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transcription factors in the
sesame pan-genome
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Academy of Agricultural Research Management, Hyderabad, Telengana, India, 4Division of Genomic
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Evolutionary dynamics of AP2/ERF and WRKY genes, the major components of

defense response were studied extensively in the sesame pan-genome. Massive

variation was observed for gene copy numbers, genome location, domain

structure, exon-intron structure and protein parameters. In the pan-genome,

63% of AP2/ERF members were devoid of introns whereas >99% of WRKY

genes contained multiple introns. AP2 subfamily was found to be micro-exon

rich with the adjoining intronic sequences sharing sequence similarity to many

stress-responsive and fatty acid metabolism genes. WRKY family included

extensive multi-domain gene fusions where the additional domains significantly

enhanced gene and exonic sizes as well as gene copy numbers. The fusion genes

were found to have roles in acquired immunity, stress response, cell and

membrane integrity as well as ROS signaling. The individual genomes shared

extensive synteny and collinearity although ecological adaptation was evident

among the Chinese and Indian accessions. Significant positive selection effects

were noticed for both micro-exon and multi-domain genes. Splice variants with

changes in acceptor, donor and branch sites were common and 6-7 splice variants

were detected per gene. The study ascertained vital roles of lipid metabolism and

chlorophyll biosynthesis in the defense response and stress signaling pathways.

60% of the studied genes localized in the nucleus while 20% preferred chloroplast.

Unique cis-element distributionwas noticed in the upstreampromoter regionwith

MYB and STRE in WRKY genes while MYC was present in the AP2/ERF genes.

Intron-less genes exhibited great diversity in the promoter sequences wherein the

predominance of dosage effect indicated variable gene expression levels.

Mimicking the NBS-LRR genes, a chloroplast localized WRKY gene,

Swetha_24868, with additional domains of chorismate mutase, cAMP and

voltage-dependent potassium channel was found to act as a master regulator of

defense signaling, triggering immunity and reducing ROS levels.
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1 Introduction

Transcription Factors (TF) are an important class of genes

involved in the regulation of plant response under many biotic

and abiotic stress conditions. APETALA2/ETHYLENE

RESPONSIVE FACTOR (AP2/ERF) and WRKY genes are

major components of complex regulatory networks in plants

during developmental processes and defense responses

(Abdullah-Zawawi et al., 2021; Li et al., 2021). The AP2/ERF

transcription factors contain a conserved AP2/ERF domain of

about 60 to 70 amino acids, and consist of five subfamilies, AP2,

ERF, DREB (Dehydration Responsive Element-Binding), RAV

(Related to ABI3/VP1) and Soloist based on the number of AP2/

ERF domains and the presence of other DNA binding domains

(Dossa et al., 2016). The differential expression of AP2/ERF

genes under multiple stresses of heat, drought, cold and salinity

has been characterized in wheat (Riaz et al., 2021), Brassica

napus (Ghorbani et al., 2020), pear (Li et al., 2018) and sesame

(Dossa et al., 2016) while secondary metabolite biosynthesis was

studied in eggplant (Li et al., 2021). WRKY TF family is the

seventh largest and contains the signature domain of 60-70

amino acids representing WRKYGQK/WRKYGKK at the N-

terminus and a Zn-finger domain at the C-terminus (Yang et al.,

2017). Genome-wide characterization of WRKY genes has been

reported in soybean (Yang et al., 2017) against cyst nematode,

sorghum (Baillo et al., 2020) against multiple stress responses,

the biotic and abiotic stress response in sunflower (Liu et al.,

2020), the abiotic stress response in apple (Qin et al., 2022) and

sesame (Li et al., 2017).

Sesame, (Sesamum indicum L.) belonging to the family

Pedaliaceae is an ancient oilseed crop cultivated in the tropical

and sub-tropical regions of the world by poor and marginal

farmers. Majority of the wild species of the genus Sesamum are

native to sub-Saharan Africa however, domestication happened

in India (Bedigian, 2003). Recently, a sesame pan-genome

assembly of 554.05Mb comprising modern cultivars and

landraces was developed including 26472 orthologous gene

clusters (Yu et al., 2019). In order to exploit the full potential

of genetic diversity present in the germplasm of the crop plants,

trait-based investigations in the different cultivars of the same

crop, adapted to widely different agro ecological conditions are

imperative. In this context, the pan-genome offers a viable

alternative presenting researchers with useful genetic variation

in a number of component genomes as against a single reference

genome. Particularly in crops like sesame where domestication

syndrome is evident in the genome for many useful traits, the

constructed pan-genomes become a valuable tool facilitating

researchers in mining natural variation for molecular breeding

(Yu et al., 2019). In addition, the fine dissection of homologs and

paralogs at exonic, intronic and promoter sequence levels attune

evolutionary studies with limitless possibilities. In the present

study, accelerated evolution under multiple stress conditions is
Frontiers in Plant Science 02
discussed in cultivars adapted to wider climatic niches and parts

of the sesame pan-genome. The homologs for AP2/ERF and

WRKY genes are studied in relation to evolutionary adaptations,

gene duplications, gene fusions, variations in cis-element

architecture and variations in splicing machinery involved in

defense response and development.
2 Materials and methods

2.1 Identification of AP2/ERF and WRKY
genes from the sesame pan-genome

The pan-genome assembly include S. indicum var Zhongzhi-13,

S. indicum var Yuzhi-11, S. indicum var Baizhima, S. indicum var

Mishouzhima (all from China) and the Indian variety S. indicum

var Swetha. Here after the component genomes will be referred to as

Zhongzhi-13, Yuzhi-11, Baizhima, Mishouzhima and Swetha

respectively. From the sesame pan-genome (Yu et al., 2019); the

CDS, protein and gff files were used to identify sequences

corresponding to Pfam ids PF00847 and PF03106 representing

AP2/ERF andWRKY genes. The ‘gff’ files were processed with excel

and exon-intron size was identified. The genes were mapped onto

the chromosome using ‘gene location visualize’ tool from TB tools

(Chen et al., 2020). The exon/intron structures were determined by

the gene structure display server (Hu et al., 2015), (http://gsds.cbi.

pku.edu.cn/). The different domains were categorized by SMART

(Letunic and Bork, 2018) tool (http://smart.embl-heidelberg.de/).

The conserved domains in the sesame CDS were identified using

NCBI-CDD database search tool (Marchler-Bauer et al., 2017).

Protein parameters were worked out using ‘ProtParam’ tool

(https://web.expasy.org/protparam/). The exon, intron, and

micro-exon distribution for AP2/ERF and WRKY genes from

sesame pan-genome was visualized with an online version of

CIRCOS available at (http://mkweb.bcgsc.ca/tableviewer/). The

package ‘ggplot2’ was used for the visualization of all other data

in R.
2.2 Phylogenetic analysis

The initial phylogenetic analysis of Swetha protein

sequences, Arabidopsis and rice was carried out through NJ

algorithm in MEGA X (Kumar et al., 2018b) using the Jones-

Taylor-Thornton distance matrix with 500 bootstrap

replications. Multiple sequence alignment was done using

CLUSTAL X ver. 2.1. Arabidopsis and rice homologs were

identified from The Arabidopsis Information Resource (TAIR)

available at https://www.arabidopsis .org/ and Plant

Transcription Factor Data Base (PlantTFDB ver.5.0) available

at http://planttfdb.gao-lab.org/ respectively. The reported

classification of Arabidopsis and rice was used for classifying
frontiersin.org

http://gsds.cbi.pku.edu.cn/
http://gsds.cbi.pku.edu.cn/
http://smart.embl-heidelberg.de/
https://web.expasy.org/protparam/
http://mkweb.bcgsc.ca/tableviewer/
https://www.arabidopsis.org/
http://planttfdb.gao-lab.org/
https://doi.org/10.3389/fpls.2022.1076229
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Parakkunnel et al. 10.3389/fpls.2022.1076229
Swetha AP2/ERF and WRKY genes. This classification was

further extended to the sesame pan-genome.

