W) of Council for Scientific and Industrial Research-

Savannah Agricultural Research Institute (CSIR-SARI) located

in Nyankpala, Northern region, Ghana. This population

comprised 54, 49, 44, 32, 31, 27, 22, 18, and 17 accessions

from Uganda, Ghana, Niger, Malawi, Senegal, Mali,

Mozambique, Togo, and Zambia, respectively (Supplementary

Table S1), mainly from African Groundnut Germplasm

Collection leaf spots resistant and yield phenotyping programs.

This panel was selected for the current study to lay foundation

for future molecular breeding. The experimental area is

characterized by a relatively dry climate with unimodal rainfall

ranging between 500 and 1200 mm annually (Atiah et al., 2019;

Atiah et al., 2020). The inception of the rains is in May and ends

in October with small scattered precipitations in November. The

soils of the research area belong to Ferric Luvisols of the Tingoli

series with a brown color, moderately drained, and free from

concretions (Atakora and Kwakye, 2016). The experiment was

carried out in a location that is a hotspot for the disease and

therefore can sufficiently discriminate between susceptible and

resistant lines (Danful et al., 2019; Oteng-Frimpong et al., 2021)

The accessions were arranged in lattice design with three

replicates. A plot was made up of one row of 2 m long with a

spacing of 0.5 m between rows and 0.2 m between plants. One

seed was planted per hill. Weeding was carried out whenever

necessary to ensure a weed-free trial.
Agronomic practices

Pre-emergence weed control was done by spraying

(Alligator® 400EC, Pendimethaline 400g/L, EC) and

glyphosate (480g/L SL) at 200 ml/15 liters of water

immediately after planting. Weeds were manually controlled

regularly by hoeing between the rows and pulling weeds within

rows as well as on top of plots using hands to ensure a weed-free

experiment. Earthen-up was done 40 days after planting to

enhance aeration. A compound fertilizer made of nitrogen(N),

phosphorus (P), potassium (K) together with sulphur (S), zinc

(Zn) and boron (B), i.e., (N:P:K: 11:22:21+5S+0.7Zn+0.5B) was

applied on the sides of the plants two weeks after seedling

emergence at a rate of 150 kg/ha. At the same time, the

experiment was sprayed against aphis infestation using K-

Optimal (Lambda-cyhalothrin 15 g/l + acetamiprid 20 g/l; EC)

at 40 ml in a 15L Knapsack sprayer.
Collection of phenotypic data

Visual scoring for leaf spot disease
Visual scoring for the severity of ELS and LLS infection was

evaluated using the scale described by Subrahmanyam et al.
frontiersin.org
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(1995) at 70 and 90 days after planting (Sie et al., 2022). Values

of 1 to 4 indicate increasing leaf spot incidence on leaflets within

the lower or upper canopy, but no defoliation. Ratings from 4 to

10 are associated with increasing levels of severity with

defoliation (Chiteka et al., 1988). The average score of the

two-sampling time was computed. AUDPC values were

computed for each plot from these disease ratings using the

formula: AUDPC =oa
i¼1½f

yi + yi+1
2

gxðti+1 − ti)�, where yi is the
level of disease severity score at a point in time, t(i+1)-ti is

the number of days between two successive scores (Shaner and

Finney, 1977).

Measurement of normalized difference
vegetation index

GreenSeeker® handheld sensor: (Model HCS-100

manufactured by Trimble Navigation Limited, Sunnyvale,

USA) was used to measure the canopy normalized difference

vegetation index (NDVI) of the vegetation from each plot. The

instrument was aligned horizontally and maintained at a

constant height of 50 cm over the plants’ canopy with a

walking speed to cover the row within 60 seconds. The

GreenSeeker optical sensor uses radiation of 650 ± 10 of red

and 770 ± 15 of near-infrared band independently. The sensor

uses built-in software to directly calculate the NDVI value using

the formula: (NIR-RED)/(NIR+RED) (Rouse et al., 1974). The

NDVI value which ranges from 0.00 to 0.99 was recorded from

the screen of the device. Readings were taken at 70 and 90 days

after planting when the sun was at its zenith.

RGB images
The RGB digital camera (Samsung Galaxy NX300) was used

to take close-up images of one plot at a time. The camera was set

to “auto” to allow the camera to adjust the required sharpness,

brightness, and hue depending on the light available, with the

zoom of the lens being at 0. A part representing the plot was

selected for the image. The camera was maintained at the same

height of 80 cm over the row for all pictures and facing the sun to

avoid any shadows on the pictures. Pictures were taken at 70,

and 90 days after planting. Digital image analysis was carried out

in Image J software by converting hue (H), saturation (S), and

brightness (B) values into the dark green color index (DGCI).

Green area, greener area, and crop
senescence index

Green area (GA=H 60-120°), greener area (GGA= H 80-

120°), Hue angle, and crop senescence index (CSI=(100*(GA-

GGA)/GA) (Gracia-Romero et al., 2018) were extracted using

Breedpix 2.0 option from the CIMMYT maize scanner 1.16

plugin (http://github.com/george-haddad/CIMMYT open

software; Copyright 2015 Shawn Carlisle Kefauver, University

of Barcelona); produced as part of Image J/Fiji (open source

software; http://fiji.sc/Fiji) (Schindelin et al., 2012; Schindelin
Frontiers in Plant Science 04
et al., 2015). Both GA and GGA measure the number of green

pixels on an image. However, the GGA removes green tones that

are yellowish from the image and, accordingly, differentiates leaf

senescence and active photosynthetic biomass more accurately.
Statistical analysis of phenotypic data

Data collected manually and imaged based across the two

years (2020 and 2021) were subjected to analysis of variance

(ANOVA) in SAS (SAS Institute, 2010. SAS/STAT software

version 9.2. SAS Institute Inc, Cary, NC) with a general linear

model procedure (PROC GLM), following statistical model

ypqr=m+Gp+Eq+GEpq +Rr(q)+ϵpqr , where ypqr stands for the

individual observation of pqrth experiment unit, m is the total

average phenotypic value, Gp is the effect of the pth genotype,

E1is the effect of the qth year, GEpq is the interaction effect

between the pth genotype and the qth year, Rr(q) is the effect of the

rth block within the qth year, and epqr is the residual error. All

factors were considered random.

