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TCP gene family are specific transcription factors for plant, and considered to

play an important role in development and growth. However, few related

studies investigated the TCP gene trait and how it plays a role in growth and

development of Orchidaceae. In this study, we obtained 14 TCP genes

(CgTCPs) from the Spring Orchid Cymbidium goeringii genome. The

classification results showed that 14 CgTCPs were mainly divided into two

clades as follows: four PCF genes (Class I), nine CIN genes and one CYC gene

(Class II). The sequence analysis showed that the TCP proteins of C. goeringii

contain four conserved regions (basic Helix-Loop-Helix) in the TCP domain.

The exon−intron structure varied in the clade according to a comparative

investigation of the gene structure, and some genes had no introns. There are

fewer CgTCP homologous gene pairs compared with Dendrobium catenatum

and Phalaenopsis equestris, suggesting that the TCP genes in C. goeringii

suffered more loss events. The majority of the cis-elements revealed to be

enriched in the function of light responsiveness, followed by MeJA and ABA

responsiveness, demonstrating their functions in regulating by light and

phytohormones. The collinearity study revealed that the TCPs in D.

catenatum, P. equestris and C. goeringii almost 1:1. The transcriptomic data

and real-time reverse transcription-quantitative PCR (RT−qPCR) expression

profiles showed that the flower-specific expression of the TCP class II genes

(CgCIN2,CgCIN5 andCgCIN6) may be related to the regulation of florescence.

Altogether, this study provides a comprehensive analysis uncovering the

underlying function of TCP genes in Orchidaceae.
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Introduction

TCP transcription factors (TFs) compose a gene family

particular to plant which relate to growth and development.

The gene family was discovered by Cubas et al. (1999) and

named according to the TEOSINTE BRANCHED 1 (TB1) gene

(Zea mays), CYCLOIDEA (CYC) gene (Antirrhinum majus),

and Proliferating Cell Factor gene (PCF) (Oryza sativus) (TCP).

TCP genes are characterized by a basic helix-loop-helix motif of

59 amino acids (aa) named the TCP domain, which allows

protein interaction and DNA binding (Kosugi & Ohashi, 1997;

Cubas et al., 1999; Shang et al., 2022). TCP genes are mainly

divided into Class I and Class II according to the loss of four

amino acids in Class II basic domains (Martıń-Trillo and Cubas,

2010). Class I, also called the TCP-P class, contains the PCF

genes PCF1 and PCF2, which were discovered in rice and bind

the promoter of the PROLIFERATING CELL NUCLEAR

ANTIGEN (PCNA) gene, which is related to DNA replication,

chromosome maintenance and cell cycle progression (Cubas

et al., 1999). Class II was also known as the TCP-C class and

contains the TB1, CYC, and CIN genes. The TB1 genes mainly

regulate apical dominance and inflorescence development

(Doebley et al., 1997; Dixon et al., 2018), the CYC genes

mainly control floral bilateral symmetry development (Luo

et al., 1999; Hileman, 2014), and the CIN genes are mostly

involved in the development of lateral organ (Palatnik et al.,

2003; Nath et al., 2003; Crawford et al., 2004; Walcher-Chevillet

and Kramer, 2016). More non-model plant TCP genes were

identified and analyzed in the genome era, promoting the

comprehension of the structures and functions of this

gene family.

TCP transcription factors are ancient proteins that exist in

all plant phylostrata, except for unicellular algae (Navaud et al.,

2007; Floyd & Bowman, 2007). This gene family contains only

five to six members in moss, ferns, and lycophytes. With genome

duplication, evolution and diversification, more than ten genes

have been generated in angiosperms and gymnosperms, and

more than 20 members have been generated in some model

plant species (Riechmann et al., 2000; Cubas, 2002; Navaud et al.,

2007; Mao et al., 2014). Two classes of genes exist in all plants

that contain TCP genes, but the CYC/TB1 genes were not found

in lycophytes or more ancient plants (Floyd & Bowman, 2007;

