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Grain size is a key trait associated with bread wheat yield. It is also the most

frequently selected trait during domestication. After the phenotypic

characterization of 768 bread wheat accessions in three plots for at least two

years, the present study shows that the improved variety showed significantly

higher grain size but lower grain protein content than the landrace. Using 55K

SNP assay genotyping and large-scale phenotyping population and GWAS data,

we identified 5, 6, 6, and 6 QTLs associated with grain length, grain weight,

grain area, and thousand grain weight, respectively. Seven of the 23 QTLs

showed common association within different locations or years. Most

significantly, the key locus associated with grain length, qGL-2D, showed the

highest association after years of multi-plot testing. Haplotype and evolution

analysis indicated that the superior allele of qGL-2D was mainly hidden in the

improved variety rather than in landrace, which may contribute to the

significant difference in grain length. A comprehensive analysis of

transcriptome and homolog showed that TraesCS2D02G414800 could be

the most likely candidate gene for qGL-2D. Overall, this study presents

several reliable grain size QTLs and candidate gene for grain length

associated with bread wheat yield.
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Introduction

Bread wheat is one of the major crops, accounting for nearly

20% of calories in our diet (http://faostat.fao.org). Improvement of

yield remains a challenge under heavy population pressure and

projected global change (Ray et al., 2013). Grain size is a major

determinant of grain weight, besides the number of panicles per

plant and the number of grains per panicle (Fan et al., 2006). In

wheat breeding, grain size is usually evaluated by grain weight,

which is positively correlated with grain length, grain width and

grain thickness (Evans, 1972; Fan et al., 2006). Thus, it is vital to

identify and introduce favorable genes or alleles controlling grain

traits to improve the grain yield in bread wheat breeding.

Using linkage mapping, hundreds of grain size quantitative

trait loci (QTLs) have been identified in the past few years

(Zhang et al., 2018; Mora-Ramirez et al., 2021; Guo et al., 2022).

Recently, multiple signals associated with grain size were

detected in different populations via genome-wide association

study (GWAS) (Breseghello and Sorrells, 2006a; Breseghello and

Sorrells, 2006b; Pang et al., 2020). These QTLs are distributed on

all the 21 chromosomes of bread wheat. However, the real genes

underlying these QTLs have yet to be identified due to the

complexity of parental mapping, QTL effect, QTL × genotype

and QTL × QTL interactions. Using homology cloning, several

orthologous genes associated with grain traits have been isolated

and characterized in bread wheat. For instance, TaGW2 and

TaGS5 were isolated in wheat based on OsGW2 and OsGS5

orthologs in rice (Wang et al., 2016; Zhai et al., 2018). TaGW2 is

involved in regulation of grain weight and grain number in bread

wheat (Zhai et al., 2018). TaGS5 is associated with thousand

grain weight (Wang et al., 2016), TaGW8 is related to grain size

in bread wheat (Yan et al., 2019). It is still hard to determine the

variation in natural elite alleles of these known genes that can be

used in marker assisted selection (MAS) of bread wheat.

Therefore, it is still very important to explore and identify new

QTLs and their natural allelic variation in wheat breeding.

In this study, we constructed a GWAS panel with 768 bread

wheat accessions. After phenotypic evaluation in multiple plots for

several years, we performed GWAS to the identify grain size of

QTLs. A total of 23 grain size QTLs were identified. For a major

grain length QTL qGL-2D, we investigated the signatures of natural

variation via comprehensive analysis of haplotype and evolutionary

features. Finally, one candidate gene associated with qGL-2D was

identified. The results suggest that grain size QTLs and grain length

candidate genes as well as information may facilitate MAS of these

loci/genes in breeding high-yield wheat in the future.

Materials and methods

Materials

A total of 768 bread wheat accessions were used to identify

QTLs of grain size, including 683 Chinese resources (560
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improved varieties and 123 landraces) and 85 introduced

accessions. Field experiments were performed at three

locations, i: the Shandong Agricultural University Agronomy

Experimental Station in Tai’an from 2016 to 2019, ii: Weifang

Academy of Agricultural Sciences in Weifang in 2019, and iii:

Jining Academy of Agricultural Sciences in Jining in 2019. Each

accession was planted in five-row plots with 5 cm distance

between plants and 25 cm distance between rows. The interval

between adjacent plots was 50 cm. At the mature stage, we

harvest 10 spikes without any mechanical damage, disease or

insect infestation. After threshing, we measured thousand grain

weight (TGW), grain length (GL), grain width (GW), grain

area (GA), grain perimeter (GP), grain roundness (GR), grain

diameter (GD), length-to-width ratio (LWR), grain

protein content (GPC) and grain starch content (GSC) for

each accession using a Crop Grain Appearance Quality

Scanning Machine (SC-E, Wanshen Technology Company,

Hangzhou, China).
Genotyping

Genomic DNA was extracted from the seedling leaves of all

768 wheat accessions, followed by further genotyping via an

Illumina 55K assay. Finally, a total of 47,743 of 53,063 SNPs were

identified in the wheat panel. We estimated the whole-genome

distribution and minor allele frequency (MAF) of these SNPs

using an in-house Python script. Additionally, we performed

quality control of SNPs to exclude those with high missing rate

(> 50%) and low MAF (< 5%) for further analysis.
Population structure

We first extracted 45,298 SNPs with miss rate ≤ 0.5 and

MAF ≥ 0.05 from 53,063 SNPs using an in-house Python script.

Using PLINK (window size 50, step size 50, r2 ≥ 0.3), a total of

4,360 independent SNPs were further screened out based on r2 of

LD ≤ 0.3 (Purcell et al., 2007). The software STRUCTURE was

used to calculate varying levels of K (K = 1-20) (Pritchard et al.,

2000). We also performed principal component analysis (PCA)

and kinship analysis using these independent SNPs and GAPIT

software (Lipka et al., 2012; Tang et al., 2016). The phylogenetic

analysis of qGL-2D was performed by generating a neighbor-

joining tree using Mega 7 (Kumar et al., 2016).
Association mapping

Only 45,298 un-imputed SNPs with miss rate ≤ 0.5 and MAF

≥ 0.05 were used to conduct GWAS for GL, GW, GA and TGW,

respectively. The first three PCs were used to construct the PC

matrix. We performed GWAS with a Compressed Mixed Linear
frontiersin.org
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Model (CMLM) via PCA and kinship analysis using default

settings of GAPIT (Lipka et al., 2012; Tang et al., 2016).

Additionally, the threshold to determine significant association

was set at 1.0 × 10-5 after Bonferroni-adjusted correction (Pang

et al., 2020).
Expression analysis and epidermal
cell observation

Gene expression data from different wheat cultivars were

used to analyze the gene expression profiles of the candidate

region. Expression data were download from wheat-URGI

website (https://wheat-urgi.versailles.inra.fr/Seq-Repository/

Expression). Then the transcriptomic information of candidate

genes were exacted by a custom python script. Epidermal tissues

were peeled off using tweezers under a stereomicroscope. Then,

the cell layers were stained with safranin and mounted on glass

slides (Matsunami Glass Ind., Japan). The tissue specimens were

subjected to observation with a light microscope (BX50F

Olympus Optical Co., Ltd, Japan).
Screening of candidate genes for
qGL-2D

In order to identify candidate genes for qGL-2D, LD

heatmaps surrounding peaks were constructed using the R

package “LD heatmap” (Shin et al., 2006). Using pairwise LD

correlation (r2 > 0.6), we mined the candidate regions of qGL-2D

(Yano et al., 2016). We further investigated the expression of

these candidate genes in bread wheat grain using typical

materials belonging to different haplotypes.
Results

Population structure and grain
characterization of 768 bread
wheat accessions

To identify genetic loci associated with grain weight, a panel

of 768 bread wheat accessions were constructed, including 560

improved varieties, 123 landraces and 85 introduced accessions.

Using a 55K SNP assay, we obtained 47,743 SNPs of the panel.

Subsets of these data were further filtered and used in additional

analyses (Figure S1). A reasonable assessment of population

structure facilitates the identification of real marker-trait

associations (Crowell et al., 2016; Juliana et al., 2019).

Therefore, we calculated varying levels of K means using un-

imputed SNPs and STRUCTURE software (Golbeck, 1987).
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Landrace, improved and introduced varieties appeared clearly

at K = 3 (Figure 1A). Further PCA indicated that top three PCs

accounted for 17.09%, 6.15% and 3.38% of genetic variation

within the bread wheat panel (Figure 1B). The results suggested

obvious genetic differentiation between landrace and improved

varieties of bread wheat.

A total of 10 traits were identified in three different plots for

two years, including eight grain shape components (TGW, GL,

GW, GA, GP, GR, GD, and LWR) and two grain quality

components (GPC and GSC). All traits showed high

heritability from 89.30% (GSC) to 95.27% (TGW) (Table S1).

