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The consumption of healthy food, in order to strengthen the immune system, is

now a major focus of people worldwide and is essential to tackle the emerging

pandemic concerns. Moreover, research in this area paves the way for

diversification of human diets by incorporating underutilized crops which are

highly nutritious and climate-resilient in nature. However, although the

consumption of healthy foods increases nutritional uptake, the bioavailability of

nutrients and their absorption from foods also play an essential role in curbing

malnutrition in developing countries. This has led to a focus on anti-nutrients that

interfere with the digestion and absorption of nutrients and proteins from foods.

Anti-nutritional factors in crops, such as phytic acid, gossypol, goitrogens,

glucosinolates, lectins, oxalic acid, saponins, raffinose, tannins, enzyme

inhibitors, alkaloids, b-N-oxalyl amino alanine (BOAA), and hydrogen cyanide

(HCN), are synthesized in crop metabolic pathways and are interconnected with

other essential growth regulation factors. Hence, breeding with the aim of

completely eliminating anti-nutrition factors tends to compromise desirable

features such as yield and seed size. However, advanced techniques, such as

integrated multi-omics, RNAi, gene editing, and genomics-assisted breeding, aim

to breed crops in which negative traits are minimized and to provide new strategies

to handle these traits in crop improvement programs. There is also a need to

emphasize individual crop-based approaches in upcoming research programs to

achieve smart foods with minimum constraints in future. This review focuses on

progress in molecular breeding and prospects for additional approaches to

improve nutrient bioavailability in major crops.
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Introduction

Consumption of foods for a sustainable diet has the potential to

reduce hidden hunger in many countries. One of the major factors

influencing nutrient absorption is the presence of anti-nutrients in

foods (Thakur et al. 2019). These have largely been overlooked by

research projects that aim to minimize nutritional deficiencies and

toxicities in diets in the growing population (Gilani et al., 2012). Anti-

nutritional factors in foods hinder digestion and reduce the

bioavailability of the major nutrients. In some severe cases, they are

a major contributor to serious disorders and, when intake is excessive,

can even cause death (Frick et al., 2017). Hence, this has to be rectified

in major food crops so that the mineral uptake from plant-based

foods is unaltered. The major anti-nutritional factors in foods include

phytic acid, raffinose, saponins, tannins, enzyme inhibitors, lectins,

gossypol, glucosinolates, goitrogens, oxalic acid, erucic acid, alkaloids,

b-N-oxalyl amino alanine (BOAA), and hydrogen cyanide (HCN)

(Thakur et al., 2019; Samtiya et al., 2020). These factors play a major

role in human health, as they hinder nutrient absorption and uptake

via chelation and enzyme inhibition. Legumes are of particular

concern, as they contain a comparatively higher proportion of anti-

nutritional traits than other crops (Parca et al., 2018). This presumes

that consumer favour less consumption of these crops despite their

potential nutritive traits (Jaiswal, 2020).

Several traditional processing techniques, such as soaking,

roasting, sprouting, fermentation, boiling, and extrusion, can reduce

anti-nutritional components in grains. However, these techniques are

adopted at a small scale in household cooking and in value-added

products from agro-industries (Das et al., 2022). Industrial

organizations utilize these processing methods to enhance the

bioavailability of food grains in processed foods. Eliminating anti-

nutrients in foods remains a major objective, and one that could be

achieved by using advanced techniques, such as RNAi and gene

editing, to develop high-nutrition crops. The reduction of anti-

nutritional traits has been a progressively intense area of research

since the 1950s, but there are several barriers to improving varieties by

reducing anti-nutritional factors. The accumulation of anti-nutrients

in crops is still to be completely explored for all the major traits (Tong

et al., 2021). Some anti-nutrients have been explored more than

others, and the genes responsible for their biosynthesis offer a major

way of altering the concentrations of anti-nutrients in foods. Phytic

acid, raffinose, glucosinolates, enzyme inhibitors, and erucic acid are

the anti-nutrients that have been the predominant focus of breeding

and transgenic approaches. Saponins, oxalic acid, alkaloids, HCN,

goitrogens, and BOAA need to be further studied in the future

(Thakur et al. 2019).

Another major factor in reducing these antinutrients in crops is

their stable expression across locations. Anti-nutrients such as phytic

acid, glucosinolates, and alkaloids are highly influenced by soil,

fertilizer applications, and other edaphic factors (Zhuo et al., 2013;

Frick et al., 2017; Pramitha et al., 2021). Therefore, alternate strategies

involving advanced multi-omics accompanied by rapid estimation

techniques and gene editing protocols play an essential role in

optimizing the nutrient availability of major crops and developing

non-toxic foods for human consumption. However, it is also

important to monitor the effects of reduction of anti-nutrients in
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crops, as anti-nutrients such as saponins, raffinose, enzyme inhibitors,

gossypol, glucosinolates, and phytic acid have a major role in plant

growth metabolism (Sahu et al., 2020). Previous reports have shown

that these compounds constitute a regulation on crop metabolism and

growth (Rodrıǵuez-Sifuentes et al., 2020; Pramitha et al., 2021; Elango

et al., 2022). Thus, a focus on the reduction of negative pleiotropic

effects on characteristics such as seed quality, seed yield, and stable

expression, and on the influence of edaphic factors on nutrient

accumulation, processing, and storage, are necessary to develop a

high-value food crop with mineral availability in the near future

(Coulibaly et al., 2011). Among all the major crops, soybean is the one

that has been most explored for reducing anti-nutrients, followed by

brassicas and cotton, which have been investigated to improve their

overall acceptance for human and animal feed (Rathore et al., 2020; Le

et al., 2020). Hence, this review highlights progress in research into

breeding for anti-nutritional traits in major food crops and also

predicts its future direction.
Major anti-nutritional traits in food
crops and their effects on consumption

There are several anti-nutritional factors in cereal- and legume-

based foods, and some of the major key anti-nutritional traits are

elaborated here. The major factors that interrupt food digestion and

absorption are phytic acids, gossypols, lectins, raffinose, enzyme

inhibitors, goitrogens, saponins, tannins, oxalic acid, erucic acid,

alkaloids, BOAA, and HCN. This section describes the effects of

consumption of these anti-nutrients in foods and specifies levels of

consumption in regular diets (Table 1).
Phytic acid

Phytic acid (C6H18O24P6) is a naturally occurring antioxidant that

chelates positively charged minerals such as phosphorus, iron, and

zinc (Raboy et al., 2000). It is found primarily in the grains, nuts, and

seeds of cereals, legumes, and vegetables. Phytic acid is found in rice

aleurone, and it is also abundant in the endosperm and embryo of

maize (Raboy et al., 2000). Phosphorus is primarily stored in the form

of phytic acid in seeds after pollination. During germination, it is

degraded by the enzyme phytase to support plant growth and

development (Pramitha et al., 2021). Monogastric animals lack the

enzyme phytase in their digestive tract, and as a result phytic acid acts

as a nutritional inhibitor by chelating the available micronutrients in

foods (Gupta et al., 2015). The non-dissolvable form of phytic acid,

i.e., the mineral-bound complex, and remains a problem, as its

excretion in animal feces results in eutrophication and soil

pollution (Raboy et al., 2001). Hence, reducing phytic acid in grains

is a beneficial solution to enhance mineral availability following

consumption (Pramitha et al., 2021). Despite these anti-nutritional

features, dietary phytic acid has been found to reduce the risk of colon

cancer and other inflammatory bowel diseases by acting as a beneficial

antioxidant in foods. Its inclusion in foods thereby prevents lipid

peroxidation, oxidative spoilage, discoloration, putrefaction, and

syneresis. Hence, the reduction of phytic acid in foods should be
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TABLE 1 The major role of anti-nutrients in consumption and plant growth regulation.

S.
no.

Anti-nutrient Effects on consumption Role in plant growth Pathway Reference

1. Phytic acid i. Nutritional inhibitor in monogastric
animals
ii. Decreases the risk of colon cancer and
inflammatory bowel disease
iii. Lowers blood glucose level

i. Phosphorus storage and chelation of
micronutrients for growth and development

Myoinositol pathway Gupta et al., 2015;
Dilworth et al.,
2005;
Graf and Eaton,
1990

2. Raffinose i. Raffinose not digested by humans and
monogastric animals
ii. Leads to flatulence in humans and
animals
iii. Prevents non-alcoholic fatty liver
disease in humans
iv. Reduces inflammation, diabetes,
allergies, and obesity

i. Acts as a cryoprotectant
ii. Acts as a storage metabolite and is
absorbed in seeds and roots
iii. Acts as a source of energy for seed
germination

Inositol phosphate
pathway

Kannan et al.,
2018;
Elango et al., 2022

3. Gossypol i. Acute poisoning on ingestion
ii. Causes iron deficiency known as
erythropoiesis
iii. Increases cytosolic Ca2+ activity
iv. Decreases antioxidant levels in tissues

i. Resistance to cotton bollworm Sesquiterpenoid aldehyde
pathway

Soto-Blanco, 2008;
Gadelha et al.,
2011;
Randel et al., 1996;
Zhang et al., 2007;
Mena et al., 2004;
Zbidah et al., 2012;
Bottger et al., 1964;
Kovaci, 2003

4. Saponins i. Cause diarrhea and vomiting by
damaging red blood cells
ii. Affects the nutrient absorption by gut
membranes
iii. Negative impact on chick development
and feed efficiency

i. Act as phytoalexin during fruit and tuber
development
ii. Resistance against diseases in vegetables

Cytosolic mevalonic acid
pathway

Akande et al.,
2010;
Ribera and Zuñiga,
2012; Cárdenas
et al., 2015

5. Goitrogen i. Deficiency of thyroid hormone
ii. Reduces growth and reproductive
performance
iii. Apoptotic and anti-proliferative effects
in thyroid cancer cells

– Glycosyl transferase
pathway

Akande et al.,
2010;
Chatterjee et al.,
2018;
Boncompagni
et al., 2018

6. Glucosinolates i. Cause rancidity
ii. Prevent cardiovascular and
neurodegenerative diseases

– Aliphatic glucosinolate
pathway

Kamal et al., 2022

7. Oxalic acid i. Causes headache, coma, and kidney
stones
ii. Calcium oxalate has a severe impact on
human nutrition and health
iii. Leads to death due to oxalate poisoning

i. Precursors of oxalic acid play a major role
in climate resilience
ii. Growth regulation of crops during
pollination