Horn et al., 2015). Therefore, the CIN class is more ancient than

CYC/TB1, and the CYC/TB1 clade may have originated in

gymnosperms or angiosperms and is mainly involved in floral

organ development (Palatnik et al., 2003; Koyama et al., 2007;

Horn et al., 2015). The TB1 genes and homologs mainly control

leaf axillary development in vegetable and reproductive organs

of monocots (Hubbard et al., 2002; Lewis et al., 2008; Yuan et al.,

2009; De Paolo et al., 2015). The CYC1/2/3 genes perform

different functions in core eudicots (Howarth & Donoghue,

2006). The number and function of TCP genes varied and

differentiated during plant evolution.
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Orchidaceae is one of the most diverse families in vascular

plants, containing about 28,000 species in 700 genera (Chase

et al., 2015; Christenhusz & Byng, 2016; Zhang et al., 2017).

Orchids grow in an extensive range of habitats worldwide, with

high diversity in flower and vegetable morphology, life form, and

pollination (Givnish et al., 2015; Chen et al., 2020a; Chen et al.,

2021; Liu and Lan, 2022; Li et al., 2022). Although orchids have

high biological and economic value, few studies investigating

TCP TFs have been performed in orchids, and the floral

morphology and reproductive development are still unknown.

Lin et al. (2016) identified 23 TCP genes in Phalaenopsis

equestris, focused on the development of ovules, and

discovered that PePCF10 and PeCIN8 influence cell division to

play crucial roles in ovule formation. Zhang et al. (2021a)

identified 25 TCP genes in Dendrobium catenatum and

concentrated on the TCP genes that control leaf development

through the jasmonate-signaling pathway. DcaTCP4 and

DcaTCP9 were found to possess varied expression patterns

after 3 h of jasmonate treatment. Recently, some orchid

genomes have been sequenced and analyzed (Sun et al., 2021;

Yang et al., 2021; Ai et al., 2021; Li et al., 2022), and a TCP gene

family analysis could be promoted.

To demonstrate the properties of TCP genes over the

evolut ion of orchids , we undertook genome-wide

identification, comparison, and expression investigations of

TCP genes in Cymbidium goeringii (Spring Orchid or

Chunlan) (Sun et al., 2021) in this work. The findings could

offer novel understanding of the fundamental processes driving

the growth and development of orchid organs and other

flowering plants.
Materials and methods

Plant materials

Wild plants of C. goeringii were cultivated and collected

from the Forest Orchid Garden greenhouse at Fujian Agriculture

and Forestry University (Fuzhou, Fujian Province, China). The

temperature of the greenhouse culture was approximately 25°C.

The roots, stems, leaves and flowers (sepal, petal, lip and

column) were used in this study. All samples were gathered,

put in tubes, and frozen before being stored in an ultralow

temperature refrigerator at −80°C.
Genome-wide identification and
physicochemical properties of
TCP genes

CgTCP (C. goeringii TCP gene) genes were identified in the

C. goeringii genome (Sun et al., 2021), and five species

(Arabidopsis thaliana, Oryza sativa, Ananas comosus,
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https://doi.org/10.3389/fpls.2022.1068969
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2022.1068969
Phalaenopsis equestris, and Dendrobium catenatum) TCP

proteins served as the queries. The genome and transcriptome

data of C. goeringii were downloaded from the NCBI database1,

and the Arabidopsis thaliana TCP proteins were downloaded

from TAIR2, the rice TCP proteins download from Rice Genome

Annotation Project (http://rice.uga.edu/), the Ananas comosus,

Phalaenopsis equestris, and Dendrobium catenatum TCP

proteins download from previous studies (Lin et al., 2016;