After obtaining the best linear unbiased prediction (BLUP) of

each accession with respect to each trait across all traits, the

coefficient of variation (CV) of all traits ranged from 1.44% GSC

to 15.48% TGW (Table S1). GPC was proved to be negatively

correlated with the eight grain size components, suggesting that

larger, heavier and longer bread wheat grains usually had lower

GPC (Figure S2). During the domestication of landrace to

improved variety, bread wheat grains increased in size, weight,

and length, but their GPC decreased (Figures 1C, D, 2C).
Identification of grain shape QTLs
by GWAS

Focusing on four key grain shape traits (GL, GW, GA and

TGW), GWAS was performed to identify QTLs based on their

respective multi-year and multi-location data and BLUP. A total

of 23 QTLs were detected on 12 chromosomes, including 5, 6, 6

and 6 QTLs for GL, GW, GA and TGW, respectively (Table 1

and Figures S3, S4). Seven of 23 QTLs showed common

association within different locations or years, including qGW-

2B, qGL-2D, qGW-2D.1, qTGW-4A, qTGW-5A.1, qGA-6D,

qTGW-6D and qTGW-7D. Consistent with the positive

correlations between GL, GW, GA and TGW (Figure S2),

close linkage, and overlapping or one-factor-to-many-effects

(pleiotropy) were detected on chromosome 2D (for qGA-2D

and qGL-2D), chromosome 5A (for qGA-5A, qTGW-5A.1 and

qGL-5A.1), chromosome 6D (for qGA-6D and qTGW-6D), and

chromosome 7D (for qGA-7D, qGW-7D and qTGW-

7D (Table 1).

To validate the results of GWAS, we compared the

localization of the QTLs identified in this study with

previously detected QTLs associated with bi-parental mapping

population. Twelve of 23 QTLs in this study were co-localized

with previously reported QTLs, including 1, 6, 3 and 6 QTLs for

GL, GW, GA, and TGW, respectively (Table 1). The qGA-6D

and qTGW-6D were detected most frequently (five times),

followed by qGA-5A, qTGW-5A.1, qGL-5A.1, qGL-5A.2, qGA-

7D, qGW-7D and qTGW-7D (twice), whereas qGW-2A, qGW-
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2B, qGW-2D.1, qGW-2D.2, qGW-3D, qTGW-4A, qGL-5A.2,

qTGW-5A.2 and qTGW-5B were detected rarely (once).

Additionally, we also identified six new grain size QTLs,

including qGA-1D.1, qGA-1D.2, qGA-2D, qGL-2D and qGL-4B.
Haplotype analysis of qGL-2D

The qGL-2D was a key locus for GL, as it was detected using

the data for each location every year and BLUP (Figures 3A, B

and Figure S3). Using BLUP of GL yielded five significant SNPs

(-log(p) > 5) representing qGL-2D. Thus, the five SNPs were

identified via qGL-2D haplotype analysis. A total of seven

haplotypes were detected, including two high-frequency

haplotypes (HAP1 and HAP4, 36.6% and 56.4%), two low-

frequency haplotypes (HAP2 and HAP3, 3.6% and 2.8%) and

three rare haplotypes (HAP5-7, < 1%) (Figure 3C). Among

them, GL was the shortest in HAP1 (6.56 mm), followed by

HAP2 (6.57 mm) and HAP3 (6.70 mm), whereas HAP4 had the

longest GL (Figure 3C). For other five traits were related to grain

shape (GA, GW, GD and HGW) and grain quality (GPC). The

HAP4 exhibited the greatest GA, GW, GD, and HGW, and the

lowest GPC (Figure 3D). The results suggested that qGL-2D was

widely involved in grain shape and grain quality.
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To determine the evolutionary features of qGL-2D, we

conducted a phylogenetic analysis of the seven haplotypes.

