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The tiller density is a key agronomic trait of winter wheat that is essential to field

management and yield estimation. The traditional method of obtaining the

wheat tiller density is based on manual counting, which is inefficient and error

prone. In this study, we established machine learning models to estimate the

wheat tiller density in the field using hyperspectral and multispectral remote

sensing data. The results showed that the vegetation indices related to

vegetation cover and leaf area index are more suitable for tiller density

estimation. The optimal mean relative error for hyperspectral data was 5.46%,

indicating that the results were more accurate than those for multispectral

data, which had amean relative error of 7.71%. The gradient boosted regression

tree (GBRT) and random forest (RF) methods gave the best estimation accuracy

when the number of samples was less than around 140 and greater than

around 140, respectively. The results of this study support the extension of the

tested methods to the large-scale monitoring of tiller density based on remote

sensing data.

KEYWORDS

winter wheat, tiller density, UAV hyperspectral, vegetation index, random forest,
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1 Introduction

Wheat is one of the world’s most important food crops and

provides food for more than half of the world’s population

(Grassini et al., 2013; Blackie, 2016). With the world population

expected to reach 9 billion by 2050, demand for wheat is

expected to increase by 60%–110% (Godfray et al., 2010;

Tilman et al., 2011; Ray et al., 2013). To meet this demand,

annual wheat yield increases must rise from the current value of

less than 1% to at least 1.6% (Tilman et al., 2011; Ray et al.,

2013). Wheat’s yield potential depends on the tiller density at the

tillering stage (Elsayed et al., 2018) and, under normal or high-

density sowing scenarios, tillers produced in winter wheat from

fall until the beginning of January of the following year

constitute more than 87% of the final yield (Tilley et al., 2019).

The tiller density is also closely related to the nitrogen status of

winter wheat (Elsayed et al., 2018). Therefore, accurate, efficient,

and real-time knowledge of the tiller density during the tillering

stage of winter wheat is important for improving nitrogen

fertilization management, obtaining an optimal seed yield, and

implementing sustainable agricultural practices (Cheng, 2020).

The tiller density refers to the number of tillers of winter

wheat contained in a unit area (e.g., 1 m2). Currently, the most

common method for measuring the tiller density is manual

counting, which is extremely time-consuming and inefficient,

limited by human error, and lacking in timeliness and accuracy

(Scotford and Miller, 2004). Remote sensing provides an

alternative method due to its ability to provide quantitative

biophysical parameter data for vegetation in a non-contact and

non-destructive manner (Zenkl et al., 2021). Remote sensing

estimation methods of tiller density in the literature can be

generally classified into two types: (1) image segmentation

models and (2) spectral feature models. Both 2D and 3D

image segmentation models are available: the 2D approaches

are based on 2D RGB images taken by handheld cameras or

unmanned aerial vehicles (UAVs) and make use of methods

such as manually designed features (Liu et al., 2016; Liu et al.,

2017; Liu et al., 2018) or machine learning (Jin et al., 2017) to

segment leaf image elements so that the tiller density can be

estimated under field conditions in sample plots. These methods

require a high image resolution (ground sampling distance< 0.5

mm). In the 3D approaches, point clouds of wheat are obtained

with the help of remote sensing techniques such as LIDAR, and

the tiller number is estimated by clustering (Roth et al., 2020;

Fang et al., 2020). This can be severely affected by wind and

shading between wheat leaves and cause the tiller number to be

underestimated (Fang et al., 2020). Spectral characterization

models, in contrast, establish a regression between the tiller

density and vegetation indices (VIs) to estimate the tiller density

(Flowers et al., 2001; Flowers et al., 2003; Scotford and Miller,

2004; Phillips et al., 2004; Wu et al., 2011; Wu et al., 2022). Most

regression models use linear, a few use non-linear ones such as

exponential regression. Results show that VIs are reliable
Frontiers in Plant Science 02
indicators for estimating the wheat tiller density in the field;

but the relative error was above 20% and could not meet the 10%

accuracy required for the application (Liu et al., 2017).

Most current studies of wheat tiller density or tiller number

are based on RGB images acquired on the ground or using

UAVs; the tiller density is then estimated using image

segmentation, which constitutes a source of point data and

cannot be used to estimate the tiller density of the plot as a

whole; however, it cannot accurately reflect the spatial variation

in the density within and between plots. Details of this spatial

variation can only be visualized by using a spatial interpolation

algorithm and the values of the wheat tiller density that have

been obtained, which are subject to errors caused by spatial

heterogeneity. In addition, in the case of larger areas, there are

difficulties in obtaining UAV data. Developments in high-

resolution satellite remote sensing are helping this situation: in

particular, spectral feature models can be used to estimate the

wheat tiller density on a pixel-by-pixel basis. Therefore, the

actual number of tillers of winter wheat can be estimated by

using high-resolution satellite images acquired in late fall and

early winter based on a small number of measured tillers (Miller

and Adkins, 2021); maps showing the spatial distribution of the

tiller density can then be obtained.