Zhang et al., 2021a; Wang et al., 2022). BLAST and HMMER

were used to identify the TCP genes. A BLAST table (E-value <

0.05) and sequence were acquired from TBtools (Chen et al.,

2020b). The hidden Markov model (HMM) of the TCP domain

(PF03634) was downloaded from the Pfam protein family

database3, and the HMM profile was used to identify the TCP

protein sequences through the Simple HMM Search in TBtools

(Chen et al., 2020b). Combining the results of BLAST and

Hmmsearch, all TCP genes were analyzed by NCBI Batch-

CDD tools4, and the genes containing the entire TCP domain

were retained. The ExPASy online tool5 (Artimo et al., 2012)

used to predict physicochemical properties of the TCP genes,

and the Plant-mPloc6 (Chou and Shen, 2010) used to predict

subcellular localizations.
Motif and gene structure analysis of
TCP genes

According to the gene location of the TCP genes in the C.

goeringii genome, complete gene sequences were extracted.

Complete gene sequences and coding sequences (CDSs) were

prepared for the gene structure analysis in GSDS7 (Hu et al.,

2015). The MEME8 online tool (Bailey et al., 2009) used the

default parameters to examine the motifs of TCP genes, and the

visualization of the results of the gene structure and motifs were

combined using TBtools.
Phylogenetic analysis and classification
of TCP genes

The TCP genes of C. goeringii were collected and identified,

and the sequences were aligned by MUSCLE (Edgar, 2004) using

MEGA 7 (Kumar et al., 2016). Alignment was also conducted in

the TCP genes of C. goeringii, Arabidopsis thaliana, Phalaenopsis

equestris (Lin et al., 2016) and Dendrobium catenatum (Zhang

et al., 2021a). The phylogenetic analysis was performed by the

maximum likelihood (ML) method using RA×ML (RAxML-

HPC2 on XSEDE) in the CIPRES Science Gateway web server9

(Miller et al., 2010) with the Protein CAT model and GTR

matrix with 1,000 bootstrap iterations. The Evolview (He et al.,

2016) used to polish the output phylogenetic tree.
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Collinearity analysis and mapping TCP
genes on chromosomes

The protein sequences (PEPs), CDSs and annotation files (gff

files) of the C. goeringii, D. catenatum and P. equestris genomes

were prepared for a collinearity analysis and gene mapping. The

TCP gene location information in the C. goeringii genome

chromosomes was acquired in the gff file, and visualization

was conducted by the R package ‘RIdeogram’ (Hao et al.,

2020). JCVI v1.2.10 (https://pypi.org/project/jcvi/) was used in

the collinearity analysis of C. goeringii, P. equestris and D.

catenatum. First, the PEP, CDS and gff files were formatted.

Second, the PEP files were aligned and analyzed to acquire the

collinearity file. The anchor file was used in the visualization, and

the TCP genes were highlighted in the collinearity map.
Prediction of Cis-acting elements

In total, 2000 bp upstream sequences of TCP genes were

retrieved to investigate the regulatory functions in plant growth

and development. The sequences were extracted by TBtools

according to the gene locations in the annotation file. The cis-

acting elements of the TCP genes were identified and annotated

in the promoter regions by the online tool PlantCARE10 (Lescot

et al., 2002). TBtools (Chen et al., 2020b) was used to display the

findings of the cis-acting element counts and annotation.
Expression pattern analysis

RNA-Seq by Expectation Maximization (RSEM) (Li &

Dewey, 2011) was employed for the transcript quantification

and calculation of the fragments per kilobase per million

mapped reads (FPKM) value of each gene in the

transcriptomic analysis. The FPKM matrix and heatmaps were

generated by TBtools (Chen et al., 2020b).

Roots, stems, leaves, and mature flowers (sepal, petal, lip,

and column) from C. goeringii grown at the Forest Orchid

Garden of Fujian Agriculture and Forestry University were

taken for a quantitative real-time PCR (qRT-PCR) analysis to

confirm the expression pattern of the TCP genes. Three

replicates of each type of tissue were sampled in the analysis.

