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Flue-curing of top leaves with stems is a widely applied curing technology.

Owing to the presence of stems, the quality of flue-cured leaves was

significantly improved. However, the contribution of stems to flue-cured

leaves is still unknown. In this study, the differences in physicochemical

properties and metabolomics data between separated leaves (stem(-)) and

leaves with stems (stem(+)) were investigated. The metabolic profiling of stem

(+) was significantly different from that of stem(-), with phytohormone indole-

3-acetic acid (IAA) being one of the most differential metabolites. The presence

of stems reduced the rate of water loss in leaves, which led to less ROS

accumulation, higher antioxidant enzyme activities and a lower level of

membrane lipid peroxidation in stem(+) than in stem(-). The presence of

stems also helped maintain the cellular membrane integrity of leaf cells by

preventing the accumulation of IAA in leaf cells. Better cellular membrane

integrity during flue-curing means a lower risk of leaf browning. In addition,

stem(+) had a lower starch content than stem(-) because of a higher level of

amylase activity. In summary, these results indicated that the presence of stems

caused metabolism changes in leaves, prevented flue-cured leaves from

browning and enhanced starch degradation in leaves during flue-curing.

KEYWORDS
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Introduction

Flue-cured tobacco is an important economic crop. After being harvested from the field,

tobacco leaves are subjected to specific flue-curing processing, during which some complex

physiological and biochemical reactions occur in flue-cured leaves. Therefore

physicochemical properties of tobacco leaves and the curing method are vital factors in
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determining flue-cured leaf quality (Chen et al., 2019; Zong et al.,

2020; Li et al., 2021). Based on the position of leaves on plants,

tobacco leaves were divided into top leaves, medium leaves and

bottom leaves. Compared with medium and bottom leaves, top

leaves have low moisture and high dry matter content and are

accessible to browning during flue-curing. Besides the flue-cured

top leaves are of poor sensory quality and appearance quality. Top

leaves were once considered to be of low economic value. Recently,

it was found that if top leaves were flue-cured with stems, browning

reaction seldom occurred during flue-curing and flue-cured leaves

quality was significantly improved. In this situation, flue-cured

leaves were lustrous, elastic, rich in oil and of good aroma quantity,

full aroma quality, weak offensive odor and comfortable lingering

smell. Flue-curing of top leaves with stems has been widely applied

in production. However, the underlining mechanism of the

contribution of stems to top leaves is still unknown.

The chemical composition of flue-cured tobacco leaves is very

complex, in which thousands of chemical compounds have been

identified (Kaiser et al., 2018). Flue-cured tobacco leaf quality is

highly related to chemical compositions (Talhout et al., 2006).

Therefore, it is necessary to study the influence of different curing

methods on flue-cured tobacco leaf quality by quantifying

important compounds related to quality. Generally, it is

unrealistic to quantify and determine each compound in separate

measurements. That is time and cost-consuming. Metabolomics is

a technique for large-scale detection of allmetabolites in a biological

system, like whole organisms, tissues, or individual cells.

Metabolomics study includes targeted metabolomics, untargeted

metabolomics, and widely targeted metabolomics. Widely targeted

metabolomic analysis is a novel approach combining non-targeted

and targetedmetabolomics advantages (Chen et al., 2013). It has the

characteristics of high throughput, ultra sensitivity, wide coverage,

and accurate qualitative and quantitative analysis. Metabolomics

has been used to characterize the quality and composition of flue-

cured tobacco leaves under different conditions (Zhao et al., 2014;

Zhao et al., 2018;Hu et al., 2021).However, the influence of stem on

metabolic profiling of flue-cured tobacco leaves has not yet

been reported.

The flue-curing process is divided into three stages:

yellowing stage, leaf drying stage and stem drying stage. In the

yellowing stage, macromolecular substances are decomposed

into small molecule substances to form aroma precursors. The

yellowing stage is crucial for improving flue-curd leaves

characteristics and the critical stage of flue-cured leaves

appearance quality formation. During the yellowing stage,

separated top leaves changed easily from yellow to brown,

severely reducing the flue-cured leaves’ quality. In this study,

we investigated the contribution of stems to the quality of flue-

cured top leaves by analyzing the differences in physicochemical

properties and metabolomics data between separated leaves and

leaves with stems. Leaf samples were collected at the end of the

yellowing stage. Metabolomics analysis was performed with the

widely targeted method. Based on the MWDB database, more
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than 3000 metabolites could be determined in a measurement.