Traditional methods of inverting crop physicochemical

parameters are mainly based on parametric regression of a single

vegetation index (VI) as a variable (Verrelst et al., 2015), which is

widely used to estimate crop parameters and monitor crop

conditions (Bahrami et al., 2021), is used to establish regression

relationships. Such methods tend to be very sensitive to noise

(Danner et al., 2021) and are suitable for estimating equations

corresponding to different linear or exponential relationships (Liang

et al., 2015). However, complex and strongly nonlinear relationships

exist between biophysical and biochemical parameters and

reflectance spectra that cannot be accurately simulated by these

parametric models (Liang et al., 2015); also, these models cannot be

transferred to other sites with different vegetation or applied to data

acquired using other types of sensors or under different conditions

(Lu and He, 2019). However, nonparametric linear and nonlinear

regression methods have been developed to overcome these

deficiencies. In particular, machine learning (ML) regression

algorithms have evolved rapidly in recent decades due to their

ability to mine and understand information deep within datasets

and have been shown to reliably solve nonlinear problems (Camps-

Valls et al., 2018). Because of their ability to obtain crop physical

and chemical parameters and satellite reflectances, nonlinear

modeling of the relationship between physicochemical parameters

and satellite reflectance spectra is increasingly applied in

combination with remote sensing techniques for crop growth

monitoring (Rehman et al., 2019; Zhang et al., 2019; Zha et al.,

2020; Machwitz et al., 2021). It is common practice to extract

multiple vegetation indices with different effects from spectral

information and filter the most relevant vegetation indices to the

target physicochemical parameters by using feature engineering or
frontiersin.org

https://doi.org/10.3389/fpls.2022.1075856
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Hu et al. 10.3389/fpls.2022.1075856
feature selection (Danner et al., 2021) as the input to train machine

learning regression models (e.g., support vector regression (SVR),

Gaussian process regression (GPR), random forest (RF), and

gradient boosted regression trees (GBRT)). The model with the

highest estimation accuracy is then obtained by optimizing and

adjusting the model hyperparameters and the cross-validation

results. Generally, the number of filtered features does not exceed

15%–20% of the total number of field measurement samples, which

means that the risk of overfitting can largely be avoided (Thenkabail

et al., 2000). Machine learning methods have evolved as reliable

methods of learning nonlinear relationships because they require

less parameterization, are implemented at various spatial and

temporal scales, and are more robust and covariant to noisy

features, small training sizes, and large numbers of dimensions

(Verrelst et al., 2012; Liang et al., 2015; Houborg and McCabe,

2018). These methods have been widely used for estimating various

biophysical parameters such as the leaf area index (Duan et al.,

2019; Tao et al., 2020), vegetation cover (Niu et al., 2021; Yu et al.,

2021), biomass (Yue et al., 2019; Tao et al., 2020), Canopy

chlorophyll content (Jiao et al., 2021) and the leaf tilth

distribution (Zou et al., 2022). However, few studies have been

conducted to estimate the tiller density of winter wheat.

Therefore, in this study, models for estimating the tiller

density based on multiple vegetation indices using machine

learning methods were established. Results with higher

accuracy than those obtained in previous research were

achieved. Corresponding spatial distribution maps based on
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different types of remote sensing data (including hyperspectral

and multispectral data) were also obtained. It was verified that a

machine learning model for estimating the winter wheat tiller

density based only on plot-scale samples can be extended to the

county scale. In this paper, the use of digital imagery instead of

manual counts to determine tiller density as a way of obtaining

ground truth data that is less time-consuming and laborious

is considered.
2 Materials and methods

2.1 Field experiments, measurements,
and data processing

The ground experiments on which this study was based were

conducted at two sites near Beijing, China (Figure 1): the

Xiaotangshan National Precision Agriculture Research Center

(40.10°N, 116.26°E) and Xiongan (38°43′–39°10′N, 115°38′–
116°20′E).

The experiments included making the following observations.
① The tiller density was measured by manually counting the

number of tillers in a 0.5 m × 0.5 m area around each

sampling point. Vertical digital photographs of the same

areas were also taken at a 1:1 scale, corresponding to the

ground dimensions of 0.5 m × 0.5 m. These photographs
B

C

A

FIGURE 1

Geographical location of the study sites: the experiments were conducted at (A) Xiongan in November 2020, (B) Xiaotangshan in November and
early December 2020, and (C) different application scenario settings at Xiaotangshan.
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Fron
were used for training the deep-learning model that was

to be used to extract the tiller density from the

photographs.

② Hyperspectral data were acquired using a Cubert S185

image hyperspectral sensor carried by a DJI M300 UAV

at an altitude of 40 m on November 23, 2020, at the

Xiaotangshan study site. (The area over which these

images were acquired is shown as the blue box in

Figure 1B). The data were processed to give the

ground reflectance in a total of 125 bands within the

wavelength range 450–950 nm with a sampling interval

of 4 nm. The ground sample distance (GSD) was

resampled from 1 cm to 0.5 m to correspond to the

imaged area using the nearest neighbor method.