– Egbuna, 2018;
Awulachew, 2022

8. Erucic acid i. fat accumulation in heart muscles
ii. cardiovascular diseases and myocardial
lesions in the heart

– – Wani et al., 2022

9. Lectin i. Agglutinates red blood cells
ii. Anti-tumor agent
iii. Antimicrobial, antifungal, antibacterial,
antiviral
iv. Alters the integrity of intestinal mucosa

i. Regulation of cell signaling and plant
response to biotic, abiotic, and symbiotic
stimuli

– López-Moreno
et al., 2022

10. Enzyme
inhibitors

i. Trypsin inhibitors trigger pancreatic
hyperplasia
ii. Prevention of type 2 diabetes and
obesity
iii. Protease inhibitors reduce the activity
of proteolytic enzymes during ingestion
iv. Alpha-amylase inhibitors affect post-
meal plasma glucose levels

Confer biotic stress tolerance and act as
biopesticides

– Bhutkar and Bhise,
2012;
Battelino et al.,
2019;
do Amaral et al.,
2022; Ribeiro et al.
2015

11. Tannins i. Inhibit digestive enzymes and cause
intestinal damage

i. Antiparasitic properties of plant tannins
ii. Act against pathogenic bacteria, have

Shikimate pathway Akande et al.,
2010;

(Continued)
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optimized for normal growth and regulation of metabolism. The

safest range for overall phytic acid consumption is reported to be

around 250–800 mg (Graf and Eaton, 1990).
Gossypol

Gossypol (C30H30O8) is a group of polyphenols that can cause acute

poisoning on ingestion (Stipanovic et al., 1975). Studies of gossypol report

that cumulative toxic effects can occur after just 1–3 months of

consumption (Soto-Blanco, 2008; Gadelha et al., 2011). It is safest to

limit gossypol consumption to 20mg of gossypol per kg of feed. Poisoning

by gossypol has been reported in broiler chicks, pigs, dogs, sheep, and

goats. However, gossypol toxicity is more severe in monogastric animals

such as pigs, birds, fish, and rodents than in ruminants (Kenar, 2006;

Alexander et al., 2008). The effect of gossypols is more severe in younger

ruminants than in adults. The major impact of ingestion is anemia, which

is frequently observed in cottonseed-fed animals. During ingestion,

gossypol binds with iron in hemoglobin to form a gossypol–iron

complex, which inhibits iron absorption, resulting in a deficiency

known as erythropoiesis, i.e., erythrocyte fragility (apoptosis-like

erythrocyte death) (Randel et al., 1996; Mena et al., 2004; Zhang et al.,

2007). Further, this increases cytosolic Ca2+ activity, which causes cell

membrane scrambling and contraction (Zbidah et al., 2012). In addition,

clinical signs of gossypol poisoning are linked to decreased antioxidant

levels in tissues (Kovaci, 2003). Hence, gossypol reduces energy generation

from oxidative metabolism at high concentrations by interfering with

enzymatic activity in the mitochondrial electron transport chain and

oxidative phosphorylation. In addition, gossypol has an impact on both

male and female gametogenesis and promotes embryo lesions linked to

male infertility (Gadelha et al., 2011). Therefore, gossypol could be

explored for its potential use as a male contraceptive in future

pharmaceutical research (Soto-Blanco, 2008; Chang et al., 2011).
Lectins

Lectins (complex carbohydrate-binding proteins) are a type of

glycoprotein with non-catalytic carbohydrate-binding sites that are
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classified into animal, algal, bacterial, fungal, and plant lectins

(Mishra et al., 2019). Lectins are also known as hemagglutinins.

These “anti-nutrients” have received a lot of attention because of

their role in obesity, chronic inflammation, and autoimmune diseases.

They are predominantly observed in raw legumes such as kidney

beans, lentils, peas, soybeans, and peanuts, and in whole grains such

as wheat. In leguminous plants, lectin content is higher in seeds than

in bark, leaves, roots, or stem. Plant lectins are generally found in

nuts, cereals, and leguminous seeds (El-Araby et al., 2020).

Consumption of lectins in their active state, for example the

consumption of even small amounts of raw or undercooked kidney

beans, can cause severe adverse reactions in humans. Kidney beans

contain phytohemagglutinin, a lectin that causes red blood cells to

aggregate, leading to cause nausea, vomiting, stomach upset and

diarrhea (Peumans and Van Damme, 1995). Bloating and flatulence

are milder side effects. Active lectins have been found in animal cell

studies to interfere with mineral absorption, affecting the

concentrations of calcium, iron, phosphorus, and zinc in the

digestive tract (Vasconcelos and Oliveira, 2004). Thus, 200–400

hemagglutinin units (hau) is considered a safe level for

consumption of lectins from leguminous foods (Van Damme et al.,

2008; Kobayashi et al., 2014). Despite their negative side effects,

lectins have been shown to be useful for cancer treatment due to

their antiangiogenic, antimetastatic, and antiproliferative activity

(Bhutia et al., 2016; Panda et al., 2018; Sinha et al., 2019).
Raffinose

Pulses are rich in carbohydrates, proteins, dietary fiber, vitamins,

minerals, and other bioactive substances in the human diet. However,

their consumption and acceptance are constrained globally,

particularly in industrialized countries, due to the high proportion

of raffinose family oligosaccharides (RFOs). These are found in beans,

cabbage, Brussels sprouts, broccoli, asparagus, and whole grains

(Elango et al., 2022). RFOs (C18H32O16) is prevalent in the seeds of

legume families such as chickpea (Cicer arietinum), lentil (Lens

culinaris), and soybean (Glycine max). They are also found in the

leaves and tubers of vegetables and in other specialized storage organs
TABLE 1 Continued

S.
no.

Anti-nutrient Effects on consumption Role in plant growth Pathway Reference

ii. Have been associated with reduced feed
intake, growth rate, feed efficiency, and
protein digestibility
iii. Enhance the food product’s oxidative
stability
iv. Improve the quality of the meat and
milk. Act as a natural preservative

antibacterial actions, and are antioxidants
iii. Prevent neurodegenerative diseases and
have anti-tumor, anti-inflammatory, and
antibacterial properties

Gemede and Ratta,
2014;
Gilani et al., 2012
Tong et al., 2021;
Mora et al., 2022

12. HCN i. In animals stops cellular respiration
process due to asphyxia
ii. Severe shortness of breath and frequent
urination in animals

– – Al-Beiruty et al.,
2020

13. BOAA i. Causes neurolathyrism, a neurologic
condition that is irreversible in both
humans and animals

Act as an Antioxidant Begins with the formation
of BIA from O-acetyl- L-
serine (OAS)

Das et al., 2021
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such as roots. Raffinoses are found in the tubers of Chinese artichoke

(Stachys sieboldii) and in the leaves of a common bugle (Ajuga

reptans). Defatted soy flour has an average range of raffinose from

1.15%-3.23% espectively. In lentil, RFOs level ranges from 4.5 to

5.5 mol 100 g–1 of flour, and in faba bean it ranges from 0.12% to

0.29% (Johnson et al., 2021).

Humans and monogastric animals cannot digest RFOs; instead

they are fermented by the microflora of the large intestine. This

fermentation produces carbon dioxide, hydrogen, and methane,

causing flatulence and stomach discomfort (Kannan et al., 2018).

However, RFOs also confer beneficial effects, such as antiallergic, anti-

obesity, and anti-diabetic effects, the prevention of non-alcoholic fatty

liver disease, and cryoprotection. They positively affect the gut

microbiota and the health of the large intestine. Hence, RFOs could

be used as therapeutic agents to reduce inflammation, diabetics, and

allergies. As RFOs are considered the main cause of flatulence in

humans and animals, there is a need to strike the right balance of

RFOs content in crops if they are to be promoted as functional foods

(Elango et al., 2022).
Enzyme inhibitors

Protease inhibitors are naturally occurring plant inhibitors that

have become a focus of research due to their effective method of

limiting enzyme activity through protein–protein interactions. They

inhibit enzyme activity via the catalytic mode by blocking the enzymes’

active sites. Cereals contain substantially less of these digestive

inhibitors than legumes (Nikmaram et al., 2017). Protease inhibitors

substantially reduce the activity of proteolytic enzymes during ingestion

(Troll andWiesner, 1983). There are various enzyme inhibitors, among

which trypsin inhibitors and alpha-amylase inhibitors are the major

enzyme inhibitors in foods. Alpha-amylase primarily influences

carbohydrates, namely polysaccharides, which are broken down to

form oligosaccharides. Therefore, enzyme inhibitors that inhibit alpha-

amylase activity will boost carbohydrate levels by slowing the digestion

of carbohydrates, having an impact on the typical post-meal levels of

plasma glucose (Bhutkar and Bhise, 2012). Speaking of the Trypsin

inhibitors also enhance the production of hormones such as steatogenic

hormone and cholecystokinin (CCK) and this would reduce food

intake and body weight (Cristina Oliveira de Lima et al., 2019). In

humans, consumption of trypsin inhibitors can reduce growth rate,

slow protein digestion, and reduce amino acid availability, triggering

pancreatic hyperplasia (Adeyemo and Onilude, 2013). Several studies

have found that the inhibition of some enzymes, namely alpha-amylase,

alpha-glucosidase, and lipase, is beneficial, increasing the digestibility of

legume-based foods. Although it has health advantages associated with

the prevention of type 2 diabetes and obesity, malfunctions relating to

digestion have to be overlooked in the future (Li and Tsao, 2019).
Goitrogens

Goitrogens (C5H7NOS) got their name from “goiter,” which

means “abnormal growth”. Goiter is the enlargement of the thyroid

gland due to a deficiency of thyroid hormone. Soybean and cassava

are cruciate vegetables of the genus Brassica and are rich in
Frontiers in Plant Science 05
goitrogens. However, high goitrogen concentrations have also been

reported in other cruciferous vegetables (Truong et al., 2010).

Goitrogens interfere with iodine utilization and with thyroid

hormone production. Deficiency of thyroid hormone thus results in

reduced growth and reproductive performance of an individual. The

effect of goitrogens can be reduced by iodine supplementation than by

heat treatment (Akande et al., 2010). Foods containing goitrogens also

contain different bioactive compounds that protect against thyroid

cancer (Fiore et al., 2020). Crucifers contain sulforaphane, an

isothiocyanate that has been observed to possess an apoptotic and

antiproliferative effect in thyroid cancer cells (Chatterjee et al., 2018).