Two major clades were formed (Figure 3E). One clade

contained a widely divergent group, including HAP4, HAP3,

HAP2 and HAP7, the most prevalent haplotypes associated with

improved varieties of bread wheat. Another major haplotype in

bread wheat landrace, HAP1, was clustered in the other clade

(Figure 3E). In summary, the qGL-2D allele associated with

improved varieties of bread wheat showed substantial genetic

differences compared with bread wheat landrace, which could be

attributed to selective effects on large grain during the process of

modern bread wheat improvement.
Determination of candidate genes within
qGL-2D

To analyze the candidate gene within qGL-2D, we defined

the QTL region based on local LD. As indicated in the LD

heatmap, an interval from 522,544,495 to 533,987,666 bp on

chromosome 2D was an LD block with r2 > 0.6 (Figure 2A). The

qGL-2D contains 125 annotated genes. To further reduce the

candidate number, we performed transcriptome analysis using

one short-grain accession (Chinese Spring (HAP1)), two long-
A B

DC

FIGURE 1

Genetic architecture and characteristic of grain size and grain quality of 768 bread wheat accessions. (A) Genetic structure of the panel analyzed
using the program STRUCTURE. Landrace (LD), improved variety (IV) and introduced variety (IA) groups appeared at K = 3. (B) Principle
components analysis reveals that the first 3 principle components explain 17.09%, 6.15% and 3.38% of the genetic variance within the panel.
Comparison of grain size traits (C) and grain quality traits (D) among LD, IA, IV. Different letters above the boxes indicate significant differents
(p < 0.05) when analyzed by Duncan’s test.
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TABLE 1 QTL identified for grain weight or shape by combined analysis of six environments and BLUP.

Chr. QTL Trait Environments Peak SNP Position -log10
(p)

QTL reported

1D qGA-1D.1 GA 18T AX-109817000 79999712 5.13 –

qGA-1D.2 19T AX-86164003 95559483 5.79 –

2A qGW-2A GW 19T AX-109994744 721725535 5.56 Wang et al. (2012)

BLUP AX-109994744 721725535 5.65

2B qGW-2B 18T AX-108936154 720581605 5.45 Zanke et al. (2015)

19T AX-108936154 720581605 5.53

BLUP AX-108936154 720581605 5.89

2D qGA-2D GA 20W AX-108767381 528101770 5.29 –

BLUP AX-108767381 528101770 5.27 –

qGL-2D GL 17T AX-110982403 525904353 6.41 –

18T AX-108767381 528101770 6.60 –

19T AX-108767381 528101770 8.63 –

20J AX-108767381 528101770 6.99 –

20T AX-108767381 528101770 7.00 –

20W AX-108767381 528101770 6.09 –

BLUP AX-108767381 528101770 8.31 –

qGW-2D.1 GW 17T AX-109910122 587284788 6.01 Ramya et al. (2010)

18T AX-94632592 593270570 6.13

19T AX-109464110 585470933 5.87

20J AX-109449735 590677250 6.79

20T AX-94632592 593270570 6.70

20W AX-111098468 593217154 5.99

BLUP AX-111098468 593217154 7.06

qGW-2D.2 18T AX-111956072 34428803 6.10 Wang et al. (2019a)

3D qGW-3D 20T AX-111624595 572830156 5.18 Ma et al. (2019)

4A qTGW-4A TGW 18T AX-108908317 681180867 5.13 Zanke et al. (2015)

19T AX-108908317 681180867 5.22

BLUP AX-108908317 681180867 5.30

4B qGL-4B GL 20T AX-110919438 643312159 5.69 –

5A qGA-5A GA 18T AX-111136203 430037627 5.34 Cheng et al., (2017); Wu et al.
(2015).qTGW-

5A.1
TGW 19T AX-110508884 428416559 5.02

20W AX-110508884 428416559 5.15

qGL-5A.1 GL 18T AX-111136203 430037627 5.14

qGL-5A.2 20J AX-108762108 595372901 5.32 Wang et al. (2019b)

qTGW-
5A.2

TGW 20J AX-109504344 704583912 5.25 Zanke et al. (2015)

5B qTGW-5B 20T AX-110427093 34285686 5.09 Yang et al. (2020)

5D qGL-5D GL 20W AX-110985437 404832095 5.13 –

6D qGA-6D GA 17T AX-110007215 93614544 5.12 Lopes et al. (2013),
McCartney et al. (2005),

Shi et al. (2017)
18T AX-110007215 93614544 6.82

20J AX-110007215 93614544 5.60

20W AX-110007215 93614544 5.87

BLUP AX-110007215 93614544 5.79

qTGW-6D TGW 17T AX-110007215 93614544 5.52

18T AX-110007215 93614544 8.46

19T AX-110007215 93614544 6.49

20W AX-110007215 93614544 6.03

BLUP AX-110007215 93614544 6.26

(Continued)
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grain bread wheat accessions (Aikang 58 (HAP4), 04chu122