Descriptive statistics: mean, standard error of the mean,

kurtosis, and skewness were calculated in SAS (SAS Institute,

2010. SAS/STAT software version 9.2. SAS Institute Inc, Cary,

NC) from the two years data. Pearson correlation coefficients

were computed and visualized in R with the corrplot package

(Wei et al., 2017).

In addition to the above, broad-sense heritability (H2) for

each trait was computed following the formula proposed by

Nyquist and Baker (1991), thus H2 = s 2
g  =(s 2

g + s2
ge=n  + s 2

e =nr)

where s2
g is the genotypic variance, s2

ge  is the genotype by

environment interaction variance, s 2
e   is the error variance, n is

the number of environments, and r is the number of replications.
Genotyping and population
structure analysis

Prior to genotyping, fresh and healthy leaf samples were

collected from the panel evaluated in this study and stored at -80

°C for DNA isolation. The genomic DNA was extracted using

the modified CTAB method (Porebski et al., 1997). Purified

DNA was dissolved in TE buffer for further analysis. The

quantity and quality of the DNA were assessed with

NanoDrop™ 2000 Spectrophotometer (Thermo Scientific,

Wilmington, DC, USA). The genotyping was performed using

SNP array (Affymetrix 2). The SNP array used in this study was

the 48 K SNP array that was developed for Arachis Axiom

Arachis. Quality control was conducted following the procedure

outlined by Clevenger et al. (2018) on 8,911 SNPs.

Population structure was analyzed via Structure software

2.3.3 (Pritchard et al., 2000) with the number of presumed

population (K) set from 1-7 and replicated 5 times with a

burn-in period of 50,000 steps and Monte Carlo Marko Chain
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of 100,000. An admixture model with correlated allele frequency

was adopted in this study (Falush et al., 2003). After analysis, the

Structure Harvester online program (https://taylor0.biology.ucla.

edu/structureHarvester/) was used to retrieve the optimum K

(DK) (Earl and Vonholdt, 2012). Only the accessions with a

membership coefficient (Q) ≥ 0.60 were assigned to a genetic

group and those with Q<0.60 were classified as admixture

(Delfini et al., 2021). We further constructed a neighbor-joining

(NJ) phylogenetic tree via TASSEL 5.2.31 software (Bradbury

et al., 2007). A kinship plot was produced with the kinship2

package in R (Sinnwell et al., 2014). LD between pairwise SNPs

was computed with RTM-GWAS V1.1 software with squared

allele frequency correlation model (He et al., 2017). The panel’s

LD decay rate was estimated as the chromosomal distance when

the LD decay (r2) fell to half of its highest value. The graph of the

LD decay was produced with the help of GraphPad Prism version

5.01 (GraphPad Software, San Diego California USA) within the

pairwise distance of 5 Mb in the genome.
Marker-trait association analysis

To prevent environmental (year) variation in phenotypic

data, the best linear unbiased predictor (BLUPs) for each

accession for all traits were calculated using R package lme4

(Bates et al., 2015) with the effect of environment (year),

replicate within E, G, GE and error as random effects. Six

multi-locus models, i.e., mrMLM (Wang et al., 2016),

FASTmrMLM (Zhang et al., 2018), FASTmrEMMA (Wen

et al., 2018), pLARmEB (Zhang et al., 2017), pKWmEB (Ren

et al., 2018) and ISIS EM-BLASSO (Tamba et al., 2017) were

conducted in R with mrMLM package (V4.0.2) (Zhang et al.,

2020b) with both Q matrix and principal component (PC)

together with kinship matrix. The threshold with a critical

logarithm of odd value was set at 3.

Candidate gene prediction and
in silico analyses

SNPs detected for at least two traits were considered stable,

hence were selected for downstream analysis including candidate

gene prediction from reference genome (A. hypogaea V1)

(Bertioli et al., 2019) available on phytozome (https://

phytozome-next.jgi.doe.gov/). The gff3 file was retrieved from

the phytozome website (https://phytozome-next.jgi.doe.gov/)

and information gene ontology (GO) (Ashburner et al., 2000),

protein families (Pfam) (Bateman et al., 2004), Kyoto

Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and

Goto, 2000), and transcription factors (Jin et al., 2014)) were

further explored in selecting candidate genes with the SNP ± LD.
Frontiers in Plant Science 05
Results

Phenotypic variation, broad-sense
heritability, and correlation among the
294 accessions of groundnut

Descriptive statistics and H2 of the four image-based traits

(Hue, GA, GGA, and CSI), vegetative index trait (NDVI),

manually scored traits (ELS and LLS), and quantitatively

computed traits (AUDPC-ELS and -LLS) among the 294

groundnut accessions based on the two years (2020 and 2021)

evaluation in this study are shown in Table. The hue, GA, GGA,

CSI (from the image-based phenotyping) and NDVI values

ranged (mean ± Standard error of mean) from 38.37-90.20

(68.03 ± 0.56), 0.30-0.92 (0.63 ± 0.01), 0.23-0.81 (0.48 ± 0.01),

9.27-45.90 (26.19 ± 0.45) and 0.36-7.09 (0.68 ± 0.02),

respectively (Table 1). The qualitatively scoring of ELS and

LLS incidence followed a normal distribution (Figures 1A, B),

with the mean scores of 4.28 ± 0.03 and 4.85 ± 0.04 (Table 1),

respectively. This indicates that the population used for this

study exhibited a wide range of variation in response to ELS and

LLS diseases. Also, the quantitatively computed AUDPC for ELS

and LLS ranged from 30.00-140.00 (86.00 ± 0.60) and 40.00-

140.00 (97.00 ± 0.47) (Table 1), respectively, and this followed

normal distribution among the population used in this study

(Figures 1C, D).