Goitrogens have also been used in the treatment of COVID-19 to

activate Nrf2-Keap1 and counteract the COVID-19-induced cytokine

storm (Bousquet et al., 2021; Singh et al., 2021). Hence, safe

consumption of these compounds needs to be ensured to avoid

their negative side effects.
Saponins

Saponins (C58H94O27) are non-volatile, surface-active secondary

metabolites found in soybeans, sugar beets, peanuts, spinach,

asparagus, broccoli, potatoes, apples, eggplants, alfalfa, and ginseng

root. Saponins are glycosidic triterpenoids that are widely distributed

in the seed coat of crops (Faizal and Geelen, 2013). They are

structurally diverse and chemically are known as triterpenes and

steroid glycosides (Khodakov et al., 1996). The structural complexity

of saponins is responsible for their varied physical, chemical, and

biological properties, including sweetness, bitterness, and foaming

and emulsifying properties. Hence, saponins have pharmacological,

medicinal, hemolytic, antimicrobial, insecticidal, and molluscicidal

activities (Sparg et al., 2004). Consumption of saponins often cause

diarrhea and vomiting and also leads to the breakdown of red blood

cells. It has also been demonstrated that saponins can attach to

intestinal cells and influence nutrient absorption in gut membranes.

Furthermore, it has been noted in the poultry sector that saponins

have a negative impact on chicks’ development, feed efficiency, and

ability to absorb dietary lipids, cholesterol, bile acids, and vitamins A

and E (Akande et al., 2010).
Tannins

Tannins (C76H52O46) are plant polyphenolic compounds that

bind to and precipitate proteins and other organic compounds such as

amino acids and alkaloids. They combine with vitamin B12 to produce

complexes during digestion. Hydrolyzable tannins and

proanthocyanidins (PAs) are the two types of tannins (condensed

tannins). Hydrolyzable tannins are more resistant to enzymatic and

non-enzymatic hydrolysis than PAs, which are usually more water

soluble (Chukwuebuka and Chinenye, 2015). Condensed tannins are

abundant in leguminous forages and seeds. Thus, tannins combine

with dietary proteins to form a digestible complex that binds to and

thus inhibits endogenous proteins, including digestive enzymes

(Moses et al., 2022). In addition, they have anti-nutritional effects

that can lead to intestinal damage and interfere with iron absorption,

and they can be carcinogenic (Akande et al., 2010). As tannic acid it is
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also used in the manufacture of rubber, inks, and dye fixatives. For

consumption, reduction of tannins in foods leads to a healthier

digestive tract.
Oxalic acid

Oxalic acid (C2H2O4) is the dicarboxylic acid that appears as a

potassium and calcium salt in the cell sap ofOxalis and Rumex species of

plants. After passing through the digestive system, insoluble compounds

of oxalic acid (calcium oxalate) cannot be excreted via the urinary tract.

This can result in kidney stones, and thus calcium oxalate can have a

severe impact on human nutrition and health. Cruciferous vegetables

such as kale, radishes, cauliflower, and broccoli, as well as chard,

spinach, parsley, beets, black pepper, chocolate, nuts, berries, and

beans, are rich in oxalates (Awulachew, 2022). Calcium supplements

are suggested to be consumed with foods high in oxalic acid to expel

calcium oxalate from the gut and reduce the levels of oxalates in blood.

Although rare, consumption of oxalates can cause kidney disease or even

death due to oxalate poisoning (Chukwuebuka and Chinenye, 2015).
Erucic acid

When triglycerides containing erucic acid in the lipids are

digested, erucic acid is released into the bloodstream and

distributed to tissues for release of energy through oxidation from

mitochondrial cells in muscles. However, erucic acid oxidation in

cardiac muscles are low. Thus, this results in the accumulation of fat

in heart muscles, which causes cardiovascular diseases and

myocardial lesions in the heart (Wani et al.2022).
Alkaloids

Alkaloids, especially quinolizidine, found in commercial legumes

such as lupins (C10H19NO), are highly toxic when consumed. These

secondary metabolites are specific to the genera Lupinus, Baptisia,

Thermopsis, Genista, Cytisus, Echinosophora, and Sophora of the

Leguminosae family. Consumption of these alkaloids at a high

concentration leads to acute anticholinergic toxicity, the symptoms of

which include blurry vision, headache, weakness, and nausea (Frick et al.,

2017). It has also been also observed that the dose range of 11–25 mg/kg

is lethal to children. However, so far, no fatalities in adults have been

recorded (Daverio et al. 2014). Although Lupinus is a genus that has been

domesticated only recently, four species containing toxic quinolizidine

alkaloids (QAs) are cultivated. This is a major concern, and the threshold

level of consumption considered safe is 0.02% alkaloid. Studies on QAs

have been initiated and more should be carried out in the upcoming

years. To date, only a few studies of alkaloids such as nicotine, vinblastine,

vincristine, berberine, and morphine in economically important crops

have been conducted (Frick et al., 2017).

Other anti-nutrients with health effects

Hydrogen cyanide (HCN) is a toxic chemical whose consumption

has adverse effects in animals and humans. This is a major issue in

fodder sorghum and sorghum during the earlier vegetative growth.
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Techniques to enable rapid detection of low HCN levels are being

developed, and the latest advancements enable breeding of low-HCN

types of sorghum (Fox et al., 2012; Al-Beiruty et al., 2020).

BOAA is a neurotoxin in seeds and leaves. BOAA is a by-product

of nitrogen metabolism in plants and is a major problem in Lathyrus

sativus, consumption of which causes a non-reversible neurologic

disorder known as lathyrism. Although wide variations in the

germplasm have been reported, further studies on the nature and

actions of genes involved in BOAA biosynthesis are needed. Few

molecular breeding techniques along with omic approach, intron

based markers and gene editing are being standardized for reducing

BOAA content in Lathyrus, as this is a major rice fallow crop in South

Asian countries (Tripathy et al., 2015; Das et al., 2021). Varieties such

as Pusa-24, Pusa-305, LSD-1, LSD-2, and LSD-3 are lower BOAA

cultivars containing less than 0.2% BOAA (Gupta et al., 2021).
Regulatory role of anti-nutritional
factors in crops and their biosynthesis

Anti-nutritional traits are compounds that interfere with the

bioavailability of nutrients. They also serve as an integral part of

growth and metabolism in plants. Hence, understanding their

metabolism exhibits their role in regulation and facilitates genetic

manipulation. The identification of anti-nutritional traits in crops,

and of their wide range of pleiotropic effects, would provide a further

basis for alternate strategies to overcome their constraining effects for

developing high-nutritional crops (Table 1).
Phytic acid

Phytic acid is one of the most ubiquitous anti-nutritional factors,

being present in the aleurone layer of cereals, maize embryo, and the

cotyledon of legumes. It is synthesized by the myoinositol pathway,

which is a part of starch and glucose metabolism in cells. The pathway

is of two types: a lipid-independent pathway is found in seeds and a

lipid-dependent pathway occurs in leaves. The lipid-independent

pathway comprises the sequential phosphorylation of the six-

carbon cyclic alcohol myoinositol (Ins) and soluble inositol

phosphates (InsPs). However, the lipid-dependent pathway uses

phosphatidylinositol (PtdIns) and PtdIns phosphates as precursors

to synthesize phytic acid in leaves (Awad et al., 2012). These

myoinositol phosphates play a major role in signal transduction

and sugar metabolism for plant growth regulation and seed set. The

major enzymes that are manipulated in breeding for lowering

phytates are MIPS (myoinositol phosphate synthase), IPK (inositol

phosphate kinase), andMutli-drug Resistant Protein (transmembrane

proteins). Genetic manipulation of MIPS was found to decrease

phytic acid, resulting in a molar increase in free phosphate.

Alteration in the IPK gene reduced phytic acid, accompanied by a

limited increase in free phosphate and an increase in the content of

lower InsPs. However, alteration of MRP genes lowered phytic acid,

resulting in a molar increase in free phosphate in specific seed tissues.

Thus, proper strategies have to be adopted to reduce the phytates in

crops based on their distribution (Pramitha et al., 2021).
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Raffinose

Raffinose (RF) is a trisaccharide composed of galactose, glucose,

and fructose. RFOs is synthesized and stored in monocotyledonous

seeds and protects the embryo from maturation. In addition, it acts as

a storage metabolite and is observed in the seeds as well as the roots of

beans, cabbage, Brussels sprouts, broccoli, and asparagus. Raffinose

oligosaccharides (RFOs) act is an oligosaccharide that acts as a

stachyose source of energy for seed germination, and its reduction

in foods should be carried out in a proper way to substantiate seedling

vigor. Furthermore, RFOs acts as a key desiccation protectant in

seeds, playing a major role in sugar transport in phloem sap and sugar

storage in tubers for active metabolism (Blochl et al. 2008). Hence,

RFOs is sustained in plants to regulate storage and transport of sugar

in crops and is also produced from a branching pathway of

myoinositols that produces phytate. The precursor of raffinose is

sucrose, and the key enzymes involved in its synthesis are galactosyl

(Gol). FeGolS genes have been found to be involved in the synthesis of

fagopyritols with the help of UDP-Galacytinol synthase (GolS) and D-

chiro-inositol, which are also involved in the production of galactinol

that produces raffinose along with sucrose (Tian et al., 2019). RFOs

synthesis gene from Falcata medicago namely MfGolS1 enhances

freezing and chilling tolerance in transgenic tobacco plants. Hence,

RFOs could also be manipulated to enhance cold tolerance in plants

(Zhuo et al., 2013).
Lectins

Lectins are unique among carbohydrates in having the ability to

bind sugars. Some of the known lectins in crops include ricin, abrin,

and favin. Plant lectins have a major role in host–pathogen

interactions, as they have a major role in signaling. In addition,

they are known to play a major role in establishing a symbiotic

relationship with nitrogen fixers (Kobayashi and Kawagishi, 2014).