③ The multispectral data used in this study consisted of

Sentinel-2 A/B L1C-level satellite data that covered the

study areas shown in Figure 1. These data were

downloaded from the European Space Agency website

(https://scihub.copernicus.eu/dhus/#/home). The Level-

2A bottom-of-atmosphere (BOA) reflectance product

corresponding to four bands (bands 2, 3, 4, and 8) in the

visible and near-infrared range was then obtained by

applying the Sen2cor atmospheric correction module

provided by ESA to correct for the effects of the

atmosphere. For Xiongan, one scene of data from
tiers in Plant Science 04
November 2020 was obtained; for Xiaotangshan, four

scenes from the period from November to December

2020 were obtained. Further details of the experiments

that were carried out at the two study sites are given in

Table 1. Mid-to-late November and December were

chosen for the experiment because winter wheat

fertility had already entered the overwintering season

at Xiaotangshan and Xiongan, tillering had ceased, and

tiller density was almost unchanged during the growth

period. The satellite data were also chosen at this time to

correspond with the ground experiment time.
BIC = kln nð Þ − 2ln Lð Þ (1)

where k is the number of model parameters, n is the number of

samples, and L is the likelihood function. The BIC criterion is

frequently employed as an evaluation criterion for model

selection and can effectively circumvent issues that result from

models being too complex due to their high accuracy. The BIC

criterion also successfully prevents the selection of too many

variables when there are too many dimensions and not enough

samples. As a result, the minimum BIC value principle—which

states that the fewest features carry the greatest information—is

applied when choosing variables. In this case, based on the
TABLE 1 Summary of the experiments performed at Xiaotangshan and Xiongan.

Experiment
no.

Month
(s) and
year

Experiment details

Xiaotangshan study site: training, verification, and validation

1
Nov
2020

Within the area corresponding to the blue box in Figure 1B, observations were made using the ground-based S185 UAV hyperspectral
sensor. These observations were made on the same date that the Sentinel-2 satellite data were acquired (November 23). Manually measured
tiller density values were collected from 60 points; digital photographs of the same points were taken. (50 of these points were randomly
selected for subsequent use as training points; 10 points were used for verifying the accuracy of the estimation model).
Ten different application scenarios were set up based on different seeding volumes, different tillage methods, and different fertilization
conditions to simulate the tiller density under different scenarios, with specific settings referring to the notes in the lower left corner of
Figure 1 and spatial distribution as shown in Figure 1C.

2
Nov and
Dec
2020

Within the area of the winter wheat crop marked in Figure 1B, the tiller density value was measured at more than 400 points (including the
60 points from experiment 1). Digital photographs were taken of the same points. These data were used for training and verifying the tiller
density estimation model for the entire Xiaotangshan wheat growing area; data from 20 points were used for validating subsequent
observations. Four Sentinel-2 scenes were acquired during the period of these field measurements (November 16 to December 10).
(Note: The field measurements were carried out four separate times to coincide with the satellite transits, but due to weather conditions, the
field experiments could not be performed at the same time as the Sentinel-2 transits; however, the time difference was not more than two
days on any occasion.)

Xiongan study site: validation

3
Nov
2020

Within the area of the winter wheat crop area marked in Figure 1A, manual measurements of the tiller density were made at 23 points (the
pink points in Figure 1A) during the period November 7 to November 9. These data were subsequently used for verifying the accuracy of
the extended model that was developed in experiment 2. Sentinel-2 satellite data from November 8 were also acquired to coincide with the
time of this experiment.
Before constructing the estimation model based on the vegetation indices and tiller density values, 12 vegetation indices (Table 2) were first considered. These indices were based on the
vegetation structure (e.g., the leaf area index, canopy depression, green biomass, or species) or on biochemical parameters (e.g., chlorophyll or other pigments and nitrogen), which were
calculated based on the remote sensing data obtained in the previous treatments. The 12 vegetation indices chosen were all broad-band vegetation indices with no hyperspectral vegetation
indices to compare the accuracy of hyperspectral and multispectral data results. The tiller density estimation model was constructed using the red, green, blue, and near-infrared bands of the
hyperspectral data that had been shown to have the highest correlation with the tiller density. Calculations for Table 2’s vegetation indices utilized hyperspectral data at wavelengths of 458
nm, 492 nm, 750 nm, and 740 nm, respectively.
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criterion function, the feature selection process determined the

amount of tiller density information contained from the

complete set of vegetation index samples; the redundant

vegetation indices were then eliminated one at a time until the

final subset of vegetation indices containing the necessary

number of features was obtained. The selected vegetation

indices were then used as inputs for training the tiller density

estimation model.