The pan-genome protein sequences were aligned using

CLUSTAL X ver. 2.1 and were subjected to Bayesian

phylogenetic inference using MCMC by BEAST ver. 2.6.6

(Bouckaert et al., 2019). The input ‘XML’ files were generated

using BEAUti interface (Drummond et al., 2012) with the model

‘GTR+I+G’ and the ‘Yule speciation process’ under a strict clock

model. Two independent runs of 10000000 generations of

MCMC chains were produced and sampled after every 5000

generations. TRACER ver1.7.1 (Rambaut et al., 2018) was used

for combining the files and the plotted posterior estimates were

inspected. The first 10,000 trees were discarded as burn-in, and

the rest of the samples were summarized in a maximum clade

credibility tree using TreeAnnotator ver. 2.6.6 with a posterior

probability limit of 0.5. Means and 95% higher posterior

densities (HPDs) obtained from the combined output of

TRACER were used for the construction of trees using FigTree

ver.1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/) with

median heights.
2.3 Synteny and collinearity

Based on phylogeny genes were ordered as exon-intron

sequences and the micro-exon sequences were identified. The

200bp upstream and downstream region including the micro-

exon was analyzed for the presence of protein-coding domains

using BLASTX search. The exon-intron size was estimated in

excel. Based on BEAST phylogeny, gene pair files were created

and used to calculate the non-synonymous/synonymous (Ka/

Ks) mutation ratio with TB tools from the respective CDS,

protein and gff data (Chen et al., 2020). Arabidopsis thaliana and

Oryza sativa ssp indica genomes were downloaded from the

Phytozome (https://phytozome-next.jgi.doe.gov/). The syntenic

relationships between sesame, Arabidopsis and rice genomes

were probed with MCScanX using TB tools. Based on the results

of MCScanX sesame genes were classified as WGD or segmental

duplicates. The evolutionary time in million years ago (MYA)

for each orthologous pair was calculated using the formula, T=

Ks/2r (Moghaddam et al., 2021); where ‘r’ the rate of mutation

was kept as 1.5x10-9 based on the age of divergence of Zhongzhi-

13 and Swetha genomes (Yu et al., 2019).
2.4 Alternative splicing and protein-
protein interaction

The multi-exon homologs were probed for intron-exon size

variation and such pairs were selected for identification of splice

site and SRP protein site mutations (Kharabian, 2010; Karlik,

2021) through ESEfinder2.0 (http://krainer01.cshl.edu/tools/

ESE2/). The cut-off for splice donor and splice acceptor sites
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was kept at 6.9 and for branch site was 2.0. The splice SRP

protein sequences (SF1 & SF2) of ESE finder was used as a rough

guideline for prediction and the identified sites were compared

among the component genomes for probable mutations. The

deviation in position and score of splice sites and SRP proteins

were noted for protein homologs and the splicing mechanism

was devised based on a comparison with the exon-intron data.

The conserved motifs in the sesame proteins were identified

using the MEME program (https://meme-suite.org/meme/tools/

meme) using parameters: maximum number of motifs = 10;

optimum width of motifs = 15–50. The identified motifs were

subjected to ‘GoMo’ scan to identify ‘GO’ terms associated with

the biological function (http://meme-suite.org/tools/gomo).

Protein-protein interaction network was visualized with the

help of STRING ver. 11.5 (https://string-db.org/) and plotted

with the help of Cytoscape ver. 3.9.1. Prediction of protein sub-

cellular localization was done with the help of WoLF PSORT

tool (https://wolfpsort.hgc.jp/). The cis-element identification

was done by subjecting upstream 2000bp from the start codon

of selected AP2/ERF and WRKY sequences from Swetha and

Zhongzhi13 genomes to PLANT CARE (https://bioinformatics.

psb.ugent.be/webtools/plantcare/html/) and comparing with the

reported Arabidopsis cis-elements.
2.5 Expression profiles of AP2/ERF and
WRKY genes

Microarray data of AP2/ERF and WRKY genes were

obtained from NCBI-Gene Expression Omnibus (GEO)

database under the accession numbers GSE81039, GSE102714,

GSE81325, GSE49418, GSE55835 and GSE167174. The data

were properly grouped as per study objectives and was

analyzed through GEO2R. After processing the transcriptome

data, heat maps were constructed in R using the adjusted P-

values for AP2/ERF and WRKY genes having significant logFC

or F-statistics (more than two groups defined) for

each accession.
3 Results

3.1 Identification of AP2/ERF and WRKY
genes from sesame pan-genome

A total of 704 AP2/ERF genes and 387 WRKY genes were

identified in the sesame pan-genome (Table 1). The lowest

number of AP2/ERF genes was observed in the Yuzhi-11

genome (131) whereas the genomes of the Chinese landrace

‘Mishouzhima’ and the Indian variety ‘Swetha’ contained 145

each. As for WRKY genes, the Chinese cultivar (Yuzhi-11) and

the landrace (Baizhima) contained 73 genes each whereas

Swetha contained 89 genes.
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3.1.1 Chromosomal location of AP2 and
WRKY genes

The AP2/ERF andWRKY genes were distributed all over the

13 chromosomes with variations in individual genomes.

Maximum AP2/ERF genes were located on chr-1 and chr-6

while the least numbers were observed on chr-5 and chr-11. For

WRKY genes, chr-6 had the highest number including 10-13

genes from individual genomes whereas chr-5 contained a single

gene in all the genomes. Moreover, 82 AP2/ERF and 39 WRKY

genes were not mapped to any chromosome. Details are in

Figure 1A, B), SI-1A , SI-2A while SI-18 gives the chromosomal

location of mapped genes.
3.2 Phylogenetic analysis of AP2/ERF and
WRKY genes

The phylogenetic analysis of AP2/ERF and WRKY genes of

sesame was conducted using the multiple sequence alignment

results of ‘Swetha’ protein sequences along with Arabidopsis

homologs. Bayesian phylogeny trees were constructed for each

gene family and the individual members were classified based on

already published Arabidopsis gene classification. Afterward, the

newly defined classifications of Swetha proteins were extended to

the whole of the sesame pan-genome. The 145 AP2/ERF genes

identified in Swetha genome were further classified as belonging

to different subfamilies of DREB, ERF, and AP2. The ERF

subfamily had the maximum share (70), followed by DREB

(32), AP2 (31), RAV (9) and Soloist (3). The ERF family was
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further classified as different groups B1-B6 and contained 16, 7,

22, 7, 5 and13 genes respectively. The DREB subfamily

contained 5 groups A1, A2, A4, A5 and A6 including 3, 4, 13,

9 and 4 members respectively. The WRKY genes were also

classified as belonging to subclasses T1, T2 and T3 based on the

number of WRKY domains and the type of zinc-finger motif

present. Among the 89 genes present in Swetha T2 had the

highest share (66), followed by T1 (19) while T3 contained only

4 genes. The details of gene classification in ‘Swetha’ are given in

Figures 2A, B), SI-1B, SI-2B.

The ERF, AP2, RAV and Soloist domains retained similarity

all through the pan-genome with frequent domain changes

noticed in closely related clusters of proteins. The ERF-B3

domain exhibited sequence similarity to ERF-B1, AP2, Soloist,

DREB-A5 and DREB-A4 domain proteins. The A4 domain

genes showed sequence similarity to ERF-B4 and ERF-B1

genes along with AP2 genes. DREB-A2 domain genes in turn

were found to be related to ERF-B6 and ERF-B1 domain genes.

Among the DREB subfamily, A1 was more conserved where

group-specific clustering was observed. The frequent domain

changes, segmental duplication and exonic changes made the

phylogeny reconstruction quite tedious in AP2/ERF family.

However, for WRKY genes sequence conservation was noticed

all through the pan-genome. Among the 387 WRKY genes

identified the T1, T2 and T3 groups had 80, 285 and 22 genes

respectively. T3 genes in the pan-genome shared sequence

similarity with T2D and T2A whereas Swetha T3 genes were

more related to T2D and T2E groups. One set of T3 genes was

found solely in the Chinese accessions. T1 genes of the pan-
TABLE 1 Summary statistics of identified AP2/ERF and WRKY genes in sesame pan-genome.

Genome Genes Intron Exon Micro_Ex Exon/
Gene

Exon/
Intron

Micro_ex/
Gene

Micro_ex/
Exon

Intron/
Gene

AP2/ERF

Baizhima 144 210 354 41 2.458333 1.685714 0.284722 0.115819 1.458333

Mishouzhima 145 208 353 34 2.434483 1.697115 0.234483 0.096317 1.434483

Swetha 145 356 501 51 3.455172 1.407303 0.351724 0.101796 2.455172

Yuzhi11 131 196 327 32 2.496183 1.668367 0.244275 0.097859 1.496183

Zhongzhi13 139 213 352 37 2.532374 1.652582 0.266187 0.105114 1.532374

Total 704 1183 1887 195 2.680398 1.595097 0.276989 0.103339 1.680398

WRKY

Baizhima 73 221 294 4 4.027397 1.330317 0.054795 0.013605 3.027397

Mishouzhima 76 231 307 6 4.039474 1.329004 0.078947 0.019544 3.039474

Swetha 89 355 444 12 4.988764 1.250704 0.134831 0.027027 3.988764

Yuzhi11 73 216 289 4 3.958904 1.337963 0.054795 0.013841 2.958904

Zhongzhi13 76 221 297 6 3.907895 1.343891 0.078947 0.020202 2.907895

Total 387 1244 1631 32 4.21447 1.311093 0.082687 0.01962 3.21447

The numbers of genes, exons, introns and micro_exons are given for both the families for all the five component genomes.
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genome were found more related to T2E genes whereas the

Swetha genes were closer to the T2C genes. Details are given as

SI-19 and SI- 20.
3.3 Gene structure of homologous genes
in pan-genome

Based on multiple sequence alignment and phylogeny, the

homologs were identified for AP2/ERF and WRKY genes from

individual genomes. The exon-intron structure and sizes of
Frontiers in Plant Science 05
exons and introns were identified for each homologous set (SI-

4 and SI-6).