Lectins are widely present in plants and they vary in their structure

across families. They are widely used as antimicrobial, antifungal, and

antiviral agents (Mishra et al., 2019). Lectins are predominantly

synthesized in plants to selectively bind and detect glycans during a

pathogenic infestation (Van Damme et al., 2008). Based on their

synthesis in plasma membranes they are classified into G-type, C-

type, and L-type lectin receptor kinases (LecRKs). In Arabidopsis, the

chitin receptor kinases are the major chitin receptors and contain

three Lys motifs. Few LecRKs are synthesized during ABA signaling

and stomatal immunity (Singh et al., 2012). Tobacco plants express L-

type LecRKs, which have a major role in plant immunity, whereas

Medicago exhibits L-type LecRKs, which are involved in symbiosis

(Navarro-Gochicoa et al., 2003; Gilardoni et al., 2011). The functional

characterization of FIBexDB in flax seeds revealed the predominant

role of lectins in cell wall biosynthesis, cytoskeleton functioning, and

protein biosynthesis (Petrova and Mokshina, 2022).
Gossypol

Gossypol is yet another terpenoid observed in cotton seed, stem,

flower, and root (Stipanovic et al. 1975). This is a part of the
Frontiers in Plant Science 07
sesquiterpenoid aldehyde pathway, which is highly toxic to humans and

offers resistance to various cotton pests, including bollworm (Bottger et al.,

1964). During seed germination, the cotyledon acts as a primary site of

gossypol accumulation; later gossypol is synthesized in the roots (Meng

et al., 1999). d-Cadinene acts a major precursor to produce different

structured enzymes such as methylated hemigossypol, gossypol,

hemigossypolone, or heliocides (Cai et al., 2010). Together with (+)-d-
cadinene synthase, P450 is involved in 7-hydroxy-(+)-d-cadinene for the
formation, of enzymes that convert farnesyl diphosphate (FPP) to

hemigossypol (Wagner et al., 2015). Thus, gossypol is essential if cotton

plants are to withstand bollworm attacks, as it confers host

plant resistance.
Saponins

Triterpenoid saponins are synthesized from an isoprenoid pathway

by cyclization of 2,3-oxidosqualene in the mevalonate pathway from

acetyl-CoA. This further produces oleanane and its glycosylated forms

(SGAs) in the Solanaceae and Liliaceae families. Saponins also act as a

phytoalexin during fruit and tuber development in crops (Ribera and

Zuñiga, 2012). Phytoalexins are synthesized from the cytosolic

mevalonic acid pathway, which produces steroidal glycoalkaloids

(SGAs) and cholesterol, which goes through several steps of

hydroxylation, oxidation, transamination, and glycosylation

(Haralampidis et al., 2002). The isoprenoid mevalonate pathway thus

produces cholesterol from acetyl-CoA. Recent studies have revealed

that acetate, mevalonate, lanosterol, cycloartenol and deuterium were

categorized as cholesterol which are found to be the precursors for SGA

in tomatoes (Itkin et al., 2013). Hence, these compounds could be

manipulated in crops to confer resistance against diseases in vegetables.
Goitrogen and Glucosinolates

Another secondary metabolite, known as goitrogen, induces

thyroid in tissue and is primarily found in rapeseed, cabbage, and

canola seeds. Goitrin (l-5-vinyl-2-thiooxazolidone) is a water-soluble

component in plants. Progoitrin is a precursor of goitrin and is

produced by the enzyme thioglucosidase from cysteine and

methionine (Chandra, 2010). Sufficient genetic variability in the

pearl millet germplasm for goitrogens renders the identification and

manipulation of genes related to C-C-glycosylfalvones (C-GFs) there

by reducing goitrogens accumulation in grains. Glucosinolates are

another group of unique secondary metabolites, and are found in the

seeds of edible broccoli and plants of the genus Brassica. Methionine

is also a precursor in the synthesis of glucosinolates, which include

allylglucosinolate (sinigrin), glucotropaeolin, gluconasturtin,

glucoraphanin, and sulforaphane. These are mainly converted to

reactive isothiocyanates in mustard oils, which impart the mustard-

like or garlic-like odors associated with horseradish and mustard

(Banihani, 2017). Glucosinolates are synthesized from methionine,

tryptophan, and seven additional protein amino acids. The pathways

of goitrogen and glucosinolates are interconnected, as they are

derived from similar precursors through a branched pathway. The

breakdown of glycosylates often leads to a bitter taste owing to rancidity
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(Ishida et al., 2014). Hence, the degradation of amino acids in plants

influences the storage quality of the produce.(Boncompagni et al., 2018).
Tannins

Tannins play a key role in the antioxidant activities of plants and

are known to protect crops from pest infestations. They are classified

into hydrolyzed tannins and condensed tannins (Khanbabaee and

Van Ree, 2001). They are found in fruits such as bananas,

blackberries, apples, and grapes. These foods are known to protect

humans from cardiovascular diseases, cancer, and osteoporosis.

Tannins are also utilized in industry as a natural preservative agent

and are reported to possess antibacterial, antiviral, antiparasitic, anti-

inflammatory, and anti-diarrheal activity (Tong et al., 2021). The

synthesis of tannins takes place in plastids, and they are synthesized

from L-phenylalanine via the shikimate pathway. The initial step

involves the condensation of aldols and is catalyzed by 3-deoxy-D-

arabino-heptulosonate-7-phosphate synthase (DAHP), with

phosphoenol pyruvate and erythrose-4-phosphate as substrates. The

synthesis of tannins in plants is often triggered by mechanical

wounding or insect attacks (Mora et al., 2022).
Oxalic acid

Oxalic acid is a secondary metabolite found in the leaves, fruits,

and seeds of Rumex crispus, amaranthus, Chenopodium album, and

sugar beet. It is poisonous and can cause headaches, coma, and even

death. The oxalic acid metabolic pathway begins with glycine and

ends with glyoxylate (Atanassova and Gutzow, 2013). Oxalate is

synthesized from three precursors, namely glyoxylate, ascorbate,

and oxaloacetate. Their accumulation takes place in the mature leaf

lamina and leaf petiole (Cai et al., 2018). The maturing spike

transcriptome of finger millet contains major genes of the oxalic

acid precursors biosynthesis pathway (SGAT, GGAT, ICL, GLO,

MHAR, APO, and OXO) (Akbar et al., 2018). Furthermore, it has

been observed that these precursors play a major role in climate

resilience and growth regulation of crops during pollination

(Kobayashi et al., 2014).
Erucic acid

Erucic acid is a monounsaturated omega-9 fatty acid that is

present in the seeds of plants of the genus Brassica. It is produced

from the anabolic pathway initiating the synthesis of polyunsaturated

C18 fatty acids via desaturation of VLCFAs (very long-chain fatty

acids) involving elongation reactions (Venegas-Calerón et al., 2015).

Acetyl fatty acid (acetyl-CoA) is synthesized in plastids, and erucic

acid is formed from oleic acid by enzymes found in the endoplasmic

reticulum. Thus, it is synthesized in the plastid and later exported to

the cytosol. The seed lipids with FAD2 sense overexpression in

embryos at mid-maturity exhibit an altered erucic acid content;

thus, the FAD2 gene could be used to alter the erucic acid content

of brassicas (Jadhav et al., 2005). Subsequently, Wu et al. (2008)
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identified that a particular gene, namely the fatty acid elongase 1 gene

(FAE1), plays a major role in erucic acid synthesis in rapeseed. The

sequencing of this gene from a zero erucic acid mutant revealed a

four-basepair deletion between T1366 and G1369 that results in a

frameshift mutation. This deletion leads to a premature stop of the

translation at the 466th amino acid residue. This deletion is

predominantly found in the C genome of Brassica napus.

(Ghanevati and Jaworski, 2001).
Alkaloids

The quinolizidine alkaloids (QAs) comprise a ring structure and

are classified into lupanine, angustifoline, lupinine, sparteine,

multiflorine, aphylline, anagyrine, and cytisine. With the

exception of anagyrine and cytisine, they are predominantly found

in lupins. QAs have bitter taste when consumed and but confer

resistance to pests and diseases. The biosynthesis of these alkaloids

begins with the decarboxylation of L-lysine to produce cadaverine.

This is then followed by oxidative deamination, regulated by copper

amine oxidase (CuAO), to yield 5-aminopentanal, and this is further

cyclized to Schiff’s base (Frick et al., 2017). The series of reactions

after these processes include Schiff’s base formations, aldol-type

reactions, hydrolysis, oxidative deamination, and coupling, thereby

producing QAs. Until now, only two genes for the biosynthesis of

alkaloids have been identified, one of which is La-L/ODC, which is a

homolog of ODC, which is involved in the biosynthesis of a

precursor of nicotine biosynthesis. In addition, other genes,

namely MIA in Catharanthus roseus (vinblastine and vincristine)

and BIA in Coptis japonica (berberine) and Papaver somniferum

(morphine) serves as model pathways for identifying candidate

genes for genetic manipulation in alkaloids (Bunsupa et al.,

2012). Accumulation of alkaloids has also been observed in the

aerial tissues and chloroplast in lupins (Frick et al., 2017). Recently,

omics techniques have been used to develop low-alkaloid mutants

that lead to a reduced alkaloid content in lupins. Gene editing

approaches addressing source-to-sink transport in the metabolism

of alkaloids are yet to be explored to manipulate alkaloid toxicity

(Mancinotti et al., 2022).
Importance of traditional and
processing techniques in overcoming
the anti-nutrients in foods

Several traditional processing methods are being followed to

enhance the bioavailability of micronutrients in plant-based diets.

Today, a variety of methods are employed to counteract the effects of

these food anti-nutrients, including milling, soaking, germination,

autoclaving, and microwave treatment, as well as fermentation

(Samtiya et al., 2020). This section focuses on the processing

methods adopted to reduce anti-nutritional traits in crops (Table 2).

Effective processing techniques adopted for reducing individual anti-

nutritional traits are also described. Value-added products made using

these techniques have recently become available on the market.
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TABLE 2 Effect of different processing techniques to minimize the anti-nutrients in foods.