The tiller density was extracted from the digital images of

winter wheat gathered at Xiaotangshan that were described in

Table 1. Each image consisted of measurements of the tiller

density together with coordinate data. The images were first

filtered to remove any blurred images; a total of 2600 JPG images

were saved in a 1024 × 1024 × 3 RGB format. The remaining

2400 images were cutted and cropped to an 8:1:1 ratio for later

use in training and validation. For transfer learning, PyTorch

Hub’s DenseNet pre-training model (https://pytorch.org/hub/)

was used. For this, the batch size was set to 8 and the learning

rate was initially set to 0.01; Adam was chosen as the optimizer,

the L2 regularization coefficient was set to 0.00005, the

exponential decay rate of first-order moment estimation was

set to float between 0.9 and 0.99, and the exponential decay rate
Frontiers in Plant Science 05
of second-order moment estimation is set to 0.999. The tiller

density extraction model of digital photos is finally obtained by

monitoring MRE for 5 consecutive training rounds without

further decline to set Early Stopping to prevent model

overfitting. Then using the model to extract the tiller density

for subsequent labeling of the relationship between vegetation

index and tiller density.
2.2 Method for estimating the tiller
density of winter wheat

The filtered vegetation index features were used as the input

of the machine learning model. Five classical models were

chosen for the machine learning method: Ordinary Least

Squares (OLS), Support Vector Machine (SVM), Random

Forest (RF), Gradient Boosting Regression Tree (GBRT), and

Extreme Gradient Boosting (XGBoost). The samples of observed

tiller density (the black points shown in Figure 1B) were

randomly separated into training and verification sets in the

ratio 8:2 for five-fold cross-validation; the labels consisted either

of manually measured values of the tiller density or values that
TABLE 2 Summary of vegetation indexes selected for use in this study.

Vegetation Index Definition Features Reference

Vegetation structure

DVI (Difference Vegetation Index) rnir−rred Estimated vegetation leaf area index Clevers, 1986

EVI (Enhanced Vegetation Index)
2.5×(rnir−rred)/(rnir
+6×rred−7.5×rblue+1)

Capable of improving the sensitivity of estimates of the vegetation leaf area
index, biomass, and water content in areas with high biomass

Huete et al., 2002

MSR (Modified Red-Edge Simple Ratio
Vegetation Index)

rnir
rred

− 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
( rnir
rred

+ 1)
q Linear correlation with vegetation parameters is higher than for the RDVI

Chen, 1996;
Haboudane et al.,
2004

MTVI (Modified Triangular Vegetation
Index)

1.2×(1.2×(rnir−rgreen)
−2.5×(rred−rgreen)

Sensitive to the leaf area index; suitable for leaf area index estimation
Haboudane et al.,
2004

NDVI (Normalized Difference Vegetation
Index)

rnir − rred
rnir + rred

Better response to changes in green biomass; gives improved results for
medium- and low-density vegetation

Rouse et al., 1974

NGRDI (Normalized Green Red Difference
Vegetation Index)

rgreen − rred
rgreen + rred

Minimizes atmospheric effects on estimates of green vegetation Gitelson et al., 2002

SR (Simple Ratio Vegetation Index) rnir
rred

Similar to the NDVI Jordan, 1969

OSAVI (Optimized Soil-Adjusted
Vegetation Index)

(1 + 0:16)(rnir − rred)
rnir + rred + 0:16

More sensitive than the SAVI at the canopy scale and more suitable for
agricultural applications

Rondeaux et al.,
1996

RGD (Red Green Difference Vegetation
Index)

rred−rgreen Can be used for estimating vegetation cover Sanjerehei, 2014

WDRVI (Wide Dynamic Range Vegetation
Index)

0:1� rnir − rred
0:1� rnir + rred

Capable of providing better estimation results for the leaf area index,
biomass, and vegetation cover than the NDVI

Gitelson, 2004

Biochemical parameters

MCARI (Modified Chlorophyll Absorption
in Reflectance Vegetation Index)

1.2×(2.5×(rnir−rred)
−1.3×(rnir−rgreen)

Capable of responding to changes in chlorophyll and estimating the
chlorophyll uptake

Daughtry et al.,
2000

RDVI (Renormalized Difference Vegetation
Index)

rnir − rredffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(rnir + rred)

p Capable of quantifying changes in a wide range of chemicals in vegetation;
can be applied to a wide range of values of the leaf area index

Roujean and Breon,
1995
These 12 vegetation indices data also needed to be filtered using the Backward Feature Selection (BFS) method with the Bayesian Information Criterion (BIC) (Burnham and Anderson,
2002) as the criterion for removing redundant features before they could be used as inputs to the tiller density estimation model. The BIC was calculated as
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had been extracted from the digital photographs. The

hyperparameters of the five models, including n estimators,

max depth, min samples split, min samples leaf, and max

features, were inputted in dictionary form. And the

GridSearchCV method was used to adjust the hyperparameters

before the optimal hyperparameter values were output. The best

model was selected that gave the highest accuracy when applied

to the verification set. The correlation coefficient, r, and mean

relative error (MRE) were used to determine an evaluation index

that described the accuracy of the tiller density estimation

model. The p-value was also used as a measure of the

accuracy, and only models with p< 0.05 were selected. This

helped to guarantee that the results were statistically significant

and could minimize overfitting caused by the small sample

numbers. The correlation coefficient and MRE were calculated

as follows:

r =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −o

 yi − yið Þ2

o yi − eyið Þ2
s

(2)