Our results will provide a theoretical basis for further optimizing

the flue-curing technology of top leaves.
Materials and methods

Materials

Tobacco genotype “Yunyan87” was seeded in seedling trays

in a greenhouse. The 50-day-old seedlings were then

transplanted into fields located in Yunnan, China (98°68′E,
24°56′N) on 20 April 2021. Pure nitrogen at 105 kg/ha was

applied in the field period and fertilizer at N: P2O5: K2O (1:1:2.5)

was applied. 50% of the total amount was used as base fertiliser,

15% was used as seedling promoting fertilizer, and the other 35%

was additional fertilizer. At the time of top pruning (9 July 2021),

tobacco plants’ apical buds were removed, and 15 to 16 leaves

per plant were left. At the maturing stage (5 September 2021),

the top five leaves with stems were harvested. Two groups of

flue-cured samples (leaf with stem, stem(+), and leaf without

stem, stem(-)) were prepared. Stem(+): Leaves with stems were

flue-curd. After curing, stems were separated from leaves, with

leaves be ing used for fur ther metabonomics and

physicochemical analysis. Stem(-): Stems were separated from

leaves before flue-curing. Only leaves were flue-cured and used

for further metabonomics and physicochemical analysis.

Additionally, the fresh leaves (stems were removed) were also

used as the control sample (CK). Three biological replicates were

generated for each group of samples (9 samples in total). The

flue-curing procedure is shown in Figure 1.

The samples of tobacco leaves were collected at the end of

the yellowing stage. After removing the main vein, leaves were

put in liquid nitrogen immediately and then transferred to the

-80°C fridge for further analysis.
Physicochemical analysis

Moisture content of tobacco leaves
To determine moisture content of leaves, 10 leaves from each

group were weighed immediately after harvest (fresh weight,

FW). Then the leaves were dried in the oven at 70°C for 24 h to

obtain dry weight (DW). Moisture content was calculated using

the following formula.

Moisture content = (FW − DW)=FW � 100
H2O2, O2-, MDA and starch contents
H2O2, O2-, MDA and starch contents were determined with

commercially available assay kit (Suzhou Comin Biotechnology

Co., Ltd., China).
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https://doi.org/10.3389/fpls.2022.1074029
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Meng et al. 10.3389/fpls.2022.1074029
Enzyme activities
Activities of superoxide dismutases (SOD), catalase (CAT),

glutathione reductase (GR), polyphenol oxidase (PPO) and total

amylase were determined with commercially available assay kit

(Suzhou Comin Biotechnology Co., Ltd., China).

Widely targeted metabolomics analysis
Leaf samples (stem(+), stem(-) and CK) were vacuum freeze-

dried andmilled. Then, 100 mg lyophilized powder was extracted

with 1.2 mL 70% methanol, vortexed for 30 s every 30 min for 6

times in total, and stored at 4°C overnight. Following

centrifugation at 10,000 rpm for 10 min, the supernatants were

filtrated through a 0.22 mm membrane. Finally, sample extracts

were analyzed using a UPLC-ESI-MS/MS system (UPLC,

SHIMADZUNexera X2;MS, Applied Biosystems 6500QTRAP).

Column (1.8 mm, 2.1 mm × 100 mm, Agilent SB-C18);

solvent system, water (0.1% formic acid) and acetonitrile (0.1%

formic acid); gradient program, 95:5 v/v at 0 min, 5:95 V/V at 9

min, hold for 1 min, 95:5 v/v at 11.1 min, hold for 2.9 min; flow

rate, 0.35 mL/min; column temperature, 40°C; injection volume,

2 mL. The effluent was alternatively connected to an ESI-triple

quadrupole-linear ion trap (Q TRAP)-MS.