Combined ANOVA of the two years data revealed that eight

traits varied significantly due to genotypes (G), environment (E),

and their interaction (GE), while NDVI differed due to E

(Supplementary Tables 2A–I). These coupled with high H2

(Table 1) suggest that these ELS and LLS are largely controlled

by polygenes with both major and minor effects. This highlights

that selection based only on phenotypic variation may

be misleading.

We further conducted a Pearson correlation analysis among

the five image-based indices, ELS, LLS, AUDPC-ELS, and -LLS

with Corrplot package in R (Wei et al., 2017) and the results are

shown in Supplementary Figure 1. Among the five image-based

indices, only CSI positively correlated with LLS (correlation

coefficient, r = 0.71), AUDPC-LLS (r=0.66), ELS (r=0.56) and

AUDPC-ELS (r=0.44) (Supplementary Figure 1). This indicates

that CSI could be a relatively good indicator for the assessment

of ELS and LLS diseases. However, the qualitatively and

quantitatively scoring of ELS and LLS negatively correlated

with the other four image-based indices (GA, GGA, Hue, and

NDVI) (r=-0.02 to -0.82) (Supplementary Figure 1) confirming

that leaf spot diseases affect the photosynthetic capacity of the

leaf. These together with leaf spot diseases ratings and ANOVA

highlight that the phenotypic data from the population qualify

for GWAS mapping.
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Genetic differentiation and
LD estimation among the
mapping population

After quality control on the obtained 8,911 SNPs, a total of

8,772 SNP markers were distributed between the two sub-

genomes (A and B) with quality criteria of minor allele

frequency< 0.05 and call rate<0.95. Out of these, 8,152 SNPs

were located on one of the linkage groups in the two sub-

genomes (A and B), while 619 SNPs were located on scaffolds.
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The SNPs located on the scaffolds were excluded from the

downstream analysis. The longest and shortest chromosome

(Chr) spanned 149.79 Mb (Chr15) and 49.33 Mb (Chr08),

respectively (Table 2; Supplementary Figure 2). However,

Chr08 and Chr19 contained the highest and least number of

SNPs (877 and 191, respectively).

The Bayesian model based population structure analysis was

carried out with K=1-7 with 5 independent runs for each K. The

estimated DK plot shown in Figure 2A reveals that 294

accessions are optimally grouped into two sub-populations (I
TABLE 1 Descriptive statistics and broad-sense heritability of nine traits.

Parameter a Mean ± SEM b Range CV (%) c Skewness Kurtosis H2 (%) d

Hue* 68.03 ± 0.56 38.37-90.20 13.85 0.16 -0.26 90.09

GA* 0.63 ± 0.01 0.30-0.92 17.96 0.34 -0.48 90.68

GGA* 0.48 ± 0.01 0.23-0.81 25.39 0.54 -0.85 92.38

CSI* 26.19 ± 0.45 9.27-45.90 29.68 -0.12 -0.99 82.12

NDVI* 0.68 ± 0.02 0.36-7.09 55.69 16.42 276.80 66.23

ELS+ 4.28 ± 0.03 1.58-6.17 12.66 -0.88 4.01 73.08

LLS+ 4.85 ± 0.04 1.58-6.67 14.33 -0.85 1.56 85.55

AUDPC-ELS 86.00 ± 0.60 30.00-140.00 28.53 0.05 -0.93 75.97

AUDPC-LLS 97.00 ± 0.47 40.00-140.00 19.87 -0.13 -0.54 86.00
fron
aHue, hue angle; GA, green area; GGA, greener area; CSI, crop senescence index; NDVI, normalized difference vegetation index; ELS, early leaf spot; LLS, late leaf spot; AUDPC-ELS and
-LLS, area under disease progress curve for ELS and LLS, respectively. * RGB-image-based phenotyping.+ Manual disease scoring with a scale of 1-9 by Subrahmanyam et al. (1995). bmean±
standard error of mean. cCoefficient of variation. dBroad-sense heritability.
B

C D

A

FIGURE 1

Frequency distribution of leaf spot diseases rating in the 294 accessions (n) in this study. (A) Early leaf spot (ELS). (B) Late leaf spot (LLS). (C) Area
under disease progression curve (AUDPC) -ELS. (D) AUDPC - LLS.
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and II) (Figure 2B). The sub-population I consisted of 99

accessions (≈33.67%) with nearly 50% of them from Uganda

and Senegal, while those in sub-population II comprised 173

accessions (≈58.84%) with 43, 26, 20, and 20 accessions from

Niger, Ghana, Malawi, and Mali, respectively (Table 3;

Supplementary Table 1). Based on the Q≥ 0.60 as pure lines,

twenty-two accessions representing 7.48% of the population are

considered admixtures (Figure 2C). Allele frequency divergence

between two sub-populations was estimated as 0.38, while the

expected heterozygosity between individual accessions with sub-

population I and II are 0.15 and 0.18, indicating that sub-

population II is relatively more diverse than sub-population I.