3.3.1 Intron number and size variants
In the AP2/ERF gene family, 443 genes were found to be

devoid of introns (Figure 1E). Mishouzhima (99) had the largest

while Swetha (77) had the least number of intron-less genes. 68

genes of Swetha contained introns while for Mishouzhima and

Yuzhi genomes, only 47 genes had introns. 36 introns were

present in the gene Swetha_28474, whereas Swetha_02835 had

20 introns. The mRNAs of these genes spanned 30 kb and 17kb
FIGURE 1

Salient features of AP2/ERF and WRKY genes in the sesame pan-genome. Chromosomal distribution (A, B) while exon size of AP2/ERF and
WRKY genes in individual genomes (C–F) represent intron numbers; (G, H) represent micro-exon numbers of AP2/ERF and WRKY genes in
individual genomes as per individual genome, subfamily and class wise.
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respectively. In the AP2/ERF family, 92 genes had single intron,

36 genes had 7 introns, 32 genes had 5 introns while 3 and 4

intron genes were less frequent. The intron size varied from 34bp

in Mishuozhima_01646 (SI-4) located in chromosome-1 to

43.6kb in Swetha_11741 in chromosome-3 (SI-4). Two other

genes (Swetha_11742 and Swetha_11743) were found nested in

this huge intron coding for Alpha-amylase inhibitor and

phospholipase D respectively. Another intron of size 28kb was

observed in Yuzhi11 _12343 in chromosome-8. However, this

large intronic region did not harbor any additional genes.

In the WRKY family, except for T2C genes, Swetha_15083

and Baizhima_02279; all the others had introns (Figure 1F). The

largest number of introns noticed in a single gene was 17 in

Swetha_24868 belonging to the T1 group while Swetha_09533

had 14 introns. All the genomes shared a common gene with 11

introns belonging to T2C. The smallest intron noticed was of size

31bp and was present in Zhongzhi13_04758 and its homologs in

Baizhima, Mishouzhima and Yuzhi11. This gene present in

Chinese accessions is worth noticing for its sequence

conservation and exonic as well as intronic number and size

conservation. The largest intron noticed was 35kb in the gene

Swetha_09138 in chromosome-2 and the mRNA spanned 38kb in

length. This huge intronic region was found to harbor two

additional genes namely Swetha_09139 and Swetha_09140,

coding for AB hydrolase1 and pentatricopeptide repeat-

containing protein respectively. Another Swetha gene,

Swetha_02485 in chromosome-1 also harbored a huge intron of

size ~19kb. A Methyladenine glycosylase gene (Swetha_02486)
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was found nested in this intronic region. 153 WRKY genes from

the sesame pan-genome contained 2 introns, while 79 had 4 and

72 had 3 introns. The variation in intron numbers in the

individual genomes is represented in (SI-1B, SI-1C, SI-2B and

SI-2C).

3.3.2 Exon number and size variants
The individual genomes differed greatly in exon number and

size. In the AP2/ERF family, the total number of exons detected

varied widely although gene number was comparable. Swetha

genome contained a large number of multi-exon genes with total

exons of 486 against 351 and 352 in Baizhima and Mishouzhima

respectively. The number of exons in Zhongzhi-13 is 373

whereas 327 exons were found in Yuzhi-11. 51-100bp exons

were most common while exons of size >1kb were least

common. In the Swetha genome, 101-200bp exons were the

second most common against 601-1000bp exons in all the

Chinese accessions. The smallest exon noticed was of 3bp

present in all the genomes while the largest exon was 1262bp

in Yuzhi11 genome.

In the WRKY family, 443 exons were detected in Swetha

against 297 in Zhongzhi-13. 101-200bp size exons were most

common in all the genomes followed by 201-400bp and 401-

600bp exons. The smallest exon detected was of 3bp

(Swetha_06086) in Swetha genome, whereas among WRKY

genes from the Chinese accessions the 3 bp exon was observed

only in Mishuozhima_16023. The largest exon detected was of

1287bp, present as a single exon gene conserved in the pan-
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FIGURE 2

The MCMC phylogeny tree of (A) AP2/ERF and (B) WRKY families in the Swetha genome based on Arabidopsis and rice classification. In (A) the
colour codes are as follows: Blue=DREB; Magenta=ERF; Red=AP2; Green=RAV and Cyan=SOLOIST. In (B) the different subfamilies are as
follows; T1=Blue; T2A= Orange; T2B=Magenta, T2C=Red; T2D=Lime yellow; T2E= Purple and T3= Olive.
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genome. Details of exon number and size distribution are given

in Figure 1C, D, Table 1, SI-1C, 1D. In addition, a number of

gene duplication events were found unique among WRKY genes

in the Swetha genome resulting in increased gene copy numbers.

The duplicated gene was found positioned in the same

chromosome with a different location or in a different

chromosome. These genes differed in intron number

(Swetha_20694 and Swetha_20700), exon size (Swetha_21913

and Swetha_21917; Swetha_03532 and Swetha_06527),

conversion of exon into micro-exon (Swetha_38738 and

Swetha_38725), transposon induced insertion or deletion

(Swetha_21534, Swetha_18596 and Swetha_00675) to name a

few. Although such duplicates occurred in the AP2-ERF family

also, the genome-wise distribution was more or less equal. The

details are given in SI-1A, SI-2A, SI-4, 5, 6, 7 and 8.

3.3.3 Micro-exons in sesame pan-genome
The exonic fragments of length <51bp were classified as micro-

exons (Song et al., 2020) and we found 227 micro-exons in the

sesame pan-genome varying in size from 3bp to 50 bp (SI-3A, SI-

3B, SI-4 and SI-6). AP2/ERF gene family had 195 micro-exons

distributed along 133 genes with Swetha contributing a major share

of 36. Baizhima had 26 micro-exon genes whereas the numbers in

Mishouzhima, Yuzhi11 and Zhongzhi-13 were 25, 21 and 25

respectively. Micro-exon genes were present in all subfamilies in

Swetha genome Swetha had a total of 51 micro-exons with multiple

micro-exons noticed in many genes. The gene Swetha_18222 had 5

micro exons out of the total 11 exons and had the largest micro

exon count for a single gene. The 6th exon was the most preferred

position for micro-exons whereas after the 10th exon the presence of

micro-exons becomes very rare. Among the micro-exon containing

genes, 38 genes (6 sets) including duplicates were found to have

exonic and intronic sequence conservation across the pan-genome

while 7 sets (28 genes) were found to have sequence conservation

across 4 genomes. 8 sets (40 genes) were found to have exonic

divergence while retaining the micro-exon conservancy with the

change noted particularly in the 1st or the last exon. The bulk of

micro-exons (171) were contributed by the AP2 subfamily while

presence was noticed in DREB-A2, DREB-A4, ERF-B1, ERF-B3,

ERF-B6, RAV and SOLOIST families. 32 micro-exons were noticed

in theWRKY family with amajor share (12) contributed by Swetha.

These were distributed into T1 (2 genes), T2B (1 gene with 2 micro-

exons), T2C (5 genes), T2D (1 gene) and T2E (2 genes). The T2

WRKY genes of Chinese accessions contained 19 micro-exons

while class T1 had a single micro-exon. Details are in Figure 1G,

H), SI-3A, SI-3B. The micro-exonic region and the adjoining

intronic sequences were found to share sequence similarity to

many functional domains and genes such as glycosyltransferase,

phospholipase (LCAT3), pectate lyase, ribonuclease3, ASGR-BBM

like2, asparagine synthase(common in all the genomes), chromatin

modification-related protein EAF-1, G-protein coupled receptor1,

PAS domain S-box containing protein, TonB dependent receptor,
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transmembrane helix (common), aquaporin, integrase as well as

transposon ‘Tpn104’. Details are given in Table 2 while SI-8

represents transposon distribution in coding sequences.
3.4 Protein diversity of AP2/ERF and
WRKY homologs

The shortest protein observed in the AP2/ERF family was of

length105AA and belonged to the ERF sub-family gene,

Swetha_03899 which also had the lowest molecular weight

(11.8kDa). The largest protein among AP2/ERF family also

belonged to another ERF gene, Swetha_28474 with1980 AA

and a molecular weight of 220.5kDa. Among the AP2 sub-

family, Swetha_02835 measured a length and weight of 1937AA

and 217.2kDa respectively. A lot of protein variants were found

among homologs, where although the protein length was

conserved; AA mutations in the functional domains gave way

to altered protein parameters. Based on the occurrence of similar

length homologs in all or at least 4 genomes the proteins were

classified as all same (5 genomes), all different, 4 same and 4

different. We found 36 genes to have all the parameters

conserved across all the 5 gnomes whereas conservation in 4

genomes was noticed for 29 genes. Even with the same protein

length, significant variation was observed in the molecular

weight and iso-electric point and was categorized as differing

for all 5 cases (17 genes) or all 4 cases (13 genes). Among WRKY

genes, the shortest protein was of length 129AA and was present

in all the Chinese accessions homologous to Zhongzhi13_22905

and belonged to the T1 group. Another T1 gene, Swetha_24868

recorded the largest and heaviest WRKY protein with a length

and weight of 1261AA and 142kb respectively. The second

largest protein was common in all five genomes and belonged

to T2C with 1141 AA and 11 introns, homologous to

Zhongzhi13_28134. In the WRKY subfamily, the Chinese

accessions showed a greater conservation pattern with regard

to length and other protein parameters. We found 10 genes to

have all the protein parameters conserved in all 5 genomes

whereas 4 similar homologs were found in 22 genes majorly

including Chinese accessions. Details in Figure 3D, E, SI-1A, SI-

2A. The diversity of pan-genome is represented as circos

plot (Figure 3F).
3.5 Multi-domain genes in sesame
pan-genome

In addition to the main AP2/ERF and WRKY domains, we

found additional domains in 55 genes in the sesame pan-genome

possibly as a result of gene fusion. WRKY family had 39 multi-

domain genes whereas AP2/ERF had 16 such genes. Maximum

cases of multi-domain genes were noticed in the Swetha genome
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including 20 WRKY and 12 AP2/ERF genes. The multi-domain

genes found in genomes of Baizhima, Mishouzhima, Yuzhi11 and

Zhongzhi-13 were 6, 6, 6 and 4 respectively. Details are given in

Table 3 and Figure 3F. Among the WRKY genes, 4 sets of multi-

domain genes were common and were present in all the genomes.