MRE =
1
mo

m

i

yi − yi
yi

� 100%

���� ���� (3)

t =
r

ffiffiffiffiffiffiffiffiffiffiffi
m − 2

pffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p (4)

Here yi is the predicted value, yi is the true value, and m is the

number of samples, t is the t-distribution; the p-value was obtained

from the t-distribution corresponding to the correlation coefficient.

The correlation coefficient was used to determine the model fitting

regression effect: the closer the value of this was to 1, the better the

regression effect. The MRE is defined as the average ratio of the

absolute error of the measurement to the actual measurement. the

smaller the value of this, the better the model. The p-value is a
Frontiers in Plant Science 06
measure of the probability and gives the likelihood of an event

occurring: generally p< 0.05 means a statistical difference, p< 0.01 is

a statistically significant difference, and p< 0.001 is an extremely

significant difference.
3 Results and discussion

3.1 Results of tiller density estimation
under different experimental conditions

3.1.1 Tiller density values obtained by different
machine learning methods

Based on the UAV hyperspectral data and the Sentinel

multispectral data from the same site in Xiaotangshan

(marked as the blue box in Figure 1B), the vegetation indices

listed in Table 2 were calculated and then filtered. After filtering,

the indices MCARI, RDVI, and WDRVI were obtained from the

hyperspectral data, and NDVI, DVI, MCARI, MSR, RGD, RVI,

and WDRVI were obtained from the multispectral data.

Estimation models were then built using different machine

learning models based on the manually measured values of the

tiller density. Predictions of the tiller density for the same area

were then made, and the spatial distribution of these values was

obtained, as shown in Figure 2 (The results for the RF and GBRT

methods are shown here; the hyperspectral data were resampled

to 10 m using the nearest neighbor method to facilitate

comparison with the multispectral data.). The estimation

results of the hyperspectral image are more compatible with

the actual spatial distribution of tiller density than those of

multispectral images for the various types of remote sensing

data. The estimation results of GBRT are more compatible with

the actual spatial distribution of tiller density for the same type of

remote sensing data as those of RF (Figure 2).
B C DA

FIGURE 2

Spatial distribution of tiller density estimated using hyperspectral and multispectral data: (A) results for RF model applied to hyperspectral data,
(B) results for GBRT model applied to hyperspectral data, (C) results for RF model applied to multispectral data, and (D) results for GBRT model
applied to multispectral data.
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Next, the verification dataset was used to verify the accuracy

of the tiller density estimation. The results for the GBRT model

were found to have the highest accuracy among the results for

the hyperspectral data (r = 0.90 and MRE = 5.46% for the

training set (see Figure 3D) and r = 0.86 and MRE = 6.46% for

the verification set) (see Figure 3I). The results for the XGBoost

model (see Figures 3E, J) had the greatest relative error up to 0.03

compared to those for the GBRT model, and the correlation

coefficient for the training set was lower than the GBRT model.

A comprehensive analysis also showed that the fitting effect was

inferior to that for GBRT. The RF (see Figures 3B, G), SVM (see

Figures 3C, H), and OLS (see Figures 3A, F) models performed

much worse on the training set than the GBRT. The results for

the RF model showed significant overfitting when the sample
Frontiers in Plant Science 07
numbers were minimal because this model uses the average

value at the root node as the outcome (see Figures 3B, G).

Among the results for the multispectral data, the results of

the GBRT model had the highest accuracy (r = 0.88 and MRE =

7.71% for the training set and r = 0.64 and MRE = 8.95% for the

verification set). The XGBoost model results were poorer than

those for the GBRT, with a relative error of 0.01–0.015, a lower r-

value, and an inferior fitting effect, and the accuracy of the RF,

SVM and OLS models was significantly lower than that of the

GBRT. In particular, although the OLS method produced results

with good accuracy for the training set (r = 0.70, MRE = 9.91%),

validation with the verification set produced results that deviated

greatly from the observed value. The fitting effect was also very

poor, and serious overfitting occurred; the scatter plot for the
B C D E

F G H I J

A

FIGURE 3

Accuracy of tiller density estimates based on the UAV hyperspectral data: (A–E) show the regression results for applying, respectively, the OLS,
RF, SVM, GBRT, and XGBoost models to the training set; (F–J) show the regression results for the applying the same five models to the
validation set.
B C D E

F G H I

A

FIGURE 4

Accuracy of tiller density estimates based on Sentinel-2 data: (A–E) are the regression results obtained by applying, respectively, the OLS, RF,
SVM, GBRT, and XGBoost models to the training set; (F–I) are the results obtained by applying, respectively, the RF, SVM, GBRT, and XGBoost
models to the validation set. (The results for the OLS model could not be fitted and no results for the accuracy were obtained.).
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verification set is therefore not shown in Figure 4. The results for

the RF method also showed serious overfitting (see

Figures 4B, F).