S. No Anti-nutrient traits Traditional methods Effective method Reference

1. Phytic acid

Milling
Soaking
Germination
Fermentation
Blanching

Soaking
Germination
Fermentation

Gupta et al., 2015;
Udensi et al., 2008;
Greiner and Konietzny, 2006;
Coulibaly et al., 2011;
Oghbaei and Prakash, 2016;
Simwaka et al., 2017

2. Lectins

Milling
Boiling
Soaking
Fermentation

Soaking
Boiling
Heating
Fermentation

Gupta et al., 2015;
Maphosa and Jideani, 2017

3. Tannins

Milling
Soaking
Autoclave
Germination
Fermentation
Blanching
Boiling

Boiling
Soaking

Gupta et al., 2015;
Ertas ̧ and Türker, 2014;
Patterson et al., 2017;
Ogbonna et al., 2012;
Simwaka et al., 2017

4. Saponins

Boiling
Washing
Fermentation
Roasting

Fermentation
Maphosa and Jideani, 2017;
Samtiya et al., 2020

5. Oxalic acid

Milling
Blanching
Boiling
Soaking

Boiling
Soaking

Suma and Urooj, 2014; Patel et al.2018

6. Enzyme inhibitors

Soaking
Autoclave
Roasting
Fermentation
Boiling

Fermentation
Boiling

Kumari, 2018;
Patterson et al., 2017;
Vagadia et al., 2017;
Ogodo et al., 2019

7. Polyphenols
Germination
Soaking
Fermentation

Germination
Singh et al., 2017;
Simwaka et al., 2017

8. Gossypols
Extrusion
Fermentation

Extrusion Buser and Abbas, 2001

9. Raffinose

De-hulling
Germination
Alcoholic extraction
Microbial treatment

Cooking Kannan et al., 2018

10. Goitrogens

Steaming
Cooking
Fermenting
Milling
Soaking
Washing

Soaking Bajaj et al., 2016

11. BOAA

Soaking
Boiling
Fermentation
Cooking
Autoclaving

Soaking and cooking
Srivastava et al., 2015;
Hailu et al., 2015

12. Alkaloids

Soaking
Washing
Germination
Fermentation
Aqueous thermal treatment
Alkaline treatment

Soaking, cooking fermentation, and alkaline treatment Boschin and Resta, 2013
F
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Milling

This is the most common technique for separating the bran layer

from grains. Since anti-nutritional factors are mostly present in bran,

this process removes anti-nutrients and reduces their distribution in

grains. This procedure effectively eliminates anti-nutrients in bran,

such as phytic acid, lectins, tannins, and enzyme inhibitors (Gupta

et al., 2015). A study in pearl millet found that milling altered the

chemical makeup and distribution of oxalic acid (Suma and Urooj,

2014). Hence, milling is effective in removing anti-nutrients from

aleurone and bran.
Soaking

Soaking is yet another popular method for removing anti-nutrients

from food. Soaking reduces the cooking time and enhances the release

of endogenous phytases found in plant foods (Vashishth et al., 2017).

Soaking provides essential moist conditions in nuts, grains, and other

edible seeds that are required for germination and thereby also reduces

trypsin inhibitors and phytic acid to improve digestibility by enhancing

the nutritional value of grains (Kumari, 2018). Soaking, boiling and

autoclaving was found to be effective to reduce tannins while soaking

the seeds for 24 hours drastically reduced the hydrogen cyanide.

Further soaking was found to be more helpful in reducing the

stachyose and raffinose content with an average reduction of 51.20%

and 21.20% respectively (Udensi et al., 2008). Soaking legumes in water

overnight has been found to reduce phytate, protease inhibitors, lectins,

and tannins. A 12-hour soaking was found to decrease the amount of

phytate in peas by up to 9%, while soaking pigeon peas for 6–18 hours

reduced the concentration of lectins, tannins, and protease inhibitors by

38–50%, 13–25%, and 30%, respectively (Ertaş and Türker, 2014). It has

also been suggested that wheat and barley can be ingested after soaking

for a length of time, preferably 12–24 hours (Onwuka, 2006). It has also

been reported that soaking grains and beans can successfully enrich the

amount of protein and minerals in grains (Coulibaly et al., 2011).
Boiling

Anti-nutrients such as lectins, tannins, and protease inhibitors

can be ameliorated by high heat during boiling. One study found that

boiling pigeon peas for 80 minutes reduced protease inhibitors by

70%, lectin by 79%, and tannin by 69% (Onwuka, 2006). It has also

been reported that boiling of cooked green leafy vegetables further

reduces calcium oxalate by (19–87%) and that boiling is be more

efficient than baking and steaming (Amalraj and Pius, 2015). A study

by Maphosa and Jideani (2017) found that boiling beans significantly

improved their nutritional quality by reducing their lectin and

saponin concentrations.
Autoclaving and Roasting

The majority of foods show health benefits when consumed after

autoclaving. The cooking time required depends on the type of anti-
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nutrient and the cooking method. Generally, the longer the cooking

time, the greater the reduction in anti-nutrients. According to earlier

research, heating foods significantly increases their nutritional value

by removing their content of anti-nutrients, especially tannins and

trypsin inhibitors (Patterson et al., 2017). Trypsin inhibitor activity in

soybean meal was dramatically reduced by roasting (Vagadia et al.,

2017). Another study found that heating, soaking, and autoclaving of

beans considerably reduced the amount of enzyme inhibitors and

tannins in grains (Torres et al., 2016).
Sprouting

This is an effective process for lowering the anti-nutrient content

in plant-based foods (Nkhata et al., 2018). During sprouting, anti-

nutrients such as phytate and protease inhibitors are degraded.

Lectins and protease inhibitors have also been found to be slightly

reduced. Various kinds of grains and legumes have been enriched by

sprouting, which reduced phytate by 37–81%. The enzyme phytase,

which is often activated during seed germination, breaks down the

phytate–mineral bound complex in grains. Hence, this approach is

most usually employed to reduce the anti-nutritional content of

cereals (Oghbaei and Prakash, 2016; Vashishth et al., 2017). Azeke

et al. (2011) found that the phytate level of cereal grains was

considerably lowered after 10 days of sprouting. Recent research

also found that activation of beta-glucosidases during germination

altered the isoflavone profile of soybeans, and this is significant for

boosting nutritional value, as isoflavones have similar chelating effects

(Yoshiara et al., 2018; Ida and de Camargo, 2022). In addition, it has

been found that, in millets, the greatest reductions in polyphenol

concentrations (up to 75%) are obtained by sprouting, exceeding

those achieved by soaking, microwave treatment, and fermentation

(Singh et al., 2017).
Fermentation

The metabolic process of fermentation is found to enhance the

absorption of nutrients in grains. This also involves the oxidation of

carbohydrates to produce energy. Grain nutritional value has been

proven to be enhanced by fermentation that involves adding more

critical amino acids, including lysine, methionine, and tryptophan

(Mohapatra et al., 2019). The crucial process of fermentation

dramatically reduces the amount of anti-nutrients such as phytic acid,

tannins, and polyphenols in cereals (Simwaka et al., 2017). Tannin levels

were found to be reduced by lactic acid fermentation, resulting in

increased iron absorption (Ray et al., 2014). In a recent study, using

typical fermentation techniques, maize flour was fermented with a

mixture of lactic acid bacteria (LAB) for interval periods of 12 hours

to examine the impact of fermentation on anti-nutritional components.

It was found that anti-nutrients such as tannin, polyphenol, phytate, and

trypsin inhibitor were significantly decreased by fermentation and that

the reduction in anti-nutrients increased with increasing fermentation

time. The results showed that, compared with spontaneous

fermentation, anti-nutritional components were lowered more by LAB

mixture fermentation (Ogodo et al., 2019).
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Combination of methods

Combining several strategies can significantly reduce anti-

nutrients. In some cases, anti-nutrients can be totally eliminated

from foods. For example, soaking, sprouting, and lactic acid

fermentation reduced phytate in quinoa by 98%. Similarly,

sprouting and lactic acid fermentation of corn and sorghum

entirely eliminated phytate. Furthermore, soaking and boiling

pigeon peas reduced lectins, tannins, and protease inhibitors by 98–

100% (Onwuka, 2006). Hence, combining multiple distinct

elimination procedures is the most effective way to eliminate anti-

nutrients in plant meals.
Extrusion

In the food industry, extrusion is a widely utilized processing

method and has numerous benefits. A single screw or a series of

screws are used to push food ingredients through a tiny aperture. It

has been found that anti-nutrients such as phytic acid, tannins,

phenols, alpha-amylase, and trypsin inhibitors are dramatically

reduced by extrusion. Extrusion has also been found to reduce the

proportion of phytic acid phosphorus to total phosphorus. Extrusion

of legumes that have been previously soaked in water for 16 hours has

been recommended to improve their nutritional value, and this has

increased their utilization by humans and animals (Abd El-Hady and

Habiba, 2003). Tannins in sesame oilseed meal were also reduced

using a single-screw frying extruder (Mukhopadhyay and

Bandyopadhyay, 2003). Based on the official standard procedures of

the American Oil Chemists’ Society, test findings showed that around

71%–78% reduction in free gossypol levels was also effectively

attained by extrusion (Buser and Abbas, 2001).
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Breeding strategies to alter the anti-
nutritional components for enhanced
bioavailability of nutrients in foods

The reduction of anti-nutrients in crops is a crucial breeding

strategy that plays a major role in enhancing the quality of the

produce. Several breeding techniques, starting with selection,

mutation, backcrossing, hybridization, and population improvement,

have been implied with the natural and induced genetic resources. The

breeding for reducing antinutrients in crops was intiated in the early

1960s with glandless cotton (Figure 1). More recently, gene silencing

and editing techniques have been used to produce low anti-nutrient

lines of major crops (Figure 1). Conventional breeding for anti-nutrient

reduction began with the identification of reduced anti-nutrient

accumulation in germplasm accessions. Genotypes with reduced

gossypol content were selected in 1960, and McMichael (1960)

reported that glandlessness in cotton is conferred by two genes,

namely gl2 and gl3. As gossypol plays a major role in host plant

resistance, these findings later led to the discovery of an ideal genotype

with glandless seed-gossypol cum glanded plant (Dilday, 1986; Vroh Bi

et al., 1999). This led to the identification reduced gossypols in seeds

without manifesting their concentrations in the vegetative parts.