In addition to the WRKY domain, these contained additional

domains like Arginine/lysine/ornithine decarboxylase, ATP-

dependent metalloprotease FtsH, eukaryotic translation initiation

factor 5A, DUF3084 and Lung-7-transmembrane receptor.

Moreover end to end fusion of genes resulting in multiple

functional AP2/ERF and WRKY domains was also common and

up to 4 copies of the active domain were noticed for both the

families. Other common domains associated were mostly enzymes

like kinases, reverse transcriptases, hydrolases, peroxidases,

carboxylases, methyl transferases, etc. The inclusion of additional

domains resulted in larger-sized genomes with added exons which

completely altered gene structure and splicing mechanism. Fusion

genes were noticed as novel genes in a single genome or were

present in multiple genomes. Based on the location of parental and

fusion genes in the genome a detailed classification was made and

given in Figure 4G.
Frontiers in Plant Science 08
3.6 Alternative splicing of AP2/ERF and
WRKY genes

The occurrence of multi-domain genes, protein variants and

variable exon-intron structures of homologs in the sesame pan-

genome prompted a thorough study of splice junctions to

identify the splice variants in the pan-genome. After

comparing exon-intron structure and the splice junction scores

between the most common homolog and the identified variables

we categorized the splice variants into different alternative

splicing events. (SI-5, SI-7). We found the occurrence of the

following splice events in the pan-genome namely intron gain or

loss, alternative exon ends, alternative 5’ and 3’ ends, mutually

exclusive exons, exon skipping and intron retention. We found

splice variants in 70 and 52 genes of AP2/ERF and WRKY

families respectively (Figure 5A). Multiple AS events were

noticed in many cases and in AP2/ERF gene family intron

gain or loss was most common followed by alternative 5’ and

alternative 3’ events. The least common was intron retention and

mutually exclusive introns. In the WRKY family, alternative 3’

followed by alternative 5’ ends were the most preferred splice
TABLE 2 The functional domains identified in the 200bp upstream and downstream region including the micro-exon in the sesame pan-genome.
The reported functions and the references are also given.

Sl.
No

Domain name Function Reference

1 glycosyl transferase 1) glucosylation of lignans in sesame seed
2) maintenance of cell membrane integrity during abiotic stress

Ono et al., 2020;
Shi et al., 2020

2 lecithin: cholesterol
acyltransferase (LCAT3)

1) Lipid metabolism and production of specialized fatty acids
2) Defense response against Podosphaera xanthii in cucumber

Xu et al., 2020;
Ming et al., 2022

3 Pectate lyase 1) pectin degradation
2) plant defense response and apoptopsis
3) ROS accumulation

Uluisik and Seymour, 2020; Chen et al., 2021;
He et al., 2021

4 Ribonuclease3 1)RNA maturation, modification and splicing
2) antiviral defense

Olmedo and Guzman, 2008; Aguado and
tenOever, 2018

5 ASGR-BBM like 1)Apomixis Worthington et al., 2019

6 asparagine synthase 1)Multiple nutrient stress response
2) drought and nutritional stress in wheat

Curtis et al., 2018

7 EAF-1 1)Important component of chromatin remodeling complex NuA4 in
Arabidopsis
2) Regulation of plant stress response

Wang et al., 2019;

8 G-protein coupled receptor1 1)Multiple abiotic stresses like salinity, drought, extreme temperature
and high light intensity

Wu and Urano, 2018

9 PAS domain S-box containing
protein

1) Circardian clock
2) Ecological adaptation to diverse stress stimulii

Vogt and Schippers, 2015; Tischkau, 2020.

10 TonB receptor 1)Metal resistance Theriault and Nkongolo, 2017

11 Aquaporin 1)Stress tolerance and seed germination
2)Plant-pathogen interaction

Liu et al., 2013

12 Integrase 1) Retrotransposon introgression Suh, 2021
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variant. Here also intron retention and mutually exclusive

introns were less common. (Figure 5B).

With respect to each of the variants, a corresponding change

in both position and score was noticed in the splice acceptor site,

splice donor site, branch site as well as different splicing

enhancers. Although characterized majorly in human

alternative splicing scenario, SF2 and SF1 are reported to have

major roles in plants especially during salinity and irradiation

stress (Stankovic et al., 2016; Jin, 2022). Among the AP2/ERF

genes of sesame, splice donor site mutations were majorly

reflected in alternate 5’ ends, intron gain and exon skipping

events in the genome. Spice acceptor site mutations drastically

altered 3’ ends added by intron gain and exon skipping. Branch

site mutations complemented most of the AS events although

majorly reflected in intron gain. Mutation in all of the splice

enhancer element positions and sequences supported different

AS events. Changes in SF1 majorly affected intron gain or loss

whereas SF2 mutations helped in modifying 5’ and 3’ ends of

exons in addition to intron gain. The mutations in SF2 favored

alternate 5’ ends. Alternate exons and mutually exclusive exons
Frontiers in Plant Science 09
involved mutations in splice donor, acceptor and the branch

sites (Figure 5C). In the WRKY family, the change in splice

donor site was reflected in alternate 5’end, intron gain and exon

skipping. The splice acceptor site change was noticeable in

alternate 3’ ends, intron gain and exon skipping. The branch

site changes were observed in all the splice events recorded.

Intron gain was associated with SF1and SF2 whereas alternative

exon ends, exon skipping and alternative 5’ ends were majorly

associated with SF2. Mutually exclusive exons were

comparatively less in the WRKY family and were associated

with changes in splice acceptor, branch site and SF1 (Figure 5D).
3.7 Synteny and collinearity in sesame
pan-genome

The comparison of the ‘Swetha’ and arabidopsis genomes

resulted in the identification of 981 syntenic blocks involving

18614 genes with a collinearity percentage of 26.78 (Figure 4B).

With rice, the collinearity percentage was 7.08 and 5947 collinear
B C

D

E

F

A

FIGURE 3

Distribution of cis-elements and protein parameters in the sesame pan-genome for AP2/ERF and WRKY genes. (A, B) represent the cis-element
distribution and mode of action in the major categories of biotic/abiotic stress response, development, hormone as well as hormone and
development. The pie chart (C) indicates the number of promoters involved in different functions. The difference in protein parameters in AP2/
ERF and WRKY genes are given in (D, E) while (F) gives the CIRCOS plot for pan-genome.
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TABLE 3 Multi-domain genes identified in the sesame pan-genome evolved through gene fusion.

Gene Introns Domains Reported functions Reference

Swetha_00824 4 AP2+exostosin Defense, Salt stress, endomembrane
organisation

Li et al., 2013;

Yuzhi11_06305 1 AP2+Alpha-Amylase Inhibitors (AAI), Lipid
Transfer (LT) and Seed Storage (SS) Protein

Insect resistance; Abiotic stress response Kumar et al., 2018a; Karray
et al., 2022; Ming et al.,
2022

Swetha_11540 4 40S ribosomal protein S15a, DNA translocase
FtsK, AP2

Growth regulator; Chromosome
segregation, Cell division; Oxidative stress

Mishra et al., 2022

Swetha_02245 5 Translation initiation factor 2B subunit, eIF-2B
alpha/beta/delta family+ AP2

Plant virus resistance Shopan et al., 2017

Swetha_02461 11 AP2+plasma-membrane proton-efflux P-type
ATPase

Stomatal opening; Stress response Ren et al., 2021; Mishra
et al., 2022

Mishuozhima_25500 9 AP2+mito chondrial carrier prot (3 no.) Stress recovery; Osmotic stress response Monne et al; 2019

Swetha_28474 36 AP2+ Importin repeats (4 sets)+ HEAT like
repeat+ Karyopherin (importin) beta