The population structure stratification was consistent with

kinship matrix, phylogenetic trees, and principal component

analysis (Figures 2D, E). The LD decay across the two sub-

genomes of the studied panel was estimated to be about 300

kbp (Figure 2F).
Marker-trait association

In order to remove environmental effect during the marker-

trait association mapping, BLUP values were used where the

effect of environment (year), replicates within E, G, GE, and

error were considered as random effects. With the six multi-

locus models, a total of 97 SNPs distributed across the 20
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chromosomes with an average of ≈5 SNPs per Chr and range

of 1 SNP on Chr15 to 11 SNPs on Chr16 were detected

(Figure 3A; Supplementary Table 3). Of these, the power of

detection among the six models followed pKWmEB (46 SNPs) >

pLARmEB (40 SNPs) > mrMLM (25 SNPs) > FASTmrMLM (18

SNPs) > ISIS EM-BLASSO (16 SNPs) > FASTmrEMMA (12

SNPs) (Figure 3B).

Comparative analysis among the six multi-locus models

revealed that twenty-nine unique SNPs were detected by at

least two models for one or more traits across 16

chromosomes with exception of Chr08, Chr10, Chr11 and

Chr19 (LOD ≥ 3.00) (Table 4). Among these, seven SNPs

(AX-176823205 (Ch01) , AX-176823123 (Chr01 ) ,

AX176799357 (Chr02), AX-176796174 (Chr05), AX-

147224865 (Chr06), AX-147239793 (Chr06) and AX-

177643984 (Chr20)) associated with two traits (Table 4). For

example, SNP, AX-176823205 associated with both Hue and LLS

with allele C at 91414269, LOD of 3.40-5.04 and phenotypic

variation explained (PVE) of ≤ 3.12%. The C allele had negative

and positive effect on Hue and LLS, respectively. This and the

other six SNPs (AX-176823123, AX176799357, AX-176796174,

AX-147224865, AX-147239793 and AX-177643984) may be the

basis for the r values observed on Supplementary Figure 1.

Therefore, these SNPs could be valuable genetic resources to

understand the relationship among the evaluated indices

associated with leaf spot diseases.
TABLE 2 Distribution of single nucleotide polymorphism (SNP) markers between A and B sub-genomes of groundnut (chromosome) of the
studied population.

Genome/LG Chr. Length (bp) Length (kb) Length (Mb) No. of SNPs Kbs/SNP SNPs/Mb

A01 1 106806005 106806.01 106.81 444 240.6 4.16

A02 2 93528862 93528.86 93.53 327 286.0 3.50

A03 3 134894015 134894.02 134.89 406 332.3 3.01

A04 4 121312866 121312.87 121.31 429 282.8 3.54

A05 5 109393004 109393.00 109.39 393 278.4 3.59

A06 6 112315382 112315.38 112.32 428 262.4 3.81

A07 7 78545074 78545.07 78.55 312 251.7 3.97

A08 8 49330572 49330.57 49.33 191 258.3 3.87

A09 9 120497462 120497.46 120.50 267 451.3 2.22

A10 10 109302486 109302.49 109.30 230 475.2 2.10

B01 11 137285820 137285.82 137.29 325 422.4 2.37

B02 12 108946667 108946.67 108.95 247 441.1 2.27

B03 13 135317267 135317.27 135.32 325 416.4 2.40

B04 14 132798623 132798.62 132.80 365 363.8 2.75

B05 15 149794401 149794.40 149.79 334 448.5 2.23

B06 16 136159078 136159.08 136.16 433 314.5 3.18

B07 17 126126609 126126.61 126.13 507 248.8 4.02

B08 18 129540280 129540.28 129.54 610 212.4 4.71

B09 19 147063990 147063.99 147.06 877 167.7 5.96

B10 20 135921470 135921.47 135.92 702 193.6 5.16

Total 2374879933 2374879.93 2374.88 8152 6348.00 68.82
fro
LG, Linkage group; Chr, Chromosome.
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In addition, nine SNPs (AX-176799357, AX-176806210, AX-

176796174, AX-176793720, AX-147224496, AX-176818776, AX-

176820950, AX-177643984 and AX-133120520) were associated

with at least one model with PVE ≥ 10%, hence these were

considered as major SNPs for downstream analysis for candidate

genes prediction (Table 4). Interestingly, AX-176799357 was

linked to both LLS and AUDPC-LLS, AX-176796174 associated

with both Hue and AUDPC-ELS, and AX-133120520 associated

with both GA and GGA.

As typical of quantitative traits, seventy SNPs were trait and

model specific with LOD and PVE ranging 3.04 (AX-177637712

on Chr17 with LLS) to 35.90 (AX-147227883 on Chr07 with

GGA), and<0.01% (AX-177637712 on Chr17 with LLS) to

2 1 . 7 9% ( AX - 1 7 6 7 9 7 5 6 2 o n C h r 0 2 w i t h C S I )

(Supplementary Table 3). These markers may need further

verification for their possible use in practical plant breeding.

Candidate gene prediction around stable
SNPs

To predict candidate genes, significant SNPs with at least 1

of the following criteria: linked to more than 1 trait, detected
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by at least 4 GWAS model and with PVE ≥ 10% were used for

gene mining. Two hundred and fifty-three genes located

within 300 kbp of 14 SNPs were mined and in silico analysis

performed. In all, 17 potential candidate genes were predicted,

of which 12 and 5 are located down- and up-stream of the

linked SNP positions, respectively (Table 5). BAEJ4E gene is

located 172.3 kbp up-stream of AX-176823205 (chr01) was

predicted for Hue and LLS traits, and this gene encodes for

glutathione S-transferase which have been reported to regulate

plant response to fungal infection (Dean et al., 2005; Gullner

et al., 2018). In addition, four genes (7U0T6N, CA7A2G,

YE4BG5 and AZU29N predicted for CSI & ELS, LLS &

AUDPC-LLS, AUDPC-LLS, and GA & GGA, respectively)

are involved in photosynthesis pathway, hence could be

involved in regulating groundnut response to leaf spot

pathogens. Phytohormones are reported to regulate plant’s

response to disease attack or resistance (Denancé et al., 2013).