(HAP5)) and 5 BC2 near isogenic lines (NILs) carrying qGL-2D

04chu122 or aikang58 segment (Figure 2B). A total of 29

expressed genes were identified in eight accessions mentioned

above (Table S2), and only TraesCS2D02G414800 showed higher

expression within two long-grain and eight NILs than in one

short-grain accession (Figures 2D, E). Homology analysis

showed that TraesCS2D02G414800 encodes oleosin, which is

involved in seed maturation and germination. Taken together,
Frontiers in Plant Science 06
the results provide possible key candidates for further

investigation of the molecular mechanism underlying GL

within bread wheat.
Discussion

Grain size is one of the most frequently selected traits during

domestication (Meyer and Purugganan, 2013; Zuo and Li, 2014).
TABLE 1 Continued

Chr. QTL Trait Environments Peak SNP Position -log10
(p)

QTL reported

7D qGA-7D GA 20T AX-110826147 65503524 5.60 Liu et al. (2014), Tang et al. (2017)

qGW-7D GW 20T AX-110826147 65503524 5.55

qTGW-7D TGW 20T AX-110826147 65503524 5.87

18T AX-111843581 67448018 5.25
A B

D E

C

FIGURE 2

Identification and haplotype analysis of grain length QTL qGL-2D. Quantile-quantile (Q-Q) plot (A) and manhattan plot (B) using 7 groups of GL
data of multi-year and multi-plots. qGL-2D is an association signal detected in all tests. (C) qGL-2D haplotype analysis and comparisons of grain
length (GL) among four qGL-2D haplotypes. (D) Comparison of grain area (GA), grain perimeter (GP), grain width (GW), length-width ratio (LWR),
grain diameter (GD), grain roundness (GR), hundred grain weight (HGW) and grain protein content (GPC) among four qGL-2D haplotypes. For
better chart presentation, TGW is replaced by HGW. (E) Phylogenetic tree of the four qGL-2D haplotypes. The number of landrace (LD),
improved variety (IV) and introduced variety (IV) are marked for four haplotypes.
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Among the many yield-related traits, increased grain size is the

main factor associated with increased grain yield at a certain

stage of domestication (Zheng et al., 2011). The grains of wild

relatives are usually small and round in shape, and

domestication has greatly increased the diversity of grain

shape and size together with other changes (Fan et al., 2006).

Grain size is predominantly determined by genetic factors,

whereas grain filling is controlled by both genetic and

environmental factors (Sakamoto and Matsuoka, 2008). Our

study validated the significant changes in grain size of landrace

to improved variety of bread wheat, and also suggested further

accumulation of large-size alleles within improved variety rather

than landrace. The most significant finding of the present study

was the key locus for GL, qGL-2D, which showed the highest

association after years of multi-plot testing. Haplotype and

evolution analysis indicated that the superior allele of qGL-2D

was mainly hidden in the improved variety rather than in

landrace, which may result in significant difference in GL.

Identification of the differential expression yielded a single

candidate gene of qGL-2D. The results provide the opportunity
Frontiers in Plant Science 07
for the delineation of the regulatory mechanism and related

processes during grain development.

The coordination of grain size (weight) and grain quality is

a major goal in breeding, as the increased grain size often

reduces grain quality (Sakamoto and Matsuoka, 2008; Wang

et al., 2012). Correlations between traits are a common

biological phenomenon, especially those associated with

determination of spike, growth duration, yield, and root and

shoot (Crowell et al., 2016; Li et al., 2018; Zhao et al., 2019;

Zhao et al., 2021). The present study indicated that the grain

size increased while the GPC of bread wheat decreased from

landrace to improved variety. The long-grain allele of qGL-2D

showed a lower GPC, while the short-grain allele of qGL-2D

showed a higher GPC. Pleiotropy and LD in natural

population are usually considered as the main factors

underlying this phenomenon, which is a major challenge in

future breeding programs (Chen and Lübberstedt, 2010;

Crowell et al., 2016). The role of two complementary genes

associated with grain yield and grain quality requires further

analysis (Zuo and Li, 2014).
A B

D
C

E

FIGURE 3

Determination of candidate genes within qGL-2D. (A) Association signals (top) and LD heatmap (bottom) of qGL-2D. Triangular block shows
region with strong local LD (r2 > 0.6). (B) Grain length of 04chu122, Aikang58 and Chinese Spring. Scale bar, 10 mm. (C) Epidermal cell length of
04chu122, Aikang58 and Chinese Spring. Scale bars, 200 um. (D) Expression level of TraesCS2D02G414800 in 04chu122, Aikang58, Chinese
Spring and NILs carried 04chu122 qGL-2D or Aikang58 qGL-2D. (E) Comparison of expression level of Chinese Spring (HAP1), and the other
accessions including 04chu122 (HAP5), Aikang58 (HAP4) and NILs carried 04chu122 qGL-2D and Aikang58 qGL-2D.
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