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Introduction

Potassium (K) is one of the essential mineral nutrients for plant growth and

development, which plays a vital role in a wide range of physiological and biochemical

processes in plants (Ragel et al., 2019). Plants must absorb plenty of potassium ions (K+)

to maintain normal development and growth. However, many agricultural lands in the

world lack K because of leakage loss and large-scale agricultural production (Zörb et al.,

2014). K deficiency seriously limits plant growth and decreases crop yield and quality

(Jordan-Meille and Pellerin, 2004; Gerardeaux et al., 2010; Wang et al., 2015; Hu

et al., 2019).

Recent studies on K nutrition in plants mainly focus on K transport and signaling

(Wang Y. et al., 2021). Many K+ channels, transporters, and signaling pathways have

been well studied, such as Shaker K+ channel AKT1, KUP/HAK/KT K+ transporter

HAK5 and CBL-CIPK pathways (Xu et al., 2006; Véry et al., 2014). However, only a few

of these genes have been used to improve crop KUE (Potassium use efficiency) through

the transgenic approach. For example, the ectopic expression of the WOX11 gene driven

by the promoter of a low-K-enhanced K transporter improved rice tolerance to K

deficiency (Chen et al., 2015). Applying K fertilizer is a common strategy for enhancing

crop yield. However, the high input of K fertilizer and the low KUE increase production

costs and have led to environmental problems. It is necessary to breed crop varieties

tolerant to low K (Yang et al., 2003; Cao et al., 2007; Damon et al., 2007; Zhao et al., 2014;

Song et al., 2018) to reduce K fertilizer and increase agricultural income and maintain the

sustainable development of agriculture.
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Characteristics of crop varieties
tolerant to low K

Usually, soil potassium deficiency inhibits crop growth and

reduces crop quantity and quality. However, some crop varieties

grow well and show a slight decrease in yields in the low-K field

(Yang et al., 2004; Damon et al., 2007; Hu et al., 2016; Song et al.,

2018). Varieties of this kind are recognized as low-K-tolerant

varieties. Compared with low-K-sensitive varieties, low-K-tolerant

varieties have a common characteristic: more robust K uptake

capacity and higher K concentration. In soybeans, the total K

accumulation per plant (mg/plant) of the low-K-tolerant variety is

2.36 times that of the low-K-sensitive variety under the K

deficiency condition (Wang et al., 2012). In barley, the low-K-

tolerant variety has a significantly higher shoot and root K

concentration (mg/g dry weight) and K accumulation than the

low-K-sensitive variety under the K deficiency condition (Ye et al.,

2021). The same phenomena have been observed in other species

like rice (Yang et al., 2004), maize (Cao et al., 2007), wheat (Zhao

et al., 2020) and cotton (Tian et al., 2008). Furthermore, it has

been observed that some low-K-tolerant varieties have more

extraordinary K translocation ability than the low-K-sensitive

varieties in the K deficiency condition. Low-K tolerant rice

varieties preferentially distribute K to leaves at the booting and

grain-filling stages to maintain stomatal conductance and ribulose

diphosphate carboxylase (RuBPCase) activity in functioning

leaves under low K, whereas low-K-sensitive varieties do not

have this capacity (Yang et al., 2004). The efficient distribution

of K to functioning leaves contributes to the relatively high grain

yield in low-K-tolerant varieties at low K. Cotton has a high

requirement for K, and lint yield and fiber quality could be

damaged by K deficiency (Zhang et al., 2007). Jiang et al. (2008)

found that low-K-sensitive varieties mainly transported K

nutrition to vegetal organs (stems, branches and petioles), but

low-K-tolerant varieties transported more K to the reproductive

organs (bolls) that provide products. The efficient distribution of

K to bolls probably help to maintain lint yield and fiber quality

under K deficiency condition.