The total RNA was extracted from the tissues by RNA Simple

Plant Kit. The RNA concentration in each tissue was in the range

of 34.3–398.9 ng/µl, with A260/280 values ranging from 2.01 to

2.14, indicating that the extracted RNA was of high quality. The

primer tool in Geneious (Kearse et al., 2012) was employed to

design specific PCR primers. In Supplementary Table 1, the

gene-specific primers for the three candidate genes are given

together with the associated internal reference genes. The cDNA

synthesis and qPCR were carried out using the Vazyme/R223
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and Yeasen/11202ES03 kits, respectively. RT−qPCR was carried

out to confirm the precise expression of Class II genes in the

roots, stems, leaves and flowers using CIN genes in C. goeringii

(GL10643, GL16029 and GL28896). Three biological replicates

and three technical replicates were used in each experiment. The

relative gene expression was calculated using the 2−DDCT method.
Gene ontology analysis

The protein file of the C. goeringii genome was used to search

against the eggNOG 5.0 database using EggNOG-mapper v211

(Huerta-Cepas et al., 2019) for Gene Ontology (GO) functional

annotation. Sequence similarity was used to predict function,

sequence alignment was used to predict orthology, E-values and

bit scores were used to filter out low-quality orthology alignments,

and GO annotation terms associated with proteins involved in

well-known biological processes were used to classify functions.
Results

Identification and protein traits of
TCP genes

In total, 14 full-length TCP genes were identified from the C.

goeringii genome. The Supplementary Data Sheet contained the

complete protein sequences for TCP. InterproScan 5 (Jones

et al., 2014) was used to confirm that all potential TCP genes

encode the conserved TCP domain. The 14 TCP genes had an

average length of 323 aa (range 169–572 aa), which was located

on eight chromosomes. The average molecular weight (MW)

was 35321.21 kDa (range 19216.05–63038.55 kDa). The grand
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average of hydrophilic (GRAVY) values were all negative in C.

goeringii TCP proteins, suggesting genes with strong

hydrophilicity. The average isoelectric point (pI) of the TCP

proteins was 8.5 (range 6.60–10.55), indicating relatively strong

acidity. The results of the subcellular location predictions

revealed that all TCP proteins were found in the nucleus,

except for one gene (GL08210), suggesting that they mostly

function as TFs in the nucleus (Table 1).
Phylogenetic analysis of the
protein sequence

TCP genes of four species (Arabidopsis thaliana ,

Phalaenopsis equestris, Dendrobium catenatum and C.

goeringii) were used to conduct the phylogenetic analysis. In

total, 87 genes in four species were classified into two clades

(Figure 1). In total, 14 genes of C. goeringii were divided into two

clades, Class I (PCF genes) and Class II (CIN genes and CYC/

TB1 genes). Similar to other orchids, three types of genes exist in

C. goeringii as follows: four PCF genes, nine CIN genes and one

CYC gene. We also performed the TCP proteins phylogenetic

analysis of 18 different plant phylostrata groups species, results

showed Class I and Class II (Class II-A, B, C) were divided

(Supplementary Figure 1; Supplementary Table 2). The TCP

protein of algae only found in Class I and orchids TCP proteins

were scattered in different clades.

We also analyzed the sequence alignment of CgTCP genes.

The TCP domain was present in all CgTCP genes, and the

domain can be divided into four parts (Figure 2A,

Supplementary Figure 2). The basic region was the most

conserved, followed by two helix regions, and the loop region

was more varied than the other regions. The TCP domain of the
TABLE 1 Analysis of amino acid sequence characteristics of the CgTCP gene family in Cymbidium goeringii.

Gene name Gene ID Chromosomal
location

Number of
amino acids

Molecular weight Theoretical pI GRAVY Subcellular
localization

CgPCF1 GL09311 Chr13:87180856–87181647 263 28413.69 7.17 -0.551 Nucleus.

CgPCF2 GL11234 Chr04:49748318–49749121 267 28703.48 9.73 -0.351 Nucleus.