Autoimmunity; Pathogen response; Abiotic
stress

Xu et al., 2020; Ludke et al.,
2021

Baizhima_11916 5 AP2+ zinc-binding in reverse transcriptase Adaptive evolution; Stress response Galván-Gordillo et al., 2016;
Lanciano and Mirouze,2018

Swetha_41017 8 AP2+AP2+Solute carrier families 5 and 6-like Amino acid transport; Stress response Hrmova and Gilliham, 2018

Yuzhi11_07044 16 alpha/beta hydrolases;+AP2+Ap2 Pathogenecity; Plant immune responses;
Defense

Mindrebo et al., 2016; Jiao
and Peng, 2018

Swetha_16136 9 alpha/beta hydrolases;+AP2+Ap2 Pathogenecity; Plant immune responses;
Defense

Mindrebo et al., 2016; Jiao
and Peng, 2018

Swetha_07942 11 AP2(4 dom)

Swetha_02835 20 Protein FAR-RED ELONGATED HYPOCOTYL
3 (2 dom)+ FAR1 DNA-binding domain (Zn
binding-2 dom)+ AP2

Negative regulation of carbon starvation
and leaf senescence

Ma and Li, 2021; Tian et al.,
2021

Swetha_18222 10 AP2+PWWP domain Chromatin methylation reader; Stress
response

Kenzior and Folk, 2015;
Rona et al., 2016

Swetha_28399 14 Helicase+AP2 Plant stress response Raikwar et al., 2015; Pandey
et al., 2020

Swetha_28866 6 AP2+Tim17 Germination and Stress response Chaudhuri et al., 2020

Swetha_03474 4 2 WRKY

Swetha_14675 10 suppressor of G2 allele of SKP1+WRKY Defense signalling and plant immunity Yu et al., 2020

Swetha_21913 2 WRKY+MALA s1 propellar blade Pathogenecity, Symbiosis

Swetha_23996# 9 WRKY+Lung-7-transmembrane receptor Plant immunity, Salt stress, Pathogenesis Wu and Urano, 2018; Lu
et al., 2019.

Swetha_18596 10 (WRKY+plant Zn cluster) 2 doms+ Signal
recognition particle 9 kDa protein (SRP9)

Protection of mRNA degradation,
Pathogen response

Bedassa et al., 2019; Kellogg
et al., 2021

Swetha_00744 3 Protein kinases+C-terminal regulatory domain
of Calcineurin B-Like (CBL)-interacting protein
kinases+WRKY

Abiotic stresses like salt, drought, alkali Pandey et al., 2015; Luo
et al., 2017

Swetha_26866 6 Ubiquitin-protein ligase+WRKY Abiotic stress response; Autophagy during
stress response and development

Shu and Yang, 2017; Xu and
Xue, 2019; Su et al., 2020

Swetha_26113(Y) 3 Arginine/lysine/ornithine decarboxylase+
WRKY

Abiotic stress response Upadhyaya et al., 2021;

Swetha_39148 7 activating enzymes (E1) of the ubiquitin-like
proteins+WRKY

Plant immunity, Autophagy during stress
response

Su et al., 2020

(Continued)
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genes were detected in 451 blocks (Figure 4C). The rice

chromosomes 11 and 12 did not contain any syntenic homologs

of sesame WRKY and AP2/ERF genes. Moreover, 103 whole

genome or segmentally duplicated AP2/ERF andWRKY genes are

retained as syntenic blocks in Arabidopsis compared to 48 of rice.

The comparison of genomes of Zhongzhi-13 and Swetha revealed

extensive synteny and collinearity among sesame genes. Of the

total 78048 genes present in the two genomes, 48729 were found

to be collinear. The percentage of collinearity was 62.43 and 956

syntenic blocks were present (Figure 4A). WGD/segmental

duplication was found in 175 genes including 73 WRKY and

103 AP2/ERF genes in Swetha. The segmental duplication genes

in Zhongzhi-13 included 108 AP2/ERF and 69 WRKY genes.

Synteny analysis revealed the presence of three single-copyWRKY

genes in the Chinese accessions including the homologs of

Zhongzhi13_22905, Zhongzhi13_26827 and Zhongzhi13_29190.

Details are in SI-9.
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To study the selection pressure during evolution, Ka/Ks

statistics were worked out. Significant selection effects were

noticed on 70 pairs of AP2/ERF genes and 54 pairs of WRKY

genes in the sesame pan-genome. In the AP2/ERF family 26 gene

pairs were under purifying selection (Ka/Ks <1), 45 were under

positive selection (Ka/Ks>1) and 2 pairs were under neutral

selection (Figure 4D). Among the 54 duplicate genes under

selection in the WRKY gene family, 29 were under purifying

selection while positive selection effects were noticed in 25 pairs

(Figure 4E). We also compared the selection effects of duplicated

genes in Swetha and Zhongzhi-13, as well as the gene copy number

varaiants of Swetha with each other (Figure 4F). Between the two

genomes 52 AP2/ERF and 71 WRKY genes were under selection

pressure. In the AP2/ERF family, 26 gene pairs were under positive

selection while 26 were under purifying selection. The number of

segmental duplicates under positive selection was much higher than

dispersed genes whereas an equal distribution was found for
TABLE 3 Continued

Gene Introns Domains Reported functions Reference

Swetha_25903# 5 WRKY+DUF 3084

Swetha_38328 10 Tellurite-resistance/Dicarboxylate Transporter
(TDT) family_ SLAC1+ pepsin retropepesin
-like aspartate proteases+WRKY

Regulation of stomatal movement; Stress
adaptation; Plant immunity

Zhang et al., 2018; Deng
et al., 2019; Sun et al., 2019

Swetha_36198# 11 ATP-dependent metalloprotease FtsH+ FtsH
Extracellular+WRKY

Photosystem II repair; Photo-oxidative
stress

Nixon et al., 2010; Kato and
Sakamoto, 2018; Pu et al.,
2022

Swetha_37469 9 RWP-RK domain+ Prot. Kinase+WRKY Nitrate signalling pathways; Nitrogen
stress; Nodulation

Ge et al., 2018; Mu and Luo,
2019

Swetha_09150 6 eukaryotic translation initiation factor 5A
+WRKY

Pathogen response

Swetha_09155 9 eukaryotic translation initiation factor 5A
+WRKY+WRKY

Swetha_13727(Z) 3 eukaryotic translation initiation factor 5A
+WRKY+WRKY

Swetha_24868 17 WRKY+WRKY+Chorismate mutase typeII+
effector domain of the CAP family of
transcription factors+Voltage-dependent
potassium channel

Salinity and drought, Negative regulation
of salicylic acid pathway; Transcription
activation; Electrical signalling; Stress
response

Busby and Ebright, 1999;
Wang et al., 2018; Poveda,
2020; Musavizadeh et al.,
2021;
Dreyer et al., 2021

Swetha_37939 9 WRKY+WRKY+WRKY+WRKY

Swetha_19579 7 WRKY+Cyclopropane fatty-acyl-phospholipid
synthase and related methyltransferases

Lipid transport and metabolism; Protection
from herbivory

Yu et al., 2011; Okada et al.,
2020

Swetha_04251 1 WRKY+peptide synthase Oxidative stress response; Pathogen
response; Plant-pathogen interaction

Golomb et al., 2018

Swetha_09533 14 galactokinase+plant heme-dependent peroxidase
(Class-III)+WRKY

Carbohydrate metabolism, Abiotic stress
signalling

Xiao et al., 2015; Stein and
Granot, 2018

The fused domains, the number of introns in the gene, reported functions and references are given. The symbols #,Y and Z indicate present in all, present in all except Yuzhi11 and
present in all except Zhongzhi13 respectively.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1076229
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Parakkunnel et al. 10.3389/fpls.2022.1076229
purifying selection. Among the WRKY genes, 28 gene pairs were

under purifying selection while 43 were under positive selection.