5L52L8 gene is involved in ethylene biosynthesis, and L76SLB

gene for auxin efflux carrier. Both of genes (5L52L8 and

L76SLB) were located ≤ 289 kbp from the AX-176799357 on

Chr02 linked to LLS and AUDPC-LLS, and AX-176793720 on

Chr05 linked AUDPC-LLS, respectively (Table 5).
B

C D
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A

FIGURE 2

Population stratification of the 294 accessions in this study. (A) Estimated DK in the population structure analysis retrieved from STRUCTURE
HARVESTER online programme. (B) Population structure by STRUCTURE software. The two colours (red and green) represent two sub-populations.
Each colour represent one inferred ancestral population with the vertical column representing one individual accession and coloured segment in each
column denotes percentage of the individual inferred ancestral population in the studied panel. (C) Proportion of pure and admixture lines based on
membership coefficients (Q) ≥0.60 as pure lines, while those with Q< 0.60 considered as admixture lines. (D) A neigbour-joining phylogenetic tress.
(E) Principal component analysis plot. (F) Linkage disequilibrium decay plot within the 500 kb across the two sub-genomes (A, B).
frontiersin.org

https://doi.org/10.3389/fpls.2022.1076744
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Oteng-Frimpong et al. 10.3389/fpls.2022.1076744
We further explored the promoter region (2 kbp) of the 17

candidate genes predicted for Cis-acting regulatory elements

(CAREs) with PlantCare database (http://bioinformatics.psb.

ugent.be/webtools/plantcare/html (Lescot et al., 2002) that may

be involved in the modulating groundnut response to leaf spot

diseases. Aside essential CAREs (CAAT- and TATA-box) as well

as 20 light responsiveness CAREs (such as AE-box, AT1-motif,

Box 4, G-Box, GATA-motif, etc.), twenty CAREs with potential

in modulating gene expression were identified (Supplementary

Table 5; Figure 4). Seven genes (29A50M, 7U0T6N, AZU29N,

CA7A2G, G540IJ, KVF40G, and YE4BG5) were found to

contain at least one ATTCTCTAAC (TC-rich repeats)
Frontiers in Plant Science 09
demonstrated to involve in defence and stress responsiveness

in Nicotiana tabacum (Figure 4) (Diaz-De-Leon et al., 1993; Xu

et al., 2011; Wang et al., 2020). Moreover, the role of salicylic

acid (SA) in plant defence is well documented, thus SA is

required for basal resistance against pathogens as well as for

the inducible defence mechanism, systemic acquired resistance

which confers resistance against a broad-spectrum of pathogens

including P. arachidicola and N. personata (Chaturvedi and

Shah, 2007). Five predicted candidate genes (29A50M,

BAEJ4E, G540IJ, P6RS4K and YE4BG5) (Table 4) contain at

least one TCA-element (TCAGAAGAGG) involved in SA

responsiveness (Figure 4).
B

A

FIGURE 3

Number of significantly associated single nucleotide polymorphism (SNP) markers detected for the nine traits associated with leaf spot diseases rating.
(A) SNPs detected on each chromosome of the two sub-genomes. A sub-genome comprised chromosome (Chr) 1 to 10, while B sub-genome
consisted of Chr11-20. (B) SNPs detected by each of the six multi-locus models implemented in this study.
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Other CAREs that may be implicated in groundnut response

to leaf spot pathogens identified include (abscisic acid (ABA),

gibberellin (GA), auxin, methyl jasmonate (MeJA), MYB

binding site involved in flavonoid biosynthetic genes

regulation (MBSI) and so) were detected in at least 1 of the

predicted candidate genes highlighting the possibility of their

involvement in modulating groundnut response to leaf spot

pathogen. The actual roles of the 17 predicted candidate genes

warrant further screening and functional validation to unravel

the bases of correlation among the studied traits (Supplementary

Table S1).
Discussion

Leaf spots (ELS and LLS) diseases are the two most destructive

groundnut diseases in Ghana resulting in ≤ 70% yield losses which

is controlled largely by chemical method (Naab et al., 2005;

Denwar et al., 2021). To speed up breeding efforts, the present

study was undertaken to identify significantly associated molecular

markers and putative candidate genes linked to ELS and LLS

diseases’ indicators. Irrespective of the breeding strategy,

germplasm serves as lifeblood for breeding effort (Acquaah,

2009; Allier et al., 2020). With this, the present study utilized 294

groundnut germplasm assembled from nine African countries

(Ghana, Malawi, Mali, Mozambique, Niger, Senegal, Togo,

Uganda and Zambia) (Supplementary Table 1) to assess their

response to leaf spot diseases in 2020 and 2021. These germplasm

exhibited wide range of responses to leaf spot diseases (resistance to

susceptibility) (Table 1; Figure 1) of which a portion was recently

published by Sie et al. (2022). This suggest that the germplasm hold

a promise for breeding groundnut cultivars resistant to leaf spot

diseases as well as other demand driven traits. In addition, the high

H2 (Table 1) suggest that these ELS and LLS as well as other

indicators used are largely controlled by polygenes with both major

minor effects. This highlights that selection based only on

phenotypic variation may be misleading.
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One of setbacks in phenotyping large germplasm is the

laborious nature coupled with human error among others

(Sandhu et al., 2022), which have necessitated a number of

phenotyping strategies/platforms which complement the

conventional phenotyping. Among these include multispectral

imaging (Kobayashi et al., 2001; Chang et al., 2021), RGB

imaging (Duan et al., 2018) and others (see Sandhu et al.