CgPCF3 GL13021 Chr03:184402053–184416102 411 45008.03 10.55 -0.535 Nucleus.

CgPCF4 GL20265 Chr03:9200177–9200866 229 23851.91 8.66 -0.321 Nucleus.

CgCIN1 GL08210 Chr09:205279584–205289529 360 40250.07 8.64 -0.502 Chloroplast. Nucleus.

CgCIN2 GL10643 Chr13:137361269–137362399 376 40749.62 7.23 -0.513 Nucleus.

CgCIN3 GL14058 Chr08:24486362–24488656 572 63038.55 6.6 -0.399 Nucleus.

CgCIN4 GL14488 Chr13:164527392–164528508 195 21815.39 9.42 -0.835 Nucleus.

CgCIN5 GL16029 Chr03:237463322–237471452 438 47532.56 7.23 -0.321 Nucleus.

CgCIN6 GL28896 Chr01:265107853–265111194 325 34518.12 6.66 -0.439 Nucleus.

CgCIN7 GL29216 Chr11:158943146–158944616 226 25115.2 9.51 -0.692 Nucleus.

CgCIN8 GL29377 Chr08:193755574–193757553 169 19216.05 9.41 -0.525 Nucleus.

CgCIN9 GL31284 Chr01:275094509–275096742 297 33298.18 9.37 -0.709 Nucleus.

CgCYC1 GL16832 Chr16:45535648–45547591 388 42986.76 8.92 -0.495 Nucleus.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1068969
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2022.1068969
CgTCP proteins was similar to that in P. equestris and D.

catenatum (Lin et al., 2016; Zhang et al., 2021a), indicating

that the TCP domain is highly conserved in orchids. One CgTCP

protein (CgCYC1) exited an R domain compared with CgCIN9

(Figure 2B), and the R domain was only present in the CYC

gene, which is consistent with the phylogenetic results.
Collinearity analysis of TCP genes
between orchids

The gene location on the chromosome of C. goeringii was

examined, and 14 TCP genes were located on eight

chromosomes (Figure 3A). In addition, a collinearity analysis

was conducted among the TCP genes of C. goeringii, P. equestris,

and D. catenatum. The collinear relationship among the TCP

genes was examined to identify potential duplication events
Frontiers in Plant Science 05
during TCP gene evolution in orchids. The results

demonstrated a nearly 1:1 correspondence between all TCP

genes in the three orchids, indicating minimal genomic

rearrangements and TCP orthologs reshuffling after the

lineages of Dendrobium and Cymbidium diverged (Figure 3B).

The results showed that gene pseudogenization and loss might

lead to a decrease in TCP in C. goeringii.
Gene structure and motif analysis

To explore the gene structure of TCP genes in orchids, the

intron–exon and up/downstream regulatory element

distributions of C. goeringii, P. equestris and D. catenatum

were analyzed (Figure 4A). The results revealed that the TCP

family of C. goeringii had 1–5 exons and 0–4 introns, P. equestris

had 1–3 exons and 0–2 introns, D. catenatum had 1–2 exons and
FIGURE 1

Phylogenetic tree based on the TCP protein sequences of Cymbidium goeringii, Phalaenopsis equestris, Dendrobium catenatum and
Arabidopsis thaliana. Phylogenetic analysis indicated that the TCP gene family was classified into the following two clades: Class I (PCF) and
Class II (CIN and CYC/TB1); there are two subclades in Class II. TCP protein sequences of C. goeringii are available in the Supplementary Data
Sheet.
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0–1 intron. Although similarity in the gene structure was found

in each subclade, the TCP genes of C. goeringii have a high

degree of variance in the intron length and exon numbers in

comparison with A. thaliana, P. equestris and D. catenatum. In

general, most Class I genes exhibited fewer exons than the Class

II genes. Notably, in Class I, CgPCF1, CgPCF2 and CgPCF4 have

no exons, whereas in Class II, CgCIN2 and CgCIN4 have no

exons (Figure 4A).