Subsequently, selection for reduced enzyme inhibitors from pulse

germplasm was also observed to be an efficient way to identify

potential donors with reduced inhibitors. Zero Kunitz inhibitor

lines, namely PI 157-440 and PI 196-168, were identified in

soybean (Orf and Hymowitz, 1979). These inhibitors were found to

be controlled by a recessive gene, tj, which was later introgressed into

an elite cultivar by Bernard and Hymowitz in 1986. Similarly, low-

vicine and low-covicine lines were selected from the germplasm of

919 accessions in faba bean. The low vicine–covicine trait in pulses

was found to be produced by a recessive gene, which was designated
FIGURE 1

Timeline of Anti-nutritional Breeding in major crops.
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“vc”, and this was conferred for reducing the enzyme inhibitors (Duc

et al., 1989; Duc et al. 2004; Gutiérrez et al., 2006; Webb et al. 2016;

O’Sullivan et al. 2018).

Despite these adopted selection techniques, recurrent selection in

maize with two synthetic populations, namely BS11 and BS3, was also

performed. Three cycles of selection were successful in developing

high-iron and high-zinc lines with low phytic acid in maize (Beavers

et al., 2015). Similarly, selection for low saponin in quinoa after three

cycles of pedigree breeding was found to reduce saponin

accumulation in the population, but, due to the dominance of this

trait, alternate strategies were required to reduce saponin content in

polyploid and heterozygous crops (Ward, 2000). During the course of

selection in the same period, there were investigations for induced

mutations in the cultivar MACS 450 of soybean by gamma rays. These

treatments were able to produce three mutants in M5 with lower lectin

and normal germination rate. Further, this was also suggested to be

used as a potential donor in improvising the soybean meal quality

(George et al., 2008).

Backcrossing and mutation breeding are the strategies

predominantly used to reduce anti-nutritional traits in crops

(Figure 2) (Wilcox et al., 2000; Yuan et al., 2009). This is because

several anti-nutritional traits play a major regulatory function in

plants (Sureshkumar et al., 2014). Hence, their drastic reduction has

been observed to have negative pleiotropic effects, affecting yield

(Raboy et al., 2015). For this reason, phytic acid has been successfully

reduced in potential donors identified from spontaneous and induced

mutants in major crops (Pramitha et al., 2021). Raboy et al. (2000)

identified three lpa mutants in maize. Among them, the lpa1 mutant

was found to exhibit low phytic acid with meagre accumulation of

myoinositol phosphates due to a mutation in the initial biosynthesis
Frontiers in Plant Science 12
of phytic acid involving myoinositol. lpa2 had reduced phytic acid

with accumulation of myoinositol phosphate intermediates, and lpa3

had reduced phytic acid with accumulation of myoinositol (Shi et al.

2003; Shi et al., 2005). Recent studies have shown that introgression of

lpa 2 in the parents of a ruling hybrid, DMH 121, from the Indian

Institute of Maize Research, by marker-assisted backcross was

efficient in developing a better version of the released hybrid. The

near isogenic lines (NILs) of the parents of DMH 121, namely BML 6

and BML 45, were observed to produce less phytate than the original

lines. The newer versions of these parents were exactly the same as the

earlier version, except for phytic acid content, and they could be

further hybridized to produce low-phytic acid hybrids in maize

(Yathish et al., 2022). This coincided with marker-assisted

backcross of the null allele for Kunitz trypsin inhibitor (KTI) in

DS9712 and DS9814 with a donor called P1542044 in soybean. In this

case, in order to minimize linkage drag, three selections, foreground,

background, and recombinant, were performed. This resulted in the

development of six KTI-free lines in soybean with a maximum

recovery percentage (Maranna et al., 2016).

Regarding RFOs, their amount of consumption and the ratio of

balanced protein and oil profile in foods are yet to be determined

(Elango et al., 2022). Selection for a lower RFOs version of high-RFOs

foods such legumes found a negative correlation with protein and

yield. In soybean, a significant negative correlation was observed

between protein and RFOs, whereas RFOs was reported to have a

positive correlation with oil content (Bueno et al., 2018). Studies on

RFOs have identified a role for MIPS (myoinositol phosphate

synthase) and galactinol synthase activity, which was exploited to

manipulate RFOs levels in major crops (Elango et al., 2022). Further,

genetic mapping for raffinose in recombinant inbred lines (RILs) of
FIGURE 2

Breeding methods focused for reducing anti-nutritional factors.
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soybean produced from a cross of MD96-5722 and Spencer detected

14 major quantitative trait loci (QTLs) for raffinose which could be

utilized to produce higher concentrations of sucrose and lower

concentrations of raffinose and stachyose in the future (Akond

et al., 2015).

Glucosinolates have also been similarly altered by breeding

approaches. Glucosinolates were found to have a quantitative

inheritance which was highly influenced by environmental factors.

A high-density linkage map of the major genes involved in the

synthesis of glucosinolates in Brassica oleracea has been created

with sequences of BoGSL-ALK. In addition, comparative genomics

studies of the glucosinolate biosynthesis pathway in Arabidopsis

revealed significant QTLs and candidate genes to alter its profile in

crops (Gao et al., 2007; Issa, 2010). This led to the development of

high-glucoraphanin broccoli by marker-assisted selection involving

an interspecific cross between B. oleraceae × B. villosa. In addition,

marker-assisted selection for altered glucosinolate profiles was

achieved between B. rapa × B. oleraceae (Hirani, 2011). Further

projects have focused on developing super broccoli with higher

isothiocyanate content by incorporating genes from wild species

with the aim of developing pharmaceuticals (Ishida et al., 2014).

Similar studies have investigated isothiocyanates and glucosinolates

in Raphanus sativus, and QTL analyses using high genetic density

mapping led to the development of candidate genes for glucosinolate

synthesis in roots (Wang et al. 2013). These studies have improved the

prospects of altering the profiles of glucosinolates and isothiocyanates

(Zou et al., 2013).

Subsequently, breeding to achieve zero erucic acid, due to its

serious health issues, was also effective in producing low erucic acid

lines in brassicas (Sivaraman et al., 2004). The major gene that plays a

role in erucic acid synthesis was observed to be FAE1. Sequencing of

the FAE1 gene in high- and low-erucic acid cultivars revealed 28 base

deletions containing 24 bases of AT-rich regions in a 1,300-bp section

upstream of the promoter of the FAE1 start codon (Yan et al., 2015).

Later, mutations in FAE1 were induced to identify low erucic acid

lines, and introgression of these erucic acid mutant genes in elite

cultivars was carried out by Karim et al. (2016). In that study, a genes

named BnFAE1.1 and BnFAE1.2 in the A and C genome of rapeseed

was introgressed to a turnip cultivar. The incorporation of the mutant

gene bnfae1.1(e1) was monitored by a CAPS (cleaved amplified

polymorphic sequence) primer. Early deteriorations in the seed set

of backcross progenies were later observed to be improved in the

advanced progenies. This suggested that the frequency of

recombination events among progenies substantiated the negative

effects on morphological traits in later generations (Pramitha

et al., 2021).

The overall schemes adopted for marker-assisted breeding and

QTLs detected for reducing the anti-nutrients are presented in

Table 3. It can be seen that, in the earlier reports, anti-nutritional

factors were manipulated either by introgression or by mutation

breeding. The backcrosses also involved selfing in their intermittent

process, as most of the reductions were controlled by recessive genes

(Table 3). Genetic manipulation of anti-nutrients needs to be carefully

monitored, as anti-nutrients play a major role in plant defense and

abiotic stress tolerance (Guttieri et al. 2004). Hence, alternate

strategies to minimize their negative pleiotropic effects with rapid

selection among populations have to be further developed in the
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future using omics approaches. Upcoming projects involving

transgenics and gene editing opens a new gateway to tissue-specific

expression, an area that is gaining popularity (Wang et al., 2022).
Advanced genetic approaches for
developing sustainable food crops
in future

Manipulating anti-nutritional traits to enhance the bioavailability

of nutrients is a major concern in crops, as these traits have to be

mitigated in such a way as to avoid negative influences on yield. The

reduction of these traits in crops has been successfully carried out for

major anti-nutrients and the various methods of altering their content

are described in Table 4. Gene silencing using RNAi technology is an

efficient way of optimizing the expression of these factors in crops and

has been applied to the genes involved in the biosynthesis of these

components in plants. Gossypol is one plant phytochemical that plays

a major role in host plant resistance and is not needed in human

nutrition. Therefore, ultra-low-gossypol cotton has been developed by

silencing of d-cadinene synthase gene. The knockdown of this gene

reduced the accumulation of gossypol in seeds, foliage, and floral

organs of transgenic cotton. The initial version of transgenic cotton

showed on-par performance, in terms of yield and fiber quality, with

stable expression. The transgenic cotton was also observed to exhibit a

higher oil content than the control (Palle et al., 2013). Recently,

selective RNAi knockout of the d-cadinene gossypol gene in seeds of

the cultivar TAM66274 effectively reduced the oil content by about

97%, and the cultivar also passed food safety tests conducted by the

Food and Agricultural Organization of the USA (FAO) (Rathore et al.,

2020). This method has also been found to be effective in controlling

gossypol levels in seeds without affecting gossypol concentration in

the vegetative parts, and the technique has been patented by Texas A

& M university. Thus, transgenic cotton would contain either a d-
cadinene synthase gene or a d-cadinene-8 hydroxylase gene, or both,

linked to a seed-specific promoter gene for inducing RNA gene

silencing when expressed in cottonseed of the plant (Rathore

et al., 2009).

Metabolite engineering for manipulating the concentration of

raffinose in soybean was carried out by Valentine et al. (2017). For

reducing the concentration of raffinose, the raffinose synthase 2 gene

(RS2) was down-regulated by an RNAi construct. The silencing of this

gene was further confirmed by qPCR and the total metabolizable

energy for soybean meal in poultry was increased from 2,411 kcal/kg

to 2,703 kcal/kg in the transgenic soybean. In contrast to this

approach, the suppression of the cucumber stachyose synthase gene

(CsSTS) by RNAi-mediated silencing had a significant impact on

phloem loading, carbohydrate metabolism, and low-temperature

stress tolerance (Lü et al., 2017). Recently, an advanced technique

involving gene editing with two guide RNAs to knock out GmGoLS1A

and GmGoLS1B (galactinol synthase genes) resulted in a reduction of

raffinose from 64.70 mg/g to 41.95 mg/g (a 35% decrease) in soybean.

The developed lines from these knockouts established a higher

verbascose, protein, and fat content with no effect on plant growth,

suggesting that they are potential targets for altering raffinose in

soyabean genotypes (Le et al., 2020).
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TABLE 3 Summary of the major QTL’s observed for the anti-nutrients in crops.