The segmental duplicated genes were under severe selection

pressure in both categories. Among the 41 duplicated gene pairs

identified in Swetha, selection effects were significant for 22 pairs.
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Here also the number of gene pairs under positive selection was

higher than that under purifying selection SI-10 and SI-11. The

evolutionary time period in million years for AP2/ERF genes was

0.4-143 and for WRKY genes was 0.8-137. The genes under neutral

selection in AP2/ERF family were most recently evolved.
FIGURE 4

Synteny, collinearity and origin of gene fusions in pan-genome. (A) Synteny between Swetha and Zhongzhi genomes. (B) Sesame and
Arabidopsis genomes (C) Sesame and rice genomes (D–F) specify selection pressure in AP2/ERF, WRKY and Swetha duplicates respectively. (G)
Represent the origin of fusion genes in sesame pan-genome.
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3.8 Protein-protein interactions,
functional domains and
subcellular localization

The protein-protein interaction network visualized the major

roles of AP2/ERF and WRKY transcription factors in defense

mechanism, stress response, lipid metabolism and chlorophyll

biosynthesis (Figures 6A, B; SI-16). The major interaction
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partners for defense and stress response included NIMIN family

genes, TGA transcription factors, WRKY genes, MEDIATOR

family genes including AT2G22370, PAD4 (Phytoalexin deficient

4), EDS1 (Enhanced Disease Susceptibility1), HKT1 (High-Affinity

K+ Transporter 1), bZIP family, MYC, ZAT family, Putative E3

ubiquitin-protein ligase RING1a, Cullin homolog 3 (CUL-3),

ethylene activated signaling pathway genes like DREB, TINY,

RAP, etc. In chlorophyll biosynthesis, the major interaction
BA C

FIGURE 6

Protein-protein interactions of AP2/ERF and WRKY genes in (A) Arabidopsis homologs and (B) Sesame genome. In sesame defense response is
closely related with lipid metabolism and chlorophyll biosynthesis. (C) Represent the interactions of WRKY fusion gene, Swetha_24868 as a
master regulator of defense signaling in the absence of NBS-LRR genes in sesame.
B

C D

A

FIGURE 5

Alternative splicing in AP2/ERF and WRKY genes. (A) Venn diagram indicating major changes in Splice Acceptor (SA), Splice Donor (SD), Branch
Site (BS) and the exonic splicing enhancer Serine/Arginine Splicing Factor 1 (SF1). (B) Venn diagram showing major splice mechanisms including
Intron Gain (IG), Exon Skipping (ES), Alternative 5’ ends (A5), Alternative 3’ ends (A3) and Alternative exon ends (AX). (C, D) indicate changes
observed in splice enhancers and branch sites in AP2/ERF and WRKY respectively.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1076229
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Parakkunnel et al. 10.3389/fpls.2022.1076229
partners were CRD1 (Copper Response Defect1), GUN (Genomes

Uncoupled) 4 and 5, FC (Ferrochelatase) I and II, Albina1, Mg-

protoporphyrin chelatase different sub-units (CHLI1, CHLI2,

CHLM), Geranylgeranyl reductase (GGR, given as AT1G74470),

Glutamyl-tRNA reductase 1 (HEMA1) and Protoporphyrinogen

oxidase 1 (PPOP1). Among the lipid metabolism pathway genes,

the major interactions identified were with lecithin–cholesterol

acyltransferase (LCAT), lysophosphatidic acid acyltransferase

(LPAT2), triacylglycerol lipase, Sugar-Dependent1 (SDP1),

lysophosphat idy lchol ine acy l t ransferase (LPCAT) ,

lyophosphatidylethanolamine acyltransferase (LPEAT1/

AT1G80950 and LPEAT2/AT2G45670), Glycerol-3-phosphate

acyltransferase 9 (GPAT9), phosphatidylserine decarboxylase

(PSD1), Glycerol-3-phosphate acyltransferase (ATS1/

AT1G32200), etc. All three pathways showed significant

interaction with AT2G20050 representing cAMP-dependent

protein kinase involved in the PKA signaling pathway.

Swetha_24868, a gene functionally similar to WRKY 4 and Zinc

dependent activator protein1 of Arabidopsis was found to act along

with WRKY 70 and WRKY 33 initiating cascades of different

defense responses (Figure 6C). Many interaction partners were

observed to have significant roles in systemic acquired resistance

(SAR), osmotic stress, hypoxia, cold stress and pathogenesis.

The significant GO terms associated with AP2/ERF andWRKY

transcription factors include cellular response to stress, defense,

immune response, intracellular signal transduction, MAPK cascade,

regulation of the cellular process, response to abiotic stress, systemic

acquired resistance, salicylic acid-mediated signaling pathway,

plant-pathogen interaction, ribosome assembly, ribosome

biogenesis, translation, etc. The conserved motifs identified

through MEME (SI-13A) for WRKY family had molecular

functions like transcription factor activity, ATPase activity

coupled to transmembrane movement of substances and

structural constituent of ribosome while associated with cellular

components of the mitochondrion, ribosome and chloroplast

(stroma, thylakoid and envelope). The biological process

identified was translation. For the AP2/ERF family (SI-12A) the

molecular functions attributed were transcription factor activities,

structural constituent of ribosome, protein serine/threonine kinase

activity and protein binding while being part of biological processes

like translation, protein amino acid phosphorylation,

transmembrane receptor protein tyrosine kinase signaling

pathway and glycolysis. The cellular components identified were

the nucleus, mitochondrion, chloroplast, ribosome and cullin-

RING E3 ligases (CRLs) complex.

The subcellular localization was studied in detail to understand

the regulatory functions. 56% of WRKY and 60% of AP2/ERF

transcription factors had a high probability of being located in the

nucleus. Among the WRKY genes 20% were predominantly

localized in the chloroplast, 7.9% in the cytoplasm, and 6.4% in

themitochondria. For AP2/ERF family the statistics were 17%, 3.2%

and 10.89% respectively (SI-12B). The WRKY gene Swetha_04277

and its three homologs were localized in the peroxisome whereas
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the Baizhima gene (Baizhima_17686) was localized in the

chloroplast (SI-13B). Similarly, Zhongzhi13_00117 and three

Chinese homologs were located in the extra-cellular space

whereas Swetha_00675 was located in the nucleus. Among the

splice variants, 64% of WRKY and 70% of AP2/ERF homologs

showed differential sub-cellular localization.
3.9 Cis-element analysis in the promoter
regions of AP2/ERF and WRKY genes

We examined the cis-element sequence distribution in selected

single exon genes, all the splice and exonic variants of AP2/ERF

genes and selected homologs from all the WRKY classes from

Swetha and Zhongzhi-13. In addition to the common cis-acting

elements CAAT box and TATA box, elements regulating

phytohormonal response, development and stress response were

found. More than 75% of identified cis-elements responded to

abiotic and biotic stress responses including drought, salinity, light

and pathogenesis. The most common cis-elements identified were

ABRE, as-1, MBS, MYB, MYC and STRE. MYB and STRE were

present in all the WRKY genes while MYC was present in all the

AP2/ERF genes used for the study. Very few instances were found

where the conservation existed all through the exon, intron and

regulatory regions among the homologs as evident in

Swetha_30858 & Zhongzhi13_23474 and Swetha_24927 &

Zhongzhi13_18440 from AP2 family. Among gene duplicates in

the same genome with difference in exon-intron size or numbers,

one gene is found to retain similarity to parental regulatory

sequences. Examples include Swetha_18219 & Swetha_18222,

Swetha_28864 & Swetha_28866, Swetha_33069 & Swetha_33068,

Zhongzhi13_33595 & Zhongzhi13_33551 and Swetha_6527 &

Swetha_3532 (WRKY). Even in genes with a single intron and

conserved protein structures, the regulatory landscape varied

widely. In many cases, in spite of similar protein structures, a

drastic change was noticed in the number of a core promoter like

TATA to the extent of 2-3 folds, like in Swetha_04095 &

Zhongzhi13_02825 and Swetha_41134 & Zhongzhi13_32245

indicating dosage effect. Details are in Figure 3A–C, SI-14, SI-15.
3.10 In-silico gene expression profiles of
AP2/ERF and WRKY gene families

The GEO profiles targeting different biotic and abiotic stresses

like drought, heat, salinity, osmotic stress, cold stress, wounding, etc.

and primary cell wall thickening was selected with expression sites

at stem, roots, leaves and seedlings. AP2/ERF genes ERF003 and

ERF011 as well as WRKY48 were found to express under all types

of abiotic stress and in all the tissues.WRKY48 was found up-

regulated in the stem, seedlings and root while down-regulated in

roots. 8 AP2/ERF and 12WRKY genes were found down-regulated

in the roots including ERF003, ERF005, WRKY76, WRKY62 and
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WRKY24. Most of the AP2/ERF family genes were found to express

in the leaves and stem (SI-17A). 6 AP2/ERF genes involved in

primary cell wall thickening including ERF034 and ERF043 and

were found to express in leaves and seedlings. 10 AP2/ERF and 5

WRKY genes including WRKY-4, 7 and 74 were found down-

regulated in leaves during abiotic stress. As for biotic stress

response, 22 differentially expressing AP2/ERF and WRKY genes

were detected in response to wounding. Up-regulation was noticed

in RAV2, ERF070, ERF060, RAP2.4, ERF011, ERF107, WRKY29,

TEM1, ERF034, WRKY32, WRKY27, ERF118, RAP2.7, WRKY22,

WRKY16, WRKY7 and ERF012 with more than 2 fold changes. 10

genes were down-regulated includingWRKY39,WRKY69, ERF104

and ERF116. The expression levels of AP2/ERF and WRKY genes

are given in Figure 7A, B, SI-17 B-D.
4 Discussion

Sesame grown in marginal environments across the world is

subjected to various kinds of abiotic stresses like drought, water

logging and salinity. Recently a pan-genome was developed by

combining genomic sequences of five cultivars (Yu et al., 2019)

including the reference genome Zhongzhi-13 (space mutant),

Chinese landraces Baizhima and Mishouzhima, major Chinese

domestic cultivar (Yuzhi11) and the Indian variety ‘Swetha’. Pan-

genome offers a better understanding of the evolutionary

mechanisms that allow organisms to adapt faster to changing

environments (Tranchant-Dubreuil et al., 2019).
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Environmental adaptations change the genomic architecture

and result in the introduction of new genetic diversity into elite

cultivars which can be accessed through genome sequencing.