3.1.2 Tiller density estimates based on different
sample numbers

The experimental area was then expanded to include the

whole of the wheat crop area at Xiaotangshan base shown in

Figure 1B. Based on the Sentinel multispectral data, values of the

vegetation indices were again calculated and filtered. The

selected vegetation indices were the NDVI, DVI, MCARI,

MSR, RGD, RVI, and WDRVI. Tiller density estimation

models based on different machine learning models were then

built. The spatial distribution of the tiller density was again

obtained using these models. Figure 5 shows the results obtained

using the RF and GBRT models.

In terms of the spatial distribution, the results obtained using

the RF model are more uniform than the other four models and

correspond better to the actual situation. The GBRT model

results are more random; there are also large differences between

neighboring tiller density values in the same region.

The results for the model accuracy obtained using the

verification dataset are shown in Figure 6. It can be seen that,

in this case, the model with the best accuracy is the RF model: for

the training set the results are r = 0.85 and MRE = 10.25%, and

for the verification set they are r = 0.66 and MRE = 14.13%.

Among the other four models, the GBRT model performed
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slightly worse than the RF model on both the training and

verification sets. The relative errors for the other three models –

OLS, SVM, and XGBoost – have increased as a result of the

larger number of samples, and the values of the accuracy are

significantly lower than for the RF model. (The total number of

samples, in this case, was 400; these were divided into training

and verification sets using a ratio of 8:2). The experimental area

was also larger.

The results show that, for both the hyperspectral and

multispectral datasets, when the number of data is less than

140 or so, models which are based on the boosting concept, such

as GBRT and XGBoost, work best. Models that are based on the

bagging concept, such as RF, perform less well due to the

influence of outliers, as this leads to a concentration of values

in the results. The SVM model, which maps the data from linear

to nonlinear using kernel functions, is also affected by this

problem to some extent. The OLS model is completely

unsuitable for nonlinear fitting with a large number of

features. If the sample number is greater than 140 or so, the

RF model outperforms the GBRT model in terms of estimation

accuracy because the RF model is sensitive to excessively

unstable conditions when the sample numbers are small and

cannot effectively reject outliers, resulting in overfitting. In

contrast, the serial structure of the GBRT model avoids this

situation when the sample numbers are small. When the number

of samples increases to more than 140 or so, the RF model

performs better due to good noise immunity (see Figure 7).
FIGURE 5

Images showing the spatial distribution of tiller density estimates obtained using Sentinel multispectral data of the whole Xiaotangshan wheat
growing area: (A) RF model results, and (B) GBRT model results.
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3.1.3 Tiller density estimates based on different
types of samples

In the next experiment, the whole wheat planting area at the

Xiaotangshan base was again used. This time, however, the tiller

density values were extracted from the digital photos and

manually counted data. For the manually counted samples, the

vegetation indices MCARI, EVI, RDVI, OSAVI, and DVI were

used; the MTVI, RGD, EVI, RDVI, and OSAVI were used for the

digital photographs. In Section 3.1.2, it was shown that the RF

model is the most accurate when the sample number was greater

than 140 or so. Therefore, a tiller density estimation model based

on the RF model was built and then validated using the

independent validation set (the pink points in Figure 1B).

Based on the manually counted values, a value of r = 0.80 was

obtained with a relative error of 8.66%; for the values extracted
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from the digital photographs, the value of r was 0.85 and the

relative error was 8.98%. In both cases, p< 0.001, meaning that

the results were statistically significant.

As described in Section 3.1.2, if more than around 140

samples were used, the accuracy of the RF model increased.

Therefore, the independent validation set was used to validate

the tiller density estimation model based on the RF model. The

results for both the manually counted values and the digital

photograph values were statistically significant (p< 0.001); the

relative errors were 8.66% and 8.98%, respectively.

It can be concluded that tiller density extracted from digital

photographs can be used in place of manually counted values as

the accuracy of the estimates based on the two sets of data was

similar. This would increase the effectiveness of sample

collection and reduce errors due to subjective human judgment.
3.2 Analysis of the results obtained by
applying the model to a larger area

In this section, the random forest tiller density estimation

model established in Section 3.1.2 utilizing plot-scale sample

data from the Xiaotangshan study site was extended to the

Xiongan winter wheat crop area for use, and the same seven

vegetation indices NDVI, DVI, MCARI, MSR, RGD, RVI, and

WDRVI were used to predict the winter wheat tiller density

in Xiongan.

The estimated tiller densities obtained in this way are shown

in Figure 8. These results distinguish better between different

densities than the other four models, and the corresponding tiller

densities within the same plot of land are more uniform. Even the

boundaries been plots can be approximately identified, which may

be because uniform sowing is used for planting in large fields.