Linear ion trap (LIT) and triple quadrupole (QQQ) scans

were acquired form the Applied Biosystems 6500 Q TRAP

UPLC/MS/MS System, which was equipped with an ESI Turbo

Ion-Spray interface. Positive and negative ion modes are

operated by Analyst 1.6.3 software (AB Sciex). The ESI source

operation parameters were as follows: ion source, turbo spray;

source temperature, 550°C; ion spray voltage (IS), 5500 V

(positive ion mode)/-4500 V (negative ion mode); ion source
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gas I (GSI), gas II (GSII), curtain gas (CUR) were set at 50, 60,

and 25.0 psi, respectively; the collision-activated dissociation

(CAD) was set to high. Instrument tuning and mass calibration

were performed with 10 and 100 mM polypropylene glycol

solutions in QQQ and LIT modes, respectively. QQQ scans

were performed through multiple reaction monitoring (MRM)

model, with collision gas (nitrogen) set to medium. Declustering

potential (DP) and collision energy (CE) for each MRM

transition were determined through optimization. A specific

set of MRM transitions were monitored for each period,

according to the metabolites eluted within this period.

Qualitative and quantitative analysis
Metabolites were identified based on the Metware database

(MWDB) created by MetWare Biotechnology Co., Ltd. (Wuhan,

China) using secondary mass-spectrometry data. The

interference from isotope signals, duplicate signals of K+, Na+,

and NH+
4 ions, as well as duplicate signals of fragment ions

derived from other larger molecules, were excluded.

Metabolites were quantified using the MRM model of QQQ

mass spectrometry. InMRMmode, the quadrupole firstly searched

for precursor ions (parent ions) of target substances to eliminate the

interference from the ions derived from substances of different

molecular weights. The precursor ions were then fragmented via

induced ionization in the collision chamber into many fragment

ions, from which a characteristic ion was selected. Using

characteristic ions eliminated the interference from non-target

ions and made more precise and repeatable quantification results.

When metabolite mass spectrometry data were obtained for

different samples, mass spectrum peaks of all metabolites were
FIGURE 1

Flue-curing method.
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subjected to area integration. Themass spectrum peaks of the same

metabolite in different samples were subjected to integration

correction. The relative quantity of a metabolite was represented

by the area of its corresponding mass spectrum peak.

Multivariate statistical analysis
Principal component analysis (PCA) analysis was performed

using the Clustvis tool (Metsalu and Vilo, 2015). Orthogonal partial

least square-discriminant analysis (OPLS-DA) was generated using

the R packageMetaboAnalystR. To avoid overfitting, a permutation

test (200 permutations) was performed. Boxplot, heatmap and

clustered dendrogram were drawn using the R package.

Differential metabolite analysis
Two screening criteria for differential metabolites were

established: p-value< 0.05; variable importance in projection

(VIP) was≥ 1. VIP values were extracted from theOPLS-DA result.
Results and discussion

Effect of stem on tobacco leaves metabolome
Metabolome analysis offlue-cured tobacco leaves was carried

out based onwidely targetedmetabolomics analysis using the self-

built database MWDB. Totally, 1236 metabolites were identified

in flue-cured tobacco leaves, with 1213 and 1234 metabolites

being identified in stem(+) and stem(-), respectively. The

quantities of metabolites were subjected to hierarchical

clustering (Figure 2A) and PCA analysis (Figure 2B). They both

showed two distinct groups corresponding to stem(+) and stem(-)

samples, respectively. Stem(+) and stem(-) were clearly separated

by the first component (PC1: 40.86% variance explained). There

was obviously distinct grouping of the samples based on whether

to reserve stems. To evaluate the metabolic alteration caused by

the presence of stems, OPLS-DAwas performed. As shown in the

OPLS-DA score plot, stem(+) and stem(-) were well separated.

The model parameters were R2X = 0.567, R2Y = 0.999, and Q2 =

0.8 (Figure 2C). 160metabolites significantly differed (VIP ≥ 1, p<

0.05) between stem(+) and stem(-). Compared with stem(+), 126

metabolites were up-regulated and 34 were down-regulated

(Figure 2D). Sinapic acid was the most up-regulated metabolite

between stem(+) and stem(-) (Figure 2E). Indole-3-acetic acid

(IAA) was the second most differential metabolites, which was

abundant in stem(-) but did not exist in stem(+). 3-

deoxysappanchalcone was the most down-regulated metabolite,

followed by p-coumaric acid ethyl ester.