Plant adaptations mainly rely on Structural Variations (SVs)

including Presence/Absence Variations (PAVs) and Copy

Number Variation (CNV), particularly for biotic and abiotic

stress tolerance (Khan et al., 2020). Our focus was on the

evolutionary adaptations pertaining to maximum fitness

among the component genomes adapted to a wide ecological

niche. In the major regulators of signal transduction and gene

expression under biotic & abiotic stress conditions, AP2/ERF

and WRKY, variation was detected in gene number, exon and

intron numbers and size, protein characteristics, location in the

genome, and promoter sequence architecture.

The number of AP2/ERF genes detected in wheat (322),

sorghum (122), rice (139), Arabidopsis (122), Brassica napus

(531) and sugarcane were comparable to sesame as per the ploidy

level (Ghorbani et al., 2020; Riaz et al., 2021; Li et al., 2021). The

numbers of RAV and soloist family members were much higher

than those reported in soybean, rice and Arabidopsis while

comparable with that of pear (Li et al., 2018). The number of

AP2/ERF genes reported in the pan-genome (145) is higher than

earlier reports (132) by Dossa et al., 2016 in sesame with wide

difference in classification. In the WRKY family, we detected 89

genes in the pan-genome, much lesser than reported in sorghum

(94), rice (104), Arabidopsis (74), apple (113), soybean (174) and

sunflower (119) (Yang et al., 2017; Baillo et al., 2020; Liu et al., 2020;

Abdullah-Zawawi et al., 2021; Qin et al., 2022). Like other crops, in
BA

BA

FIGURE 7

The expression profiles of AP2/ERF and WRKY genes during (A) Abiotic stress response in different tissues and seedlings. (B) During wounding
response and biotic stress response in WIND1 mutants and wild type plants. P-values were calculated based on Welch’s t-test and genes with P-
value ≤0.05 is represented either up regulated or down regulated (> 2-fold or < 0.5-fold).
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the sesame pan-genome class-II WRKY’s dominated the family

whereas the class-III members were very less, 5 in individual

genome against 15 and 31 in rice and sorghum respectively. The

earlier reports on sesame (Li et al., 2017) suggested 71WRKY genes

in sesame with 7 in class III.

Dossa et al., 2016 reported that 70% of AP2/ERF genes are

intron-less and the exons detected were 1-10 in the sesame genome.

In the pan-genome we found 63% of AP2/ERF genes to be intron-

less with the numbers changing drastically with the individual

genome. 53.1% of genes of Swetha genome were intron-less

whereas the landraces, Baizhima and Mishouzhima had higher

amounts, 67 and 68% respectively. More than 10 exons were

detected in 16 genes covering all the genomes while the bulk was

contributed by Swetha (7 genes). The number of exons also varied

drastically across the genome with the Swetha genome having 3.5

exons/gene as against 2.6 in the pan-genome. In the sorghum pan-

genome, 4.2 exons/genes were reported (Tao et al., 2021). Similarly

in the WRKY family, the Swetha genome contributed 5 exons/gene

as against 4.2 in the pan-genome. Li et al., 2017 reported sesame

WRKY genes to consist of 1-11 introns whereas two genes with 14

and 17 introns were detected in the Swetha genome. Similarly, the

introns/gene forWRKY andAP2 genes are 3.21 and 1.7 respectively

whereas for Swetha it was 4.0 and 2.45 respectively, as against 4.15

introns/gene in plants (Frey and Pucker, 2020). The AP2 sub-family

genes had 2-20 introns with the majority of genes having 5-8

introns. Dossa et al., 2016, reported the intron numbers to be 3-10

for AP2 and a single intronic gene was also identified. The ERF sub-

family was found to be intron poor with 95% of members having 0-

1 introns in accordance with earlier reports. The gene,

Swetha_28474 had 36 introns as against the maximum of 9

introns reported earlier (Su et al., 2022). In the WRKY family, the

intron numbers reported vary between 0-5 in rice (Abdullah-

Zawawi et al., 2021), 0-11 in eggplant (Yang et al., 2020), 1-6 in

barley (Zheng et al., 2021) and 1-11 in sesame (Li et al., 2017). One

11 intron T2C sub-family gene was found to be conserved in the

genome without any change in exonic sequences although size

variation was noticed for the 2nd intron. Enhanced gene copy

number, as well as the predominance of large genes with multiple

exons in the genome of Swetha, was reported earlier for TCP

(Parakkunnel et al., 2020) and HSF (Parakkunnel et al., 2022) gene

families in sesame.

A similar trend was found in the case of micro-exons wherein

family-wise difference was quite wider with AP2/ERF family having

more micro-exons thanWRKY. The AP2/ERF family was reported

to be micro-exon rich (Song et al., 2020) and in the sesame pan-

genome, micro-exons totaled 10% of total exons as against 1.96% in

the WRKY family. 88% of micro-exons were contributed by the

AP2 subfamily in the sesame pan-genome with only 15 out of 128

identified genes lackingmicro-exons. Song et al., 2020, also reported

that AP2 micro-exon genes are highly conserved which we found

only to be partially true in the pan-genome. 44% of micro-exon

genes were conserved in the pan-genome in the AP2 sub-family

whereas the extent was higher in the Chinese accessions particularly
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in landraces Baizhima and Mishouzhima, wherein 83% sequence

conservation was observed. WRINKLED1 (WRI1) is an AP2 gene

widely studied in Arabidopsis and higher plants (Ma et al., 2013)

acting as a master regulator of fatty acid synthesis. The presence of

9bp long micro-exon coding for amino acids ‘VYL’ and its isoforms

have been reported as essential for the AtWRI1 gene. This micro-

exon was missing in the sesame pan-genome. Instead, the WRI1

homologs of sesame may be alternative splice forms of the gene as

reported in castor (Ji et al., 2018). The sesame homologs lacked

‘VYL’ sequence and formed five different clusters with intron

numbers ranging from 4-20 although Yuzhi11 and Zhongzhi13

genomes shared the sequence (SI-13). The atypical splicing

combined with the skipping of conserved micro-exons resulted in

uniqueWRI1 genes in rice (Mano et al., 2019). In the pan-genome

(SI-4) exon skipping, gene fusion, mutually exclusive exon, as well

as alternative 5’ and 3’ splice ends contribute to the generation of

novel variants in WRI1 genes. Micro-exons of size ≤15bp are

considered as shortest and interestingly 38% of WRKY micro-

exons belonged to this category whereas in the AP2/ERF family

only 9% of micro-exons fulfilled this criterion (Yu et al., 2022). The

most common micro-exons occurring in AP2/ERF genes are of

sizes 9, 26, 31, and 45 bp according to Song et al., 2020. In sesame,

the most common micro-exon is 50 bp occurring in 54% of AP2

genes at exonic positions 4, 5 or 6. An estimated 35% of AP2 genes

without the 50bp micro-exon contained two micro exons of 25 and

30 bp size, occurring together at 2nd and 3rd exons in the same

order. A 44bp micro-exon also occurred in the same group together

with 25 and 30 bp micro-exons in 50% of cases. Only one case of

exclusion of 25bp micro-exon was noticed in the sesame pan-

genome wherein gene fusion involving PWWP domain with AP2

domain was observed in Swetha_18222 drastically altering

genic architecture.

Among the 26 WRKY genes with micro-exons in the sesame

pan-genome, 15 genes (all belonging to Chinese accessions) did not

show any variation in exon-intron structure. However, alternative

splice forms were noticed in 11 WRKY genes with micro-exons

with more than 80% belonging to the Swetha genome. In the AP2/

ERF family, alternative splice forms were noticed in 47 micro-exon

genes (35%); while the majority (47%) again belonged to Swetha.

Altogether, in the Swetha genome, 49% of genes with micro-exons

were alternative splice forms. It can be understood (Table 2) that

micro-exons are important functionaries of stress tolerance,

circadian clocks, apomixis, defense response, the integrity of

genetic material and transposon integration (Liu et al., 2013;

Theriault and Nkongolo, 2017; Aguado and tenOever, 2018;

Curtis et al., 2018; Wu and Urano, 2018; Worthington et al.,

2019; Wang et al., 2019; Shi et al., 2020; Song et al., 2020;

Tischkau, 2020; Chen et al., 2021; Ming et al., 2022.)

However, we do not agree with Song et al., 2020 that the

micro-exons of AP2 genes are under negative selection. In the

pan-genome, 4 genes were under neutral selection; 11 were under

purifying selection, and 25 were under positive selection. Genes

under positive selection included micro-exons with domain
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similarities to lecithin: cholesterol acyltransferase (LCAT3),

aquaporin and integrase while the ASGR-BBM-like micro-exon

gene was under neutral selection. Most of the micro-exon genes

(>65%) were also under WGD or segmental duplication.