(2022) for more). The present study manually scored leaf spot

incidences and these scores were converted to quantitative scores

by AUDPC which were correlated by r=0.47-0.76, giving

credence to our scorings (Supplementary Figure 1). In

addition, we used four RGB imaging indices (Hue, GA, GGA

and CSI) and one vegetation index (NDVI) to confirm both the

manual scoring of ELS and LLS as well as ELS- and LLS-

AUDPC. It was observed that CSI positively correlated with

ELS, LLS, ELS-AUDPC and LLS-AUDPC with r=0.44-0.71

(Supplementary Figure 1), thus the higher the CSI, the more

developed the leaf spot diseases, giving an indication that CSI

could be used as a screening criterion for leaf spot diseases in

groundnut. The predominance and distribution of leaf spots

vary according to regions. In most cases there is dual occurrence

but the predominance towards physiological maturities varies.

For instance, in Eastern Africa, LLS predominates, whereas in

Western and central Africa, ELS predominates. However, in the

current study, CSI could not distinguish between ELS and LLS,

hence further study is needed to develop a model or phenotyping

platform to create the distinction.

Recent advances in plant phenotyping involve the use of

unmanned aerial vehicles (UAVs) to collect several images

generating large amounts of data. Several studies have

reported that UAVs are faster and more effective for

phenotyping large populations for traits such as height and

drought tolerance in groundnut breeding (Sarkar et al., 2021b;

Chapu et al., 2022), hence providing the desired high-

throughput. This study therefore lays the foundation for

investment in such more advanced equipment in groundnut

breeding for selection for resistance to late leaf spot and
TABLE 3 Population stratification based on membership coefficient (Q) from the STRUCTURE software.

Country Number of accessions Sub-pop I Sub-pop II Admixtures

Ghana 49 19 26 4

Malawi 32 10 20 2

Mali 27 4 20 3

Mozambique 22 4 15 3

Niger 44 1 43 0

Senegal 31 19 8 4

Togo 18 6 11 1

Uganda 54 28 22 4

Zambia 17 8 8 1

Total (%) 294 99 (37.67%) 173 (58.84%) 22 (7.48%)
Accessions assigned to sub-population had Q≥0.60, while those assigned as admixture had Q<0.60.
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groundnut rosette disease which are the most important foliar

diseases in SSA (Chapu et al., 2022).

Leaf spot diseases are well known to affect photosynthetic

capacity of leaves (Singh et al., 2011). Three image-based indices,

i.e., GA, GGA, Hue and one vegetation index, i.e., NDVI

negatively correlated weakly to strongly with ELS, LLS, ELS-

AUDPC and LLS-AUDPC (Supplementary Figure 1). However,

GA, GGA and Hue seem more better reflective of leaf spot

diseases based on our correlation analysis (Supplementary

Figure 1) According to Wang et al. (2017), NDVI is a proxy of

green biomass, which is linked to canopy photosynthesis.

Pronounced changes take place in the visible portion of the
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electromagnetic spectrum due to the effect caused by a disease or

physiological stress to the reflectance properties of the

vegetation. Healthy plants absorb both the red and blue light

of the electromagnetic spectrum, whiles reflecting near-infrared

and some part of the green light (Knipling, 1970). Less of the red

light is absorbed by a stressed plant as well as reflecting less of

the near-infrared light. Wu et al. (2014) have provided evidence

that healthy and unhealthy plants differ in their absorption and

reflection of visible and near-infrared lights.

The advancement in high-throughput genotyping, next

generation sequencing, bioinformatics tools, statistical models,

etc., have served as catalyst to access valuable information from
TABLE 4 SNPs detected by at least two of the six models for one or more traits.

Trait name a SNP markers Chr b Position (bp) Models c LOD d QTN effect PVE (%) e MAF f Alleles g