Most of the estimated values are in the range of 235–275 tillers/

m2; values of 240–270 tillers/m2 correspond to about 160,000–
B C D E

F G H I J

A

FIGURE 6

Accuracy of tiller density estimates based on Sentinel-2 data for the whole Xiaotangshan study area: (A–E) are the regression results for,
respectively, the models OLS, RF, SVM, GBRT, and XGBoost for the training set; (F–I) are the regression results for the same five models for the
validation set.
FIGURE 7

The variation in the mean relative error of RF (cyan) and GBRT
(red) estimation results with increasing sample size on the
validation set.
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180,000 tillers per acre, which is in agreement with the 120,000–

180,000 tillers per acre used when sowing (see Figure 9).

Validation of the Xiongan results using the ground

validation points (the pink points in Figure 1A) gave a

statistically significant value of r of 0.65 and a relative error of

8.58% with p< 0.001. The same model was also validated as

statistically significant using other validation points (the pink

points shown in Figure 1B) at the Xiaotangshan research site (r =

0.84, MRE = 6.58%, p< 0.001) (see Figure 10).
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In conclusion, the validation results of both spatial

distribution and ground observed values two ways,

demonstrate that the plot-scale tiller density estimation model

obtained using data from the Xiaotangshan study site can be

extended to the county scale. Although the validation of the

results showed that the accuracy of the Xiongan results was

lower than that of the Xiaotangshan results, the relative error

was still less than 10%, which is sufficient for making estimates of

the tiller density of winter what over large areas based on satellite

remote sensing data.
3.3 Comparison and analysis with other
tiller density estimation methods

The tiller density estimation method developed in this study

was primarily based on the spectral features of remote sensing

data, and quantitative estimates that benefitted from the

advantages of machine learning methods as applied to

nonlinear regression were obtained using multiple vegetation

indices after feature selection. In contrast, the traditional

approach to tiller density estimation is generally based on the

high degree of correlation between NIR bands and the tiller

density and uses regression based on a single vegetation index

(Flowers et al., 2001; Flowers et al., 2003). The results obtained in

this way are often biased (relative error > 20%) (Scotford and

Miller, 2004), and the generalizability of the method is poor due

to the limited applicability of the chosen vegetation index. For

example, the NDVI does not fully reflect the wheat tiller density

in situations where the leaf area index is particularly high or low

or where the amount of cover is high; the sensitivity of the RVI
FIGURE 8

Estimated values of the tiller density based on values extracted
from manually counted data (cyan) and digital photographs (red).
FIGURE 9

Estimated values of the tiller density obtained by extending the
RF model to the Xiongan winter wheat crop area.
FIGURE 10

Comparison of the tiller density estimates at Xiaotangshan (cyan)
and in the Xiongan study area (red) with another validation
dataset.
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decreases significantly when the vegetation cover is below 50%

and thus does not fully reflect the number of wheat tillers (Wu

et al., 2022). To address these problems, in this study, multiple

vegetation indices were used to complement each other to meet

the accuracy requirements of precision agriculture.

Whether based on 2D RGB images or 3D point cloud data,

the results of tiller density estimation based on an image

segmentation model are susceptible to the influence of the

wind as well as the lighting conditions (Roth et al., 2020). The

resolution of the 2D RGB images also needs to be high (Jin et al.,

2017). Both types of data are mainly captured by UAVs or

handheld cameras. This can lead to errors associated with the

chosen sampling location selection as a result of spatial

heterogeneity (Liu et al., 2017), meaning that the acquired data

can only be applied at the scale of an individual plot of land.

It has been shown that our method meets the accuracy

requirements to estimate tiller density using high-resolution

remote sensing data and can be used to obtain complete maps

of the spatial distribution of the tiller density within an

individual plot, which is something that methods based on

image segmentation cannot do. It has also been shown that

the proposed method can be extended to larger-scale tiller

density estimation and monitoring, thus taking full advantage

of the ability of remote sensing to quickly provide data covering

large areas and potentially aiding more accurate fertilizer

application and yield estimation.

In addition, this study has also provided a preliminary

demonstration of the feasibility of using digital photographs

instead of manual counting. In the future, the use of accurate

values of the tiller density extracted from digital photographs

could be extended to larger samples to achieve low-cost

estimates of the spatial distribution of the tiller density at large

spatial scales, something which has not been considered in

previous studies.
3.4 Analysis of factors affecting the
accuracy of the tiller density estimation

3.4.1 Relationship between the tiller density
and the type of remote sensing data

According to the results presented in Section 3.1.1, for all

five machine learning methods that were tested, the tiller density

estimates based on the hyperspectral data were more accurate

than those based on the multispectral data. This was primarily

due to the hyperspectral data’s high spectral resolution and the

large number of bands, which allowed vegetation indices to be

constructed using the bands that were correlated most strongly

with the tiller density. Other vegetation indices could be used as

well as the narrow-band indices that were used in this study

(Borengasser et al., 2007). However, the central wavelengths of
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the bands of the Sentinel data were marginally less well

correlated with the tiller density than the hyperspectral data

were, which led to the lower accuracy of the results for the

multispectral data.