Effect of stem on the moisture content of
tobacco leaves

During flue-curing, tobacco leaves were dehydrated. At the

end of the yellowing stage, the leaf moisture content decreased

significantly from 75.17% in CK to 62.82% and 50.37% in stem
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(+) and stem(-), respectively (Figure 3). This result agreed with a

previous study that the presence of stem could reduce leaves’

water loss during the withing process (Zeng et al., 2017; Wei

et al., 2018). In our study, stem(+) and stem(-) were processed by

the same curing method with the only difference being whether

leaves were processed with stems. The moisture content

decreased more slowly (p< 0.05) in stem(+) than in stem(-),

because water migrated from the stem to the leaf via the midrib

during flue-curing (Wei et al., 2018), which reduced the

dehydration rate of tobacco leaves.

Effect of stem on H2O2 content, O2- content in
tobacco leaves

During flue-curing, tobacco leaves were subjected to various

stresses such as heat and drought stresses. Such stresses could lead

to reactive oxygen species (ROS) accumulation at the cellular level

(Bouchard and Purdie, 2011; Petrov et al., 2015; Medina et al.,

2021). H2O2 and O−
2 are essential components of ROS (Gill and

Tuteja, 2010). Both of them significantly accumulated in flue-cured

leaves (Figure 4). Both H2O2 and O−
2 contents were significantly

higher in stem(-) than in stem(+). TheH2O2 content in stem(-) was

48% higher than that in stem(+) (Figure 4A), while the O−
2 content

was 45% higher in stem(-) than in stem(+) (Figure 4B). The

difference in ROS contents between stem(+) and stem(-) was

attributed to the difference in leaf moisture content. Our results

showed a decrease in tobacco leaf moisture content was

accompanied by increases in H2O2 and O−
2 concentrations. Such

association between ROS contents and leaf water deficit has been

observed in other species, such as maize and wheat (Khanna-

Chopra and Selote, 2007; Yao et al., 2013). The presence of stem

attenuated ROS accumulation in flue-cured tobacco leaves.

Effect of stem on SOD, CAT and GR activity in
tobacco leaves

The overproduction of ROS can cause oxidative cell damage,

directly attack membrane lipids, inactivate metabolic enzymes

and damage the nucleic acids (Mittler, 2002). Plants have

developed antioxidant defense systems to cope with the ROS

generation to maintain intracellular homeostasis, consisting of

antioxidant enzymes like SOD, CAT and GR and non-enzymatic

antioxidants like GSH.

SOD is the most effective intracellular enzymatic antioxidant,

which catalyzes the dismutation of O−
2 to H2O and O2 (Gill and

Tuteja, 2010). The SOD activity could increase under mild water

deficiency and decrease under severe water deficiency (Jiang and

Huang, 2001; Yao et al., 2013). The activity of SOD in stem(+) and

stem(-) was 81% and 93% below that in CK (Figure 4C), showing

that the combined stresses (heat stress and drought stress) during

the flue-curing process greatly limited SOD activity and impaired

O−
2 scavenging in the cell (Jiang and Huang, 2001). The SOD

activity in stem(+) was considerably higher than in stem(-),

indicating that SOD activity is proportional to leaf tissue
frontiersin.org
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moisture content under severe water deficit conditions in

tobacco leaves.

CAT dismutases H2O2 into H2O and O2 and are

indispensable for ROS scavenging during stress conditions
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(Garg and Manchanda, 2009). CAT activity could be up-

regulated, unaffected or down-regulated by water deficit (Jiang

and Huang, 2001; Pan et al., 2006; Yao et al., 2013). Like SOD,

CAT activity declined significantly in flue-cured tobacco leaves
E

D

A B

C

FIGURE 2

Metabolome analysis of tobacco leaves. (A) Heatmap of relative metabolites concentrations. The clustered dendrogram of samples was on the
top. (B) PCA score plot of metabolite profiles. (C) Score scatter plots of the OPLS-DA model for stem(+) versus stem(-). (D) Volcano plot of
differential metabolites between stem(+) and stem(-). (E) Top 20 differential metabolites between stem(+) and stem(-). FC, fold change.
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FIGURE 4

Effect of stem on ROS, antioxidant enzymes and cell integrity in flue-cured tobacco leaves. FW, fresh weight. Different letters indicate
statistically significant difference at p < 0.05, as determined by t-test.
FIGURE 3

Effect of stem on leaf moisture content in flue-cured tobacco leaves. Different letters indicate statistically significant difference at p < 0.05, as
determined by t-test.
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(Figure 4D). Compared to CK, the activity of CAT decreased by

56% and 73% in stem(+) and stem(-), respectively, which

favored the accumulation of H2O2. The CAT activity in stem

(-) was about 60% as much as that in stem(+), showing that the

decline of CAT activity increases with the degree of water deficit

in flue-cured tobacco leaves.