Hue AX-176823205 1 91414269 1,2,3,5 3.40-4.94 -1.09- -1.90 1.49-3.12 0.21 C

LLS 2 5.04 <0.01 0.01

CSI AX-176823123 1 96303630 1,2 3.79 0.26-0.47 0.24-1.35 0.22 T

ELS 6 4.01 0.0029 3.02

AUDPC-ELS AX-147212206 2 453115 1,5,6 3.68-4.14 0.10-0.20 3.19-7.49 0.14 A

ELS AX-176801892 2 38320573 1,2,3 3.18-3.99 0.01-0.02 0.05-3.49 0.10 G

LLS AX-176799357 2 76275147 1,3,6 7.73-16.45 0.09-0.12 12.78-20.69 0.49 T

AUDPC-LLS 4 4.18 1.83 5.16

ELS AX-176801892 2 38320573 1,2,3 3.18-3.99 0.01-0.02 0.05-3.49 0.10 G

AUDPC-ELS AX-147217628 3 118446096 1,2,3,4,6 3.13-7.02 0.14-0.37 5.10-8.51 0.28 G

AUDPC-LLS AX-176806210 4 27792120 1,2,3,4,5,6 3.20-9.84 3.14-9.91 7.21-38.50 0.13 G

Hue AX-176796174 5 15450246 1,2,6 4.72-7.31 -3.21- -2.48 10.90-24.54 0.23 T

AUDPC-ELS 5 6.86 0.26 12.22

Hue AX-147222698 5 81969778 3,4,5 3.25-7.87 1.15-3.22 3.24-6.16 0.46 G

AUDPC-LLS AX-176793720 5 102154664 1,2,4,5,6 3.22-5.65 -3.03- -1.83 4.64-11.00 0.35 G

LLS AX-176808070 6 2451915 1,6 3.09-3.80 0.06 2.34-2.91 0.14 T

NDVI AX-147224496 6 5557950 3,4,5 4.36-5.46 <0.01 0.01-10.15 0.49 C

GA & GGA AX-147224865 6 11297985 6 5.47-6.37 <0.01 3.54-3.92 0.12 G

CSI AX-147228765 7 70634323 1,2,5,6 3.46-5.03 0.92-1.13 1.28-3.74 0.10 T

AUDPC-ELS AX-147232168 9 1308812 1,2 3.78-3.88 -0.13- -0.09 2.22-4.89 0.32 T

GA & GGA AX-147239793 12 295929 6 3.88-5.67 <0.01 0.06-2.77 0.50 C

LLS AX-176804113 13 14456209 1,5,6 4.61-7.46 0.05-0.08 4.03-8.34 0.38 C

CSI AX-176818776 13 115500602 1,2,6 3.01-3.03 1.21-3.69 12.12-62.76 0.19 C

AUDPC-ELS AX-147246588 14 2233380 1,2 3.25-3.58 -0.13- -0.08 2.19-5.15 0.45 T

LLS AX-147247867 14 101149286 1,2,6 3.16-5.88 0.06-0.08 2.56-5.97 0.17 G

AUDPC-ELS AX-176820950 16 18466678 1,6 5.32-5.41 0.14-0.15 6.84-10.05 0.42 C

CSI AX-147253729 16 128084428 5,6 3.41-4.21 -0.64- -0.61 3.14-6.33 0.30 C

ELS AX-177643647 18 7462734 5,6 3.91-6.83 <0.01 0.01-0.58 0.10 G

Hue AX-147259422 18 127104626 1,2,5 4.21-6.36 -1.95- -1.69 2.03-3.51 0.10 C

Hue AX-176824170 19 145041727 1,2,5,6 3.08-6.29 -1.84- -1.23 3.03-6.54 0.28 C

AUDPC-ELS AX-177644589 20 53038882 1,2,6 3.19-4.51 -0.16 - -0.14 5.38-8.79 0.43 C

LLS AX-177639015 20 121402090 1,5,6 3.96-4.88 0.04-0.06 2.34-5.28 0.43 G

GA & GGA AX-177643984 20 133120520 6 3.01-3.84 <0.01 2.97-10.44 0.48 G
fron
aHue, hue angle; GA, green area; GGA, greener area; CSI, crop senescence index; NDVI, normalized difference vegetation index; ELS, early leaf spot; LLS, late leaf spot; AUDPC-ELS, area
under disease progress curve for early leaf spot; AUDPC-LLS, area under disease progress curve for late leaf spot. bChromosomes. cmrMLM (1), FASTmrMLM (2), FASTmrEMMA (3), ISIS
EM-BLASSO (4), pLARmEB (5) and pKWmEB (6). dLogarithm of odd. ePhenotypic variation explained (%). fMinor allele frequency. gAssociated allele. SNP positions, GWAS models and
PVE underlined were considered as stable for candidate genes prediction.
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genomic databases and a large number of germplasm, allowing

effective harnessing of genetic diversity of a crop (Vikas et al.,

2022). Such diversity is vital for broadening the genetic base, as it

increases the probability of identifying more unique genes for

which two parents have different alleles (Mascher et al., 2019).

The 294 germplasm optimally divided into 2 sub-populations/

clusters/clade (Figures 2A-E). This information is not only

useful for the utilization of the 294 germplasm, but also

provide valuable information in their conservation as the cost

of maintenance and uncertainty about their genetic similarity

and dissimilarity (Wambugu et al., 2018; Mascher et al., 2019).

The results from this study could contribute to tracking the

identity of accessions, avoiding unnecessary duplications within

and between genebanks and breeding programmes, while

maintaining the genetic integrity of accessions (Mascher et al.,

2019). The germplasm in sub-populations/clusters/clade did not

follow strictly to a country/sub-region (Table 3; Supplementary
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Table 1), suggesting that some germplasmmay have a duplicated

version(s) in other country(ies) breeding programmes.

A number of studies by linkage and association mappings have

been conducted on leaf spot diseases in groundnut (Pasupuleti

et al., 2013; Pandey et al., 2014; Zhang et al., 2020a; Shaibu et al.,

2021). However, most of the reported genomic regions/markers are

not consistent due to population specific or environment

sensitivity (Patil et al., 2018). This necessitated the present study

in our attempt to identify potential markers for marker-assisted

selection (MAS) (Barmukh et al., 2022). To increase the chances of

detecting more possible SNPs that could be associated with the

various indices used to assess leaf spot diseases, we applied 6 multi-

locus models (mrMLM, FASTmrMLM, FASTmrEMMA,

pLARmEB, pKWmEB and ISIS EM-BLASSO) of GWAS. These

models differed in their power of detection of associated SNPs,

which are in consonance with several earlier studies (Zhang et al.,

2019; Karikari et al., 2020). In comparison to study of Zhang et al.
TABLE 5 Predicted candidate genes around fourteen stable/major SNPs for the studied traits.