Gene fusion was identified as a potent source of creation of

evolutionary novelty wherein a new gene arises by joining parts

from two or more genes and is controlled by the same regulatory

region. It is widely reported in bacteria (Pasek et al., 2006) as the

evolutionary force behind multi-domain proteins and in eukaryotes

resulting in cancer-genesis mutations with deleterious consequences

(Glenfield and Innan, 2021). In higher plant genomes gene fusion is

a complex process with a poorly understood evolutionary

mechanism. Gene fusion events have been reported in the

biosynthesis of alkaloids in opium poppy (Catania et al., 2022),

viral infection in maize (Zhou et al., 2022a) and in the evolution of

new genes in the genus Oryza (Zhou et al., 2022b). In the sesame

pan-genome, 2.3% of AP2/ERF genes and 10% of WRKY genes

were products of gene fusion. Larger share of these novel variations

was contributed by the Swetha genome where 8.3% of AP2/ERF

and 24% of WRKY genes arose due to gene fusion. In the Oryza

genus, the O. japonica genome had more fusion genes compared to

O. indica, O. barthii andO. glaberrima (Zhou et al., 2022b) whereas

differential gene fusions were observed among different Papaver

species affecting alkaloid concentration (Catania et al., 2022).

However, the gene fusions reported in sesame, particularly in

Swetha are much higher than in maize (Zhou et al., 2022a) and

Oryza (Zhou et al., 2022b). The duplication of parental genes prior

to fusion was evident also in the sesame genome (Zhou et al., 2022b)

while most of the added domains were products of horizontal

transfer. In sesame, gene fusion and creation of novel multi-domain

genes were reported in HSF genes (Parakkunnel et al., 2022) while

the fusion with retrotransposons were reported for TCP genes

(Parakkunnel et al., 2020). Selection effects were significant for 21

fusion genes in sesame wherein positive selection was noticed in

>71% of genes in contrast to the rice genome (Zhou et al., 2022b).

Alternative Splicing (AS) increases the complexity of the

transcriptome and proteome by generating multiple transcripts of

the same gene through differential processing of introns and exons

in pre-mRNA (Martin et al., 2021). Reports suggest that AS events

are involved in the regulation of gene expression under a multitude

of environmental and biotic stresses (Laloum et al., 2018: Martin

et al., 2021). The identified spice variants in AP2/ERF and WRKY

genes were 70 (48.27%) and 52 (58.43%) respectively with

maximum splice variants per single gene of 6 and 7. Swetha

genome contributed 40-50% of these variants.

Majority of the exonic additional domains and micro-exonic

domains were involved in abiotic stress responses as well as

hypersensitive responses against plant pathogens (Tables 2, 3).

The maintenance of cell membrane and organelle integrity under

stress is majorly dependent on the lipid and carbohydrate

composition of the cell dynamically affecting the performance of

cellular transporters (Rawat et al., 2021). Moreover, the epigenetic

regulation of stress response through chromatin remodeling,
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regulatory RNA’s and DNA methylation is manifested in the

additionally acquired domains (Chinnusamy et al., 2013). Reactive

Oxygen Species (ROS) are produced at higher levels in different

organelles during abiotic stress and cause significant damage to

the cell. Ironically ROS is also essential for stress response as they

act as signaling molecules triggering signal transduction

(Frederickson Matika and Loake, 2014). Plant FtsH4, an ATP-

dependent mitochondrial protease is essential to preserve stem cell

activity and temperature stress response throughout development

and lack of which leads to the precocious cessation of growth

(Huang et al., 2019). An important component of ROS signaling,

FtsH4 is associated with photosystemII repair mechanism and

mitigation of photo-oxidative stress (Khanna-Chopra, 2012) and

manifested through apoptosis and leaf senescence. It is important

that a fusion gene with WRKY and FtsH is conserved across the

pan-genome indicating adaptive evolution under stress

conditions. Similarly, E3 ubiquitin ligase essential for less

accumulation of ROS and enhanced anti-oxidant capacity under

drought stress, existed in fusion with the WRKY gene in sesame

(Zhang et al., 2017). Cullin-RING E3 ligases (CRLs) were

identified as a major cellular component in meme analysis.

Oxidative burst; wherein ROS accumulation leads to the

production of hydrogen peroxide (H2O2) occurs as a defense

response against pathogens. Aquaporins help the diffusion of

H2O2 through the plasma membrane to cytosol triggering

MAMP-triggered immunity (Bigeard et al., 2015).

WRKY and AP2/ERF genes are expressed at all parts of the

plant; root, stem, leaves and seedlings and in addition to stress

response also function in the light-induced stomatal opening, redox

homeostasis, callus formation, starch metabolism, cell wall

biosynthesis, RNA regulation of transcription, hormone

metabolism and lignin biosynthesis. The multi-domain fusion

genes are involved in all the major defense pathways like SA-

mediated signaling, and MAP kinase cascades (Eulgem and

Somssich, 2007). WRKY genes are known to activate sugar-

responsive genes through an epigenetic mechanism and a fusion

gene Swetha_09533 containing the galactokinase domain is directly

involved in sugar metabolism (Chen et al., 2019). Particularly the

additional domains of the T1 WRKY gene Swetha_24868,

chorismate mutase, cAMP and voltage-dependent potassium

channel convert this gene into a master regulator. Recruiting

other WRKY and AP2/ERF genes into the picture, Swetha_24868

mediates defense responses involving Salicylic acid-dependent

signaling, thiol-based signaling and MAPK signaling. Chorismate

mutase regulates defense mechanisms through enhancing the

accumulation of SA, lignin and antioxidants (Jan et al., 2021).

The cAMP (3′, 5′-cyclic adenosine monophosphate) is known as an

important signaling molecule in defense responses in addition to

roles in germination, stomatal opening, ion homeostasis and cell

cycle progression (Blanco et al., 2020). Voltage-gated K+ channels

are involved in high salinity stress and maintaining ion homeostasis

in sweet potato (Zhu et al., 2022) and rice (Musavizadeh et al.,

2021). Interestingly in the absence of NBS-LRR genes in sesame, the
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pathway involves EDS-1, EDS-16, WRKY-4, NPR-1, PRB-1, PR-1,

PR5, HCHIB and GH3 (AT1G23160) functioning in SA signaling

pathway. In addition to triggering immunity, SA mediated pathway

is also effective in regulating ROS levels as revealed by interaction

with ERF-13 and CUL-3 (Figure 6). However, this gene and the

parental gene, Swetha_24865 did not vary much in the promoter

sequence except for the ABRE sequence in Swetha_24865.

However, they did share DRE, MYB and MYC sequences. A

single copy of DRE is needed for ABA independent induction of

osmotic and cold stress genes and promoter sequence containing

DRE without ABRE is found to work well under stress conditions

(Yamaguchi-Shinozaki and Shinozaki, 1994). The localization of

Swetha_24868 was found to be predominantly in chloroplast while

Swetha_24865 was expressed equally in the nucleus and chloroplast.

Class T3 of WRKY genes had W-box sequences in the promoter

wherein protein localization, exonic and other cis-element

sequences varied widely with individual genes. T2E genes,

Swetha_21917 and Swetha_21913 as well as AP2 genes

Swetha_33068 and Swetha_33069 in spite of sharing the same

promoter sequences are located nearby each other and products of

recent gene duplication localized differently in chloroplast and

nucleus, respectively. The exon-intron, promoter sequence,

localization and active domain diversity indicate the faster

evolution scenario of defense response genes in sesame subjected

to multiple stresses on account of its marginal growing conditions.
5 Conclusions

Breeding crop varieties for changing climate scenarios with the

effective use of existing diversity is the primary challenge for food

security. However, breeding techniques and adaptation to the

environment significantly alter the genomic structure of crop

plants. This was evident from the pan-genome study of sesame

including varieties or landraces adapted for vastly varying climates

of India and China. Although a certain level of gene conservation

existed at the species level; evolution created different footprints on

different genomes. The adaptive selection was evident in copy

number variation and modification of function for most of the

gene loci studied. Retention of ancient genes with the incorporation

of extra functional domains to cope with extreme stress conditions

was observed in S. indicum. Ecological adaptation wasmanifested in

genome composition with geographical regions harboring variant

forms of gene loci offering maximum fitness.
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DATA SHEET 1

Contains SI-18 (Fig). The AP2/ERF and WRKY genes mapped to the 13
chromosomes of sesame genome. Here the WRKY and AP2/ERF genes

from Swetha genome have been represented in ‘blue’ and ‘red’ coloured
fonts respectively. Please adjust the zoom to 100% for clear visibility.

DATA SHEET 2

Contains SI-19 (Fig). The sub-families are coloured as per Swetha AP2/ERF
classification given in Fig-2. The colour codes are as following:
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Blue=DREB; Magenta=ERF; Red=AP2; Green=RAV and Cyan=SOLOIST.
Individual Swetha genes are coloured as per the initial classification of Fig-

2 to reflect the extent of domain changes in the pan-genome
during evolution.

DATA SHEET 3

Contains SI-20 (Fig). Different groups are coloured as per classification

given in Fig-2. T1=Blue; T2A= Orange; T2B=Magenta, T2C=Red;
T2D=Lime yellow; T2E= Purple and T3= Olive.
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