GR converts oxidized glutathione (GSSG) to reduced GSH,

thus helping maintain the GSH pool and reducing the

environment in the cell, which is crucial for the active

functioning of proteins (Trivedi et al., 2013). The response of

GR to stresses varied due to species variation. In Sedum album

L., GR activity increased even under severe water deficit, whereas

in turfgrasses, GR activity decreased under severe water deficit

(Castillo, 1996; Jiang and Huang, 2001). Flue-curing tended to

reduce the activity of GR in stem(+), but this effect was not

statistically significant (Figure 4E). However, flue-curing

significantly reduced the activity of GR in stem(-). Our results

showed that flue-curing inhibited the GR activity in tobacco

leaves, and the effect increased with decreasing leaf

moisture content.

Due to flue-curing, the activities of SOD, CAT and GR

decreased, which contributed to the accumulation of ROS in

tobacco cells. However, the ROS scavenging system was

relatively less damaged in stem(+), because of the higher leaf

moisture content. The presence of stems alleviated ROS

scavenging system damage in leaves, which probably led to

less ROS accumulation in stem(+).

Effect of stem on MDA content
in tobacco leaves

Accumulation of ROS can induce membrane lipid

peroxidation. MDA is the end product of membrane lipid

peroxidation and the indicator of biomembrane integrity

(Wongsheree et al., 2009). The higher the MDA content, the

more severe the biomembrane is injured. The MDA content

increased by 50% and 116% in stem(+) and stem(-), respectively,

compared to CK. The MDA content was enormously higher in

stem(-) than in Stem(+) (Figure 4F). This is because the

dehydration rate was more rapid in stem(-), leading to lower

antioxidant enzyme activities and higher ROS accumulation

(Jiang and Huang, 2001; Su et al., 2017; Zhao et al., 2022). Our

observation showed that separated leaves (stem(-)) underwent a

higher level of membrane lipid peroxidation than leaves with

stems (stem(+)) during flue-curing.
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Effect of stem on polyphenol contents in
tobacco leaves

Polyphenols are secondary metabolites produced by plants

such as tobacco. They play an essential role in determining the

flue-cured tobacco quality, principally the color and aroma of flue-

cured leaves and the odor and taste of smoke (Gong et al., 2006;

Dagnon et al., 2006). During flue-curing of separated top tobacco

leaves, however, polyphenols were easily oxidized into quinone by

PPO to form brown-colored substances, which cause cured leaf

browning and reduce flue-cured tobacco quality (Chen et al., 2021;

Zhao et al., 2022). In tobacco, polyphenols exist in the form of

glucoside and ester (Romero et al., 2004). The polyphenol contents

dramatically change during flue-curing, because of the pyrolysis

and the enzymatic degradation of the phenolic glycoside.

Chlorogenic acid, rutin, and scopoletin are major polyphenols in

tobacco leaves. Metabolome data showed that the chlorogenic acid

content and rutin content did not differ significantly among CK,

stem(+) and stem(-), whereas the scopoletin content showed an

increasing trend due to flue-curing (Table 1). The scopoletin

content was significantly higher in stem(-) than in stem(+),

suggesting that its accumulation was probably related to the

dehydration rate in tobacco leaves.

Effect of stem on PPO activity
in tobacco leaves

PPO catalyzes the oxidation of polyphenols to quinones. In

tobacco, PPO mainly exists in chloroplasts (Lax and Vaughn,

1991; Mayer, 2006). Previous studies showed that PPO activity

positively correlates with the environmental moisture content

during tobacco leaf processing (Song et al., 2010; Zhao et al.,

2022). In our study, the moisture content of tobacco leaves

decreased in the following order: CK > stem(+) > stem(-). The

PPO activity was the lowest in the stem(-), about 30% and 50%

that of CK and stem(+), respectively, and the differences among

the three groups of samples were statistically significant

(Figure 5A). That is, PPO activity in stem(-) was lower than

that in stem(+), because of the lower moisture content in stem(-).