SNP markers Predicted candidate genes

Trait name a Identity b Chrc Position
(bp)

Gene d Position from SNP
(kb)e

Domain/function/pathway f

Hue & LLS AX-
176823205

1 91414269 BAEJ4E 172.3 (u) Glutathione S-transferase

CSI & ELS AX-
176823123

1 96303630 7U0T6N 299.6 (d) Oxygenic photosynthesis (pathway), RuBP carboxylase
(enzyme)

46C7PY 216.1 (d) Serine/threonine specific protein phosphatase (Enzyme)

LLS & AUDPC-
LLS

AX-
176799357

2 76275147 5L52L8 247.4 (d) Ethylene biosynthesis/Superoxide dismutase

CA7A2G 21.4 (d) Photosystem antenna protein-like

AUDPC-ELS AX-
147217628

3 118446096 UB9N1X 111.4 (u) Ammonium/urea transporter

AUDPC-LLS AX-
176806210

4 27792120 YE4BG5 116.7 (d) Oxygenic photosynthesis (Pathway)

Hue & AUDPC-
ELS

AX-
176796174

5 15450246 29A50M 16.3 (d) Myc-type, basic helix-loop-helix (bHLH) domain

AUDPC-LLS AX-
176793720

5 102154664 L76SLB 288.6 (d) Auxin efflux carrier

GA & GGA AX-
147224865

6 11297985 AZU29N 269.4 (d) Geranylgeranyl reductase involved in chlorophyll a
biosynthesis

CSI AX-
147228765

7 70634323 UJVA88 75.9 (u) Peroxidase

P6RS4K 284.5 (u) Pentatricopeptide repeat

GA & GGA AX-
147239793

12 295929 D1YXCG 216.1 (d) Ribosomal protein S5 domain 2-type fold

CSI AX-
176818776

13 115500602 1EP8UK 23.6 (d) Thaumatin

AUDPC-ELS AX-
176820950

16 18466678 8W91IE 91.5 (d) Superoxide dismutase

Hue AX-
176824170

19 145041727 KVF40G 101.2 (d) Homeobox-leucine zipper protein

GA & GGA AX-
177643984

20 133120520 G540IJ 168.0 (u) Glutaredoxin family protein
aHue, hue angle; GA, green area; GGA, greener area; CSI, crop senescence index; NDVI, normalized difference vegetation index; ELS, early leaf spot; LLS, late leaf spot; AUDPC-ELS, area
under disease progress curve for early leaf spot; AUDPC-LLS, area under disease progress curve for late leaf spot. bMarker name. c Chromosomes. cMarker position on the chromosome.
dGene symbol obtained from phytozome (https://phytozome-next.jgi.doe.gov/). ePosition from the marker (u=upstream and d=downstream). fGene annotation obtained from phytozome.
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(2020a) who reported only SNPs with major effects (PVE ≥ 10%),

the present study detected numerous SNPs with both minor

(PVE< 10%) and major effects. According to Zhou et al. (2021)

SNPs identified by multiple models are usually reliable when

several multi-locus models of GWAS are applied on the same

dataset. Hence, AX-176801892 (Chr02, LOD= 3.18-3.99; PVE=

0.05-3.49%) linked to ELS, AX-176799357 (Chr04, LOD= 7.73-

16.45; PVE= 12.78-20.69%) linked to LLS, AX-176806210 (Chr04,

LOD=3.20-9.84; PVE=7.21-38.50%) linked to AUDPC-LLS, AX-

147224496 (Chr04, LOD= 4.36-5.46; PVE= 0.01-10.15%) linked to

NDVI and several others (Table 4; Supplementary Table 3) could

be targeted for verification and use for practical plant breeding. The

numerous genomic regions/SNPs suggest that leaf spot diseases are

regulated by multiple loci with both minor andmajor effects, hence

selection based on only phenotypic data may be misleading (Sood

et al., 2020). In addition to the above, a number of SNPs that

colocalized with multiple indices assessed in this study could be

useful in developing models that could distinguish between ELS

and LLS.

One advantage of GWAS is the power to detect SNPs in a

narrow genomic regions of which causal variants could result in

variation in traits of economic importance such as leaf spot diseases

(Jiang et al., 2009; Zhao et al., 2021). However, one of the factors

that determine resolution of GWAS is LD (Korte and Farlow, 2013;

Ibrahim et al., 2020) which is population specific and influenced by

recombination, genetic drift andmating system (Yao et al., 2009). In

this study, the LD decay across the two sub-genomes of groundnut

was estimated to be about 300 kbp which is nearly 50% higher than
Frontiers in Plant Science 13
the estimation by Zhang et al. (2020a) within 120 kbp in US

accessions with 13,382 SNPs. Upon application of LD for the 294

African germplasm, seventeen candidate genes were predicted

based on in-silico analyses (Table 5; Figure 4). A number of these

genes encode for phytohormone/contain CAREs/photosynthesis

pathway which could be implicated in groundnut response to leaf

spot diseases. For plants to defend themselves from pathogen attack,

plants often rely on elaborate signaling networks regulated by

phytohormones (Kazan and Lyons, 2014). These genes would be

valuable for future functional validation by gene overexpression,

CRISPR/Cas9 technology, among others (Zaidi et al., 2020).
Conclusions

In all, ninety-seven SNPs were detected by the six multi-locus

GWAS models. Out of which twenty-nine SNPs were detected by

at least two models for one or more traits across 16 chromosomes

with explained phenotypic variation ranging from 0.01 - 62.76%,

with exception of Chr08, Chr10, Chr11, and Chr19. Two hundred

and fifty-three genes were located within 300 kbp of 14 SNPs, from

seventeen potential candidate genes were predicted. Most of the

predicted candidate genes were found to SA, ABA, GA, auxin and

MeJA responsive andMBSI CAREs implicated in plant response to

biotic stresses. The results from this study would be useful for

breeding leaf spots resistance cultivars.
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