S.
no.

Crop Anti-nutrient QTL/marker Location Reference

1 Rice Phytic acid Chromosome
2L

Larson et al., 2000

Chromosome 2 Andaya and Tai, 2005

Chromosome 5 Stangoulis et al., 2007

Chromosome
12

qLPA8.1 Chromosome 8 Gyani et al., 2020

2 Barley Phytic acid Chromosome
2H

Larson et al., 1998

3 Barley Raffinose QcRaf.2H Chromosome
2H

Gudys et al., 2018

4 Corn Phytic acid Chromosome 4 Liu et al., 2013

Chromosome 6

Chromosome 1

Chromosome 7

Chromosome 2

5 Mung bean Phytic acid SDPAP4.1 LG- 4A Sompong et al., 2012

SDPAP11.1 LG-11A

6 Pea Phytic acid LG-5 Shanmugam et al., 2015

7 Rapeseed Erucic acid qEA.A8.1 LG-A8 Cao et al., 2010

qEA.A8.2 LG-A8

8 Indian mustard (Brassica juncea
L.)

Erucic acid ea-1 LG-17 Gupta et al., 2004

ea-2 LG-3

Eru-A8-1-EJ LG-A08 Rout et al., 2018

Eru-A8-2-EJ LG-A08

Eru-A8-3-EJ LG-A08

Eru-A8-1-EPJ LG-A08

Eru-A8-2-EPJ LG-A08

Eru-A8-3-EPJ LG-A08

Eru-A8-1-VH LG-A08

Eru-A8-2-VH LG-A08

Eru-A8-1-VH LG-A08

Eru-B7-1-VH LG-B07

Eru-B7-2-VH LG-B07

Eru-B7-1-DE LG-B07

Eru-B7-2-DE LG-B07

Eru-B7-3-DE LG-B07

Eru-A8-1-TD LG-A08

Eru-A8–2-TD LG-A08

Eru-A8-3-TD LG-A08

(Continued)
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TABLE 3 Continued

S.
no.

Crop Anti-nutrient QTL/marker Location Reference

9 Yellow mustard (Sinapis alba L.) Erucic acid Chromosome 3 Javidfar and Cheng,
2013

10 Soybean Gossypol qGos1-c13-1 Chromosome
13

Yu et al., 2012

qGos1-c19-1 Chromosome
19

qGos2-c19-1 Chromosome
19

11 Soybean Raffinose Chromosome 6 Salari et al., 2021

Chromosome 6 Skoneczka et al., 2009

qRAF001 Chromosome 1 Akond et al., 2015

qRAF002 Chromosome 3

qRAF003 Chromosome 6

qRAF004 Chromosome 9

qRAF005 Chromosome
14

qRAF006 Chromosome
14

qRAF007 Chromosome
16

12 Soybean Stachyose qSTA001 Chromosome 1 Akond et al., 2015

qSTA002 Chromosome 6

qSTA003 Chromosome
12

qSTA004 Chromosome
14

13 Soybean Group A saponin Chromosome
15

Sundaramoorthy et al.,
2018

Group A saponin (hypocotyl) Chromosome 5
(A1)

Teraishi et al., 2017

Chromosome 8
(A2)

Group A saponin (cotyledon) Chromosome 6
(C2)

14 Faba bean Vicine–convicine Chromosome 1 Khazaei et al., 2015

15 Sorghum HCN (Dhurrin) Dhu1 Chromosome 1 Hayes et al., 2016

Hydrocyanic acid qPA7-1 Chromosome 4 Wu et al., 2022

16 Sorghum Tannin Qsqr.t-2 Chromosome 4 Wu et al., 2012

Qsqr.t-4 Chromosome 4

17 Field mustard (Brassica rapa) Glucosinolates LG-A3 Hirani, 2011

18 Rapeseed (Brassica napus L.) Glucosinolates GSL-1 LG-20 Toroser et al., 1995

GSL-2 LG-1

19 Indian mustard (Brassica juncea
L.)

3-Butenyl-glucosinolates GSL-A2a LG-2a (A) Mahmood et al., 2003

GSL-A2b LG-2b(A)

2-Propenyl-glucosinolates GSL-A2a LG-2a (A)

(Continued)
F
rontiers
 in Plant Science
 15
 frontiersin.org

https://doi.org/10.3389/fpls.2022.1070398
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Duraiswamy et al. 10.3389/fpls.2022.1070398
Adding to these findings, RNAi-mediated silencing of three

amylase and trypsin inhibitor genes, namely CM3, CM16, and O.28

(a-amylase/trypsin inhibitors genes), revealed a higher trypsin

inhibition which was acceptable to non-celiac wheat-allergic

patients. Although there were some alterations in inhibitors, there

were no changes in in the high-molecular-weight glutenin subunits or

in yield (Kalunke et al., 2020). However, trypsin inhibitors such as

TcTI from cocoa provide significant defense against Helicoverpa (do

Amaral et al., 2022), and trypsin inhibitors that hinder digestion were

also recently reported to be effective biopesticides (Rodrıǵuez-

Sifuentes et al., 2020). Advanced gene editing techniques targeting

two seed-specific KTI genes, namely KTI1 and KTI3, resulting in

small deletions and insertions in soybean open reading frames, offer

an alternate strategy, by focusing on reducing trypsin inhibitors only

in seeds for consumption, will be helpful in the future (Wang

et al., 2022).

In addition to the above anti-nutrients, saponin has also been

modified by RNAi-mediated silencing of two b-amyrin synthase genes

(GmBAS1 and GmBAS2), and has a seed-specific promoter involved in

the production of b-conglycinin, a seed storage protein in soybean

(Takagi et al., 2011). Subsequently, metabolite remodeling of oxalate-

by-oxalate decarboxylase (OXDC) effected a 90% reduction in oxalate,

accompanied by with higher calcium, iron, and citrate, in transgenic
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tomatoes. Proteomic analysis of the OXDC leading to concerns that

manipulation of this gene would also have undesirable effects unless

tissue specific expression can be achieved (Chakraborty et al., 2013).

Similarly, the use of RNAi to alterMYB134 to reduce tannins in poplar

plants resulted in enhancing the susceptibility of the plant toward

oxidative stress, emphasizing the importance of tissue-specific

expression when reducing anti-nutrients in crops (Gourlay et al.,

2020). Several approaches, including targeted silencing of IPK1 genes

for lowering phytic acid in rice seeds (Ali et al., 2013), BjuMYB28 to

reduce glucosinolates in brassicas (Augustine et al., 2013), OXDC in

grass pea and soybean (Kumar V, et al., 2016), ITPK genes for reducing

phytate in rice and wheat seeds with increased iron and zinc (Lucca et

al. 2001) (Aggarwal et al. 2018; Pandey et al. 2021; Karmakar et al.,

2020), have been successful in reducing anti-nutrients with minimum

effects on morphological performance. Following the success of RNAi

in IPK to reduce phytic acid, the CRISPR-Cas9 method has recently

been used on a similar gene in soyabean, named GmIPK, to alter the

phytate concentrations in soybean. This experiment was intended to

standardize stable transformation of transgenic soybean lines with

edited GmIPK2. This further emphasized the focus on implying more

bioinformatic tools and study on transient expression which are

necessary in future to further to improvise the soybean meal quality

by CRISPR (Jose et al., 2022).
TABLE 3 Continued

S.
no.

Crop Anti-nutrient QTL/marker Location Reference

GSL-F unlinked
segment

GSL-B3 LG-3 (B)

20 Barbarea vulgaris NAS, 2-phenylethylglucosinolate (gluconasturtiin) qNAS-4-1 LG-4 Liu et al., 2019

qNAS-4–2 LG-4

BAR, (2S)-2-hydroxy-2-Phenylethylglucosinolate
(glucobarbarin)

qBAR-3-1 LG-3

qBAR-4-1 LG-4

qBAR-5-1 LG-5

EBAR, (2R)2-hydroxy-2-phenylethylglucosinolate
(epiglucobarbarin)

qEBAR-3–1 LG-3

qEBAR-4-1 LG-4

qEBAR-5-1 LG-5

IM, 3-indolylmethylglucosinolate (glucobrassicin) qIM-4-1 LG-4

qIM-6-1 LG-6

4mIM, 4-methoxy-3-indolylmethylglucosinolate (4-
methoxyglucobrassicin)

q4mIM-4-1 LG-4

q4mIM-5-1 LG-5

21 Narrow leaf lupin (Lupinus
angustifolius)

Quinolizidine alkaloids iuc_RAP2-7-
pauper loci

LG-07 Kroc et al., 2019

22 White lupin (Lupinus albus L.) Quinolizidine alkaloids 11 loci LG-11 Phan et al., 2007

Pauper loci LG-18 Rychel and
Ksiaż̨kiewicz, 2019

23 Yellow lupin (Lupinus luteus L.) Quinolizidine alkaloids YL-06 loci LG-06 Iqbal et al., 2020
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TABLE 4 Major RNAi and gene editing techniques adopted in major crops.