Therefore, plant K use efficiency is affected by the capability

of K uptake and transportation and distribution of K. The low-

K-tolerant crops should have better K uptake, transportation

and distribution capability in low K soil, and all factors played

important roles in crop yield and quality.
High-throughput screening of crop
varieties tolerant to low K

Tolerance to low K is a complex phenotype determined by

genotype and environmental factors. To ensure the screening

efficiency and accuracy, low-K-tolerant varieties should be

screened through indoor and field experiments. Indoor
Frontiers in Plant Science 02
experiments are usually performed in a growth chamber or

greenhouse under hydroponic culture. It has the advantage of

precise environmental control. Indoor experiments are usually

carried out for screening at the seedling stage and thus could

screen many varieties simultaneously. However, plant K nutrition

is dynamic. Even a genotype probably shows different tolerance to

low K at different growth stages. Tian et al. once screened five

varieties that tolerant to low K at the seeding stage but sensitive to

low K at the mature stage from 50 cotton varieties (Tian et al.,

2008). Low-K-tolerance indicators in the seeding stage are

commonly related to biomass and K uptakes, such as dry

weight, leaf area, root length, number and volume, K

accumulation amount per plant, and K content per unit dry

weight. These indicators are not directly related to the economic

productivity of crops like cotton, rice and canola (Woodend and

Glass, 1993). Therefore indoor experiments are usually adopted

for preliminary screening. Low-K-tolerant varieties selected

through indoor experiments should be further confirmed in the

field based on yield and quality indicators.

The K requirements are different for different crops. Some

crops like soybean, potato, maize and cotton have relatively high

requirements for K nutrition, whereas other crops like wheat and

millet have a relatively low requirement for K nutrition. The K

requirement of crops significantly differed at different growth

stages. In rice, for instance, the K requirement maximizes from

tillering period to the jointing stage. Therefore the treating

concentration and treating time of K should be determined

from crop physiological characteristics.
Omics data-driven KUE breeding

Low-K-tolerant varieties can be directly used in agricultural

production or applied in crop breeding as germplasm resources.

The core of modern crop breeding is the introgression of genes

responsible for good agronomic characteristics into the desirable

genetic background. K-deficiency tolerance is a complex

quantitative trait with strong interactions between genotype

and the environment (Atienza et al., 2003; Prinzenberg et al.,

2010). Many quantitative trait loci (QTLs) for low K tolerance

have been identified via map-based cloning, and various

molecular markers closely linked to these QTLs have been

obtained (Wu et al., 1998; Prinzenberg et al., 2010; Zhao et al.,

2014). With the help of marker-assisted selection (MAS)

breeding, the crop breeding process has been accelerated.

Nowadays, with a significant boom in omics technologies,

omics-based interdisciplinarity further accelerates crop

breeding (Li and Yan, 2020; Shen et al., 2022). Omics data

such as genomics, proteomics, transcriptomics, metabolomics,

phenomics, epigenomics allowed the understanding of

physiological, biochemical, and molecular mechanisms

underlining target traits and complex interactions between

genes, proteins, and metabolites (Figure 1).
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Genomics technology is widely exploited in genome

diversification, evolutionary analysis, QTL mapping, and gene

identification. High-quality reference genomes and vast genome-

wide re-sequencing data greatly facilitate the identification of

genes responsible for low-K tolerance via QTL mapping and

genome-wide association study (GWAS). Wang W. et al. (2021)

identified the candidate genes for QTLs that impact shoot dry

weight at low K by whole-genome re-sequencing. Next-generation

sequencing has helped construct high-resolution physical/genetic

maps. Based on the high-resolution physical/genetic map, novel

genomic loci controlling potassium use efficiency in bread wheat

have been identified via GWAS (Safdar et al., 2020).

Transcriptomic data provides an insight into how genes are

expressed under different K treatments, thus, have been

extensively used to study genes, biological pathways and

metabolic pathways that influence low K tolerance. Combining

QTL mapping and transcriptome profiling helps to identify

candidate genes for controlling low-K tolerance. Wang W. et

al. (2021) investigated the variation in mRNA abundance of

candidate genes between the two parental lines to assess whether

any of these genes might contribute to K use efficiency.