At the end of the yellowing stage, tobacco leaf moisture content

is high. Thus, cells in leaves still had high PPO activity. Typically,

tobacco leaves undergo a low degree of polyphenols oxidation at

this moment, because the intracellular membrane system provides

a barrier between the PPO and polyphenols. In stem(-), rapid

dehydration sharply increased membrane lipid peroxidation levels

and consequently reduced the integrity of the cell membrane. If the
TABLE 1 Polyphenols contents in flue-cured tobacco leaves.

Sample Chlorogenic acid Scopoletin Rutin

CK 7.03E+06 ± 1.11E+06 a 1.03E+07 ± 2.60E+06 b 6.48E+07 ± 1.62E+07 a

Stem(+) 8.82E+06 ± 1.24E+06 a 1.59E+07 ± 3.68E+06 b 7.60E+07 ± 1.23E+07 a

Stem(-) 8.11E+06 ± 2.56E+05 a 6.42E+07 ± 7.64E+06 a 5.98E+07 ± 1.72E+07 a
The relative quantity of a metabolite was represented by the area of its corresponding mass spectrum peak.
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membrane system destructed due to a high level of membrane lipid

peroxidation, polyphenols would come into contact with PPO and

much oxygen would enter cells, which increases the oxidation rate

of polyphenols to form brown substances (Chen et al., 2019; Zhao

et al., 2022). Such browning reactions were to cause the appearance

of dark-colored spots and stripes on the leaf surface and seriously

reduce flue-cured tobacco leaf quality. Unlike stem(-), stem(+) had

a low risk of browning reaction because of a suitable dehydration

rate and relatively intact cellular membrane system. Due to the

unique physicochemical properties of tobacco top leaves, the

browning reaction can quickly occur during flue-curing of

separated top leaves, making them have low economic value.

Nevertheless, browning reaction seldom occurred during flue-

curing of top leaves with stems. Our observation suggested that

the presence of stem helpedmaintain suitable leaf moisture content

and cell membrane integrity during the yellowing stage, reducing

the risk of browning reaction.

Effect of stem on phytohormone contents of
tobacco leaves

Based on our metabolome data, four plant hormones,

salicylic acid (SA), indole-3-acetic acid (IAA), jasmonic acid
Frontiers in Plant Science 08
(JA) and abscisic acid (ABA), were identified in tobacco leaves

(Table 2). IAA and SA were significantly different between stem

(+) and stem(-), probably due to the different moisture content.

IAA was one of the most differential metabolites between

stem(+) and stem(-). Stem(+), as well as CK, did not contain

IAA, but stem(-) accumulated a high level of IAA, which is

probably due to the leaf moisture content of stem(-) being

significantly lower than that in stem(+) and CK. It is

reasonable to speculate that IAA was synthesized in separated

tobacco leaves during flue-curing. This is the first time the

synthesis and accumulation of auxin are observed during

tobacco leaf flue-curing. IAA is the main naturally occurring

auxin, which controls plant growth and development via

promoting cell division (proliferation), growth (expansion,

elongation) and differentiation (Mor et al., 2002). Various

studies have shown that during cell expansion and elongation,

IAA causes cell wall loss by promoting xyloglucan degradation

(Mor et al., 2002; dos Santos et al., 2004; Mateusz and Robert,

2018). The degradation of cell wall substances made plastids and

membrane systems vulnerable. The cell membrane integrity was

poor in stem(-) due to a high level of membrane lipid

peroxidation. IAA accumulation further increased the risk of
TABLE 2 Phytohormone contents in flue-cured tobacco leaves.