S.
no.

Anti-
nutrient Crop Gene/enzyme Pathway Technique Reference

1. Phytic acid

Rice IPK1 Phosphorylation of Ins(3)P and
phospholipase C mediated

Chromosome mapping Ye et al., 2013

lpa-1 Lipid independent Gene editing Watanabe et al., 2018

OsITP5/6K/1 Lipid dependent phytic acid
biosynthesis
Lipid independent phytic acid
biosynthesis pathway

RNAi-mediated down-regulation Karmakar et al., 2020

OsIPK1 Inositol phosphate pathway RNAi-mediated seed-specific silencing Ali et al., 2013

ITPK, OsITP5 Myoinositol pathway RNAi-mediated down-regulation Karmakar et al., 2020

RINO1 Myoinositol pathway and direct
proanthocyanidin pathway

Antisense cDNA approach Kuwano et al., 2009

Wheat TaIPK1 Auxin signaling pathway RNAi technology Ibrahim et al., 2022

TaABCC13 Myoinositol pathway RNAi technology Bhati et al., 2016

Soybean GmMIPS-1 Lipid dependent/salvage pathway Gene silencing Nunes et al., 2006; Kumar
et al., 2019

GmIPK1 Both lipid independent and lipid
dependent

CRISPR/Cas-9 genome editing Song et al., 2022

lpa1 Myoinositol hexa-kis phosphate EMS approach Gillman et al., 2011

Glyma.20G085100 – QTL mapping Marsh et al., 2022; Jha
et al., 2022

Barley lpa-1-1 Signaling pathway QTL mapping Bregitzer and Raboy, 2006

Corn ZmMRP4 in lpa-2 Supply pathway C-T transition by mutation Tamilkumar et al., 2014

ZmIPK1 Inositol phosphate pathway ZFN approach Shukla et al., 2009

lpa2–1 Myoinositol InsP6 pathway EMS Mu insertion approach Raboy et al., 2000

2.lpa1–1 Myoinositol phosphate pathway Gene silencing Shi et al., 2007

Rapeseed BnITPK Both lipid dependent and lipid
independent

CRISPR/Cas-9 gene editing Sashidhar et al., 2020

Arabidopsis AtIpk1-1 – T-DNA insertion method Stevenson-Paulik et al.,
2005

AtITPK1, AtITPK4 Inositol InsP6 pathway Reverse genetic approach Kim and Tai, 2011

atips1, atips2 – T-DNA insertion method Kim and Tai, 2011

Lablab bean dlMIPS Myoinositol phosphate synthase RT-PCR system Jagal Kishore et al., 2020

2. Erucic acid

Rapeseed FAE1 – Gene editing James et al., 1995; Yan
et al., 2015

FAD2 and FAE1 Gene silencing Peng et al., 2010

BnFAE1.1 Ketoacyl-CoA synthase RNAi silencing Tian et al., 2011; Kaur,
2018

BnFAE1 RNAi silencing Shi et al., 2015

BnFAE1 and
BnFAD2

Long-chain fatty acid biosynthesis CRISPR/Cas9-mediated gene editing Shi et al., 2022

BnFAD2 and
BnFAE1

Fatty acid biosynthesis RNAi silencing Shi et al., 2017

Indian
mustard

BjFAE1 Ketoacyl-CoA synthase Agrobacterium-mediated transgenic
method

Kanrar et al., 2006

Ethiopian
mustard

FAD2 and FAE Fatty acid biosynthesis Hairpin-RNA mediated silencing Mietkiewska et al., 2008

(Continued)
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TABLE 4 Continued

S.
no.

Anti-
nutrient Crop Gene/enzyme Pathway Technique Reference

3. Gossypol

Cotton Cad1-A D-Cadinene synthase RNAi technology Davis et al., 1996; Luo
et al., 2001

gl2 and gl3 D-Cadinene synthase Southern analysis Martin et al., 2003;
Benedict et al., 2004;
Sunilkumar et al., 2006

gl1, gl2, and gl3 D-Cadinene synthase RNAi silencing Palle et al., 2013; Rathore
et al., 2020

GhMYB25 – Antisense gene silencing Abdurakhmonov et al.,
2016

GhCLA1 – Temperature-sensitivity CRISPR/
LbCpf1-mediated genome editing

Li et al., 2021

GhCLA1 – CRISPR/Cas-9 technology Wang et al., 2018

CYP82D109 Gossypol biosynthesis pathway RNAi technology Wagner et al., 2015

4. Lectin
Soybean P34 allergen – CRISPR/Cas-9 technology Watanabe et al., 2018

Peanut Gly1 protein NAD-dependent 2-D gel electrophoresis Kottapalli et al., 2008

5. Saponin

Soybean GmBAS1, GmBAS2 b-Amyrin synthase RNAi-mediated gene silencing Takagi et al., 2011

DeF26G1 Flavonoid biosynthesis Transcriptome profiling Kuma A, et al., 2016

Barrel medic CYP93E2 – Agrobacterium-mediated
transformation

Confalonieri et al., 2021

Korean
ginseng

CYP716A53v2 PPT synthase CRISPR/Cas9-mediated gene knockout Choi et al., 2022

CYP716A53v2 PPT synthase RNAi technology Park et al., 2016

6. Tannin

Quaking
aspen

MYB134 CT biosynthesis RNAi suppression Gourlay et al., 2020

Peanut aflS/aflJ,
aflR,
aflC/pksA/pksL1,
pes1,
afelp

– RNAi silencing Arias et al., 2015

7. Oxalic acid

Soybean b-ODAP – Transgenic production Kumar V, et al., 2016

Wheat BoGSL-ELONG,
BoGSL-PRO, and
BoGSL-ALK

Glucosinolate biosynthesis
pathway

Comparative genomic analysis (QTL
mapping)

Ishida et al., 2014

Tomato FvOXDC Oxalic acid biosynthesis pathway Metabolic remodeling Chakraborty et al., 2013

Tobacco Germin gf-2.8 Co-A-dependent pathway,
jasmonate pathways, and
phenylpropanoid pathways

Transgenic approach Kumar et al., 2019

8.
Vicine and
convicine

Faba bean vc, vcr – QTL mapping Khazaei et al., 2019

9.
Enzyme
inhibitors

Finger millet Opaque2 – Random amplified polymorphic DNA
(RAPD) and simple sequence repeat
(SSR) profiling

Vinoth and Ravindhran,
2017

Durum wheat 0.28 ATI ATI pathway CRISPR/Cas-9 multiplex editing Camerlengo et al., 2020

Bread wheat CM3, CM16 and
0.28 ATI

ATI pathway RNAi silencing Kalunke et al., 2020

10. Glucosinolate

Wild cabbage BjMYB28 Aliphatic glucosinolate
biosynthesis

RNAi targeted suppression Augustine et al., 2013

Chinese kale BoaMYB28 Aliphatic glucosinolate
biosynthesis

RNAi approach Yin et al., 2017

(Continued)
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Considering the earlier observations for reducing the anti-

nutrients, it can be observed that RNAi and gene editing are the

two major techniques that are used in tissue-specific reduction in

major crops (Figure 3) (Perera et al. 2018; Elkonin et al. 2021).

Although the initial investigations have been conducted with reduced

anti-nutrients, a standard protocol for strategic reduction of anti-

nutrients is crucial in crops such as pulses needs to be reinforced in

future. Legume-based foods are often reported to hinder the digestion

process and, thus, standardization of protocols for seed-specific

expression establishes a pathway to a sustainable diet in near future

(Drakakaki et al. 2005). In addition, integrative omics will play an

important role in the development of low-anti-nutrient versions of

other major food crops and for detecting low anti-nutrient donors

(Parca et al., 2018; Pandey et al. 2021).
Conclusion

Reducing anti-nutritional traits in crops is essential factor to

achieve higher mineral bioavailability in foods. Although anti-

nutrients pose a serious threat to human health, owing to their
Frontiers in Plant Science 19
toxicity, some of them, such as phytic acid, raffinose, tannins and

gossypol, are beneficial to growth and metabolism in plants. These

anti-nutrients have both favorable and undesirable properties. On the

one hand, they favor plant growth through regulatory activities such

as biotic and abiotic stress tolerance. On the other hand, they hinder

mineral absorption. This restrains any approach that focuses on a

threshold reduction in anti-nutritional traits in major food crops.

Despite this, a few anti-nutritional factors, such as Kunitz inhibitors,

glucosinolates, tannins, alkaloids, and saponins, are being employed

in the biopesticides and pharmaceutical industries. Therefore, a

constitutive focus on manipulating this content for specific

purposes needs to be ensured in future. This would facilitate safe

consumption and processing of foods for the upcoming generation for

specific anti-nutrients individually to avoid food allergies in future.

Several techniques have been employed to alter the accumulation of

anti-nutrients in grains, but the use of advanced omics techniques in

genomics-assisted breeding, in the case of the majority of anti-

nutrients, remain unused. Hence, omics offer a new gateway to

understanding the regulatory pathways of crucial anti-nutritional

traits in plants and their genetic manipulation. Recently, the use of

mutation breeding, introgression, RNAi technology, and gene editing
TABLE 4 Continued

S.
no.

Anti-
nutrient Crop Gene/enzyme Pathway Technique Reference

Indian
Mustard

BjuMYB28 Aliphatic glucosinolate
biosynthesis

Intron-spliced hairpin RNAi targeting Augustine and Bisht, 2019

BjuXLG Aliphatic glucosinolate
biosynthesis

RNAi based suppression Tiwari et al., 2021

Rapeseed MAM Aliphatic glucosinolate
biosynthesis pathway

RNAi silencing Liu et al., 2011

BrGI GSL biosynthetic pathway RNAi knockdown Kim et al., 2021

Arabidopsis HAG1/MYB28 Aliphatic glucosinolate
biosynthesis pathway

RNAi knockdown Gigolashvili et al., 2007

OBP2 IAA biosynthetic pathway RNAi mediated Skirycz et al., 2006

Garden cress LcIND Glucosinolate biosynthesis
pathway

RNAi mediated Karmakar et al., 2020

11. Alkaloids

Potato and
Tomato

Steroidal
glycoalkaloids

Cytosolic mevalonic acid pathway Silencing glycoalkaloid metabolism 4 Itkin et al., 2013

Steroidal
glycoalkaloids
(SSR2)

Cytosolic mevalonate pathway Gene silencing Cárdenas et al., 2015

Tobacco and
Catharanthus
roeus

Steroidal
glycoalkaloids
(SSR2)

Mevalonate pathway Gene editing Cárdenas et al., 2016

12. HCN

Cassava MeCYP79D1 Cyanogenic glycoside biosynthetic
pathway

CRISPR/Cas9-mediated genome
editing

Juma et al., 2022

CYP79D1 and
CYO79D2

Cyanogenic glycoside biosynthetic
pathway

CRISPR/Cas9-mediated knockout Gomez et al., 2021

Sorghum CYP79A1 Cyanogenic glycoside pathway Antisense approach Pandey et al., 2019

13. BOAA Grass pea b-ODAP b-ODAP biosynthesis pathway CRISPR/Cas9-mediated gene editing Das et al., 2021
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by CRISPR/Cas9 have enable us to achieve seed-specific expression in

crops. Thereby, anti-nutrients that confer regulation of vegetative

growth and their activity will remain unaffected. To conclude, we

could observe that the expression of these anti-nutritional factors

varies from crop to crop and, based on their intake, a specific strategy

has to be adopted in major crops to provide high-value nutritional

foods in future.
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