Transcriptome analyses of low K responsiveness have been

performed in various crops, like rice, tomato, banana and

maize (Fan et al., 2014; Shen et al., 2017; Zhang et al., 2017;

Zhao et al., 2018; He et al., 2020; Ma et al., 2020). Genes coding

transcription factors, transporters, kinases, oxidative stress
Frontiers in Plant Science 03
proteins, and hormone signaling and glycometabolism-related

genes are confirmed to be responsive to low-K signaling (Zhao

et al., 2018). Gene regulation network roots under different

potassium stress are constructed (He et al., 2020). Pathways

related to jasmonic acid and reactive oxygen species production,

Ca2+ and receptor-like kinase signaling, lignin biosynthesis and

carbohydrate metabolism are significantly affected by K

starvation (Fan et al., 2014; Shen et al., 2017).

Proteomics, metabolomics and ionomics studies about K use

efficiency have been carried out in crops but are much less than

transcriptomic studies. K deficiency could elicit complex

proteomic alterations that refer to oxidative phosphorylation,

plant-pathogen interactions, glycolysis/gluconeogenesis, sugar

metabolism, and transport in stems (Li et al., 2019). Proteome-

wide mapping of protein kinases indicates the potential role of

CIPK23 and its substrates in regulating root architecture upon K

starvation (Wang et al., 2020). Nkrumah et al. (2021) measure the

variation in the ionome of tropical “metal crops” in response to

soil K availability to study their K uptake ability at low K. The

combined analysis of ionome and metabolome reveals the

association between low K tolerance and drought tolerance in

rapeseed (Zhu B. et al., 2020). A comprehensive transcriptome

and ionome analysis showed the interaction among nitrogen (N),

phosphorus (P) and K during the combined NPK starvation in

sorghum (Zhu Z. et al., 2020). Metabolomic and transcriptomic

changes induced by K Deficiency provided new insight into the

role of K in alleviating Sarocladium oryzae infection (Zhang et al.,

2021). Leaf metabolome and proteome appear to be good

predictors of carbon balance (Cui et al., 2019).

Phenomics and epigenomics studies about low K tolerance lag

relatively behind. Epigenomics studies are mainly about non-

coding RNAs and alternative mRNA splicing (AS). Long Non-

coding RNAs sense environmental K concentrations and play

regulatory roles in the K response network (Chen et al., 2022). AS

modulation is independent of transcription regulation and plays a

unique regulatory role in response to low potassium (He et al.,

2021). Phenomics is the study of high-throughput phenotyping

through crop development. However, phenomics data about KUE

is relatively rare. Only Weksler et al. (2020) constructed a

hyperspectral-physiological phenomics system to monitor and

evaluate pepper response to varying levels of K fertilization.
Prospects

K deficiency in farmland is a global problem. Improving

KUE is a strategy to ensure higher crop productivity within

sustainable environments. Low-K-tolerant varieties should have

good K uptake and distribution capacities in low K soil to absorb

sufficient K and prioritize the requirement for K of functioning

organs. Generally, low-K-tolerant varieties are applied in crop

breeding as germplasm resources. It is necessary to introgress

low-K-tolerant traits into desirable genetic backgrounds or
FIGURE 1

Integration of multi-omics technologies for accelerating crop
KUE breeding.
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pyramid tolerance-related QTLs from different genetic

resources. However, high-throughput screening technology of

low-K tolerant varieties with efficiency and accuracy will still be

a challenge. Omics data could reveal physiological, biochemical,

and molecular mechanisms underlining low K tolerance and

help identify QTLs determining KUE. With multi-omics

development, we believe integrating these technologies will

greatly boost the strategies of KUE breeding.
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