Sample IAA JA SA ABA

CK 9 ± 0 b 7.39E+03 ± 1.28E+04 c 3.66E+05 ± 2.19E+05 c 1.31E+05 ± 2.44E+04 b

Stem(+) 9 ± 0 b 8.32E+03 ± 1.44E+04 bc 6.23E+05 ± 1.91E+05 bc 4.76E+05 ± 2.57E+04 a

Stem(-) 4.61E+05 ± 1.62E+05 a 5.51E+04 ± 9.91E+03 a 1.28E+06 ± 4.49E+05 ab 5.98E+05 ± 8.56E+04 a
The relative quantity of a metabolite was represented by the area of its corresponding mass spectrum peak.
A B

FIGURE 5

Effect of stem on PPO activity and total amylase activity in flue-cured tobacco leaves. Different letters indicate statistically significant difference
at p < 0.05, as determined by t-test.
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cell membrane destruction. At the end of the yellowing stage,

PPO activity in leaves was still high. If the cell membrane were

disrupted, polyphenols would be oxidized by PPO, causing a

browning reaction (Chen et al., 2019; Zhao et al., 2022).

Therefore the accumulation of IAA was probably another

reason for the frequent occurrence of browning reaction

during flue-curing of separated top leaves. The presence of

stem probably inhibited or postponed IAA accumulation in

flue-cured leaves, which awaits further study.

Effect of stem on carbohydrates contents of
tobacco leaves

The starch content is an important indicator of the quality of

flue-cured tobacco leaves. Starch adversely affects the

combustion rate and complete combustibility of cigarettes and

produces a bitter and irritating taste when it burns. Starch

degradation in tobacco leaves during the curing process is

predominantly catalyzed by amylolytic enzymes, which are

sensitive to leaf moisture content (Song et al., 2009;

Yamaguchi et al., 2013). Low humidity can significantly reduce

their activity in tobacco leaves (Song et al., 2009). Therefore, it is

essential to maintain the appropriate leaf moisture content

during flue-curing processing to degrade starch fully.

Compared to CK, both starch content and total amylase

activity significantly decreased in flue-cured leaves (Figure 5B,

Table 3). The starch content was significantly higher in stem(-)

than in stem(+), while the total amylase activity was significantly

lower in stem(-) than in stem(+). These results coincided with

the prediction, because leaf moisture content was lower in stem

(-) than in stem(+). Compared to stem(+), the moisture content

decreased rapidly in stem(-), resulting in lower total amylase

activity and less starch degradation. In conclusion, stems could

slow the decrease of amylase activity and strengthen starch

degradation by maintaining appropriate leaf moisture content,

which is advantageous to flue-cured tobacco qualities.

Water-soluble sugars also contribute to the quality of cured

tobacco leaves. Cured tobacco leaves with highwater-soluble sugars

are lustrous, elastic, rich in oil, elegant flavor, andmellow taste. It is

usually considered that themain ingredient of soluble sugar in flue-

cured leaves are glucose, fructose, sucrose and maltose (Banožić

et al., 2020). Our metabolome analysis showed that glucose,

fructose and sucrose contents significantly increased during

processing, while maltose content remained almost the same

(Table 3). However, there was no significant difference in glucose,
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fructose, sucrose and maltose contents between stem(+) and stem

(-). These results indicated that the presence of stem did not

significantly improve the water-soluble sugar content of leaves.
Conclusion

To reveal the underlining mechanism of the contribution of

stems to leaves, this paper investigated the effects of stem on the

metabolic profiling and physicochemical properties of flue-cured

tobacco leaf at the end yellowing stage. Stems reduced the

dehydration rate of leaves, which led to less ROS accumulation,

higher antioxidant enzyme activities and a lower level ofmembrane

lipid peroxidation in stem(+). Stem also prohibited IAA

accumulation in leaves, which probably be related to the

difference in leaf moisture content between stem(+) and stem(-).

IAA accumulation could make the cellular membrane system

vulnerable to external damage. That is stems helped maintain

cellular membrane integrity of leaf cells through alleviating

oxidative membrane damage and inhibiting IAA accumulation,

which reduced the risks of browning reaction in flue-cured leaves.

Stems enhanced starch degradation in leaves, which was favorable

to sensory quality of flue-cured leaves. The activity of amylase in

stem(+) was higher than that in stem(-), because leaf moisture

content was higher in stem(+). Stems caused variousmetabolic and

physicochemical differences between stem(+) and stem(-) during

flue-curing, all of which could be attributed to that, stems slowed

down the rate of leaf dehydration.
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