3.4.2 Relationship between the tiller density
and vegetation indexes

As described in Section 3.1, the features selected from

hyperspectral data were the MCARI, RDVI, and WDRVI, the

features selected from the Sentinel data were the NDVI, DVI,

MCARI, MSR, RGD, SR, andWDRVI, the features selected from

the manual measurements were the MCARI, EVI, RDVI,

OSAVI, and DVI, and the features selected from the values

extracted from the digital photographs were the MTVI, RGD,

EVI, RDVI, and OSAVI. These vegetation indices are mainly

related to vegetation parameters such as chlorophyll content, leaf

area index, vegetation cover, and aboveground biomass. The

vegetation indices related to the leaf area index and vegetation

cover are the most frequent, which is a crucial measure of crop

growth (Xing et al., 2021). The strong correlation between the

vegetation indices that reflect the chlorophyll content of the

wheat canopy surface (such as the NDVI) and the tiller density

has been demonstrated in previous studies, (Flowers et al., 2001;

Flowers et al., 2003). This is reflected in how the tiller density

affects the value of the leaf area index and the canopy density

(Bates et al., 2021). Changes in the canopy density also cause

changes in the vegetation cover, which means that the tiller

density can be estimated from the vegetation cover: this is

consistent with the observation of a strong correlation between

the vegetation cover and plant density in wheat. (Wang et al.,

2020; Wu et al., 2022).

Although these vegetation indices may be linearly correlated

with each other, it is still possible to estimate the tiller density

from them thanks to the ability of machine learning to handle

covariance problems (Liang et al., 2015). Therefore,

consideration should be given to the use of vegetation indices

related to vegetation cover when selecting which indices to use

for estimating tiller density.

3.4.3 Relationship between tiller density
and texture

Texture, another important class of features that can be used

for the inversion of vegetation parameters, is widely used with

machine learning inversion methods such as AGB (Yue et al.,

2019). In this study, based on the grayscale coevolution matrix

(GLCM), we also attempted to calculate eight image texture

features for four different bands: mean, variance, homogeneity,

contrast, dissimilarity, entropy, second-order moments, and

correlation (Yue et al., 2019). Together with the vegetation

index, these features were filtered based on the BIC criterion

using the BFS method; it was found that the vegetation index
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contained the most information about the tiller density while the

image texture features contained little information. For both the

UAV and Sentinel-2 data, the EVI and the other vegetation

indices that made use of the NIR bands ranked highly in terms of

tiller density information content, which is consistent with the

findings of Flowers et al. (Flowers et al., 2001; Flowers et al.,

2003; Scotford and Miller, 2004). The reason for this may be that

the tiller density at tillering stage is a relatively microscopic

feature: the individual tillers overlap each other, which makes

them difficult to distinguish with the naked eye, and an

extremely high spatial resolution (e.g., 0.02 cm) is required to

extract information using machine vision methods (Liu et al.,

2018). The resolution of the data used in this study did not meet

this requirement. However, as the tiller density increases, the

canopy density and the amount of cover change, which also

affects the spectral features (the reflectance in the near-infrared

band increases). The vegetation indices can amplify this effect,

thus making more tiller density information available and better

estimates possible.
4 Conclusion

In this study, we attempted to estimate the tiller density of

winter wheat at the tillering stage based on a combination of

multiple remotely sensed vegetation indices and using machine

learning models.
Fron
(1) Under all experimental conditions, the relative error in

the estimates of the tiller density was in the range of

5.46%–12.97% for the hyperspectral data and 7.71%–

13.15% for the multispectral data. The estimates based

on the hyperspectral data were thus more accurate, and

in both cases, the relative error was less than 10%, which

is the usual level of accuracy required.

Based on the results of this study, tiller density can be

extracted from digital images instead of by manual

counting during ground sampling as the results for the

tiller density obtained in this way were just as accurate as

those based on the manual method.

(2) The application of this machine learning model for

estimating the tiller density of winter wheat based on

plot-scale samples could be extended to the county scale

and still meet the requirement of having a relative error

of less than 10% although the results may be affected by

the spatial heterogeneity of the wheat.

Among the different methods that were tested, the random

forest and gradient boosting tree methods gave the most
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accurate results. The gradient boosting tree is most

suitable for sample numbers less than around 140; the

random forest is suitable for sample numbers greater

than around 140 or with outliers.

(3) Vegetation indices associated with the vegetation cover

and leaf area index are suitable for use as features for

estimating the winter wheat tiller density. The texture

features in remote sensing imagery contain almost no

information on the winter wheat tiller density and are

hence not a suitable basis for making estimates of the

tiller density.
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