The motifs of the TCP proteins in C. goeringii, P. equestris

and D. catenatum were analyzed by the MEME, and 10 motifs

were set as upper bounds (Figure 4B). The number of TCP

motifs both ranged from three to six in C. goeringii and D.

catenatum, and ranged from two to six in P. equestris. Motif 1

encoded the TCP domains (Figure 4C). The PCF proteins all

contain motif 1, motif 2 and motif 4, CIN protein all contain

motif 1 and motif 3, the PCF proteins were more conserved

compare with CIN and CYC proteins by motif analysis.
Cis-acting regulatory elements and GO
enrichment analysis

The 2,000 bp upstream regions of C. goeringii, P. equestris and

D. catenatum TCP genes were extracted for the identification of

putative cis-elements and used to explore the promotor region

functions. In total, 1644, 2250, 2440 cis-acting elements attributed
Frontiers in Plant Science 06
to 26, 26, 29 types and 9, 9, 10 responsive functions were identified

in C. goeringii, P. equestris and D. catenatum, respectively

(Figure 5A and Supplementary Table 3). TATA-box made up the

majority of these components (67.76%, 52.18%, 46.31%), followed

by CAAT-box (11.25%, 12.80%, 15.49%) inC. goeringii, P. equestris

and D. catenatum, respectively (Supplementary Table 4). The cis-

element functions included phytohormone responsiveness to

auxin, abscisic acid (ABA), gibberellin (GA), methyl jasmonate

(MeJA) and salicylic acid; stress responsiveness, such as anoxic,

anaerobic, drought and low-temperature stress; and growth and

development elements, such as light response, cell cycle regulation,

endosperm expression, meristem expression and circadian control

(Figure 5A). Light responsiveness was the most prevalent element

function in each TCP gene, suggesting the crucial functions that

light plays in modulating TCP function throughout plant growth

and development (Figure 5A). The second and thirdmost prevalent

types were MeJA-responsive and ABA-responsive elements, which

were likewise broadly distributed in the majority of orchid TCPs

(Supplementary Table 5). These results suggest that these elements

may have roles in controlling these two phytohormones. We also

discovered other components involved in meristem expression

and meristem-specific activation, which is in line with the

crucial functions played by TCP in the preservation of

meristem homeostasis.

A GO analysis was performed to annotate the gene

functional classifications of the TCP genes of C. goeringii and
A

B

FIGURE 2

Multiple sequence alignment and protein sequence of the TCP domain. (A) Alignment of the TCP domain containing the Basic, Helix and Loop
sequences for the predicted C. goeringii TCP proteins. (B) Alignment of the R-domain of the CIN and CYC genes. .
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investigate the important biological processes (Figure 5B). As a

result, the GO terms “cellular developmental process”,

“intracellular anatomical structure” and “DNA-binding

transcription factor activity” were the most related to plant

growth and development in the GO ontologies “Biological

Process,” “Cellular Component,” and “Molecular Function,”,

respectively (Figure 5B and Supplementary Table 6). The

findings are consistent with the fact that TCP is a premier

regulator involved with a number of downstream transcriptional

networks and functions mostly acts in the nucleus (Table 1).

Several other terms, such as “circadian rhythm” and “seed

germination”, are consistent with TCP’s function.
Expression pattern analysis of TCP genes

Based on transcriptome data from C. goeringii tissues,

including flowers, leaves, stems, and roots, an expression
Frontiers in Plant Science 07
analysis was carried out. The expression profile revealed that

Class I TCP genes were expressed at lower levels in

differentiating tissues and mature organs, while the CgPCF2

gene was expressed at moderate levels in various tissues

(Figure 6A). Among the Class II genes, three CIN genes

(CgCIN2, CgCIN5 and CgCIN6) exhibited high expression

levels in flower organs (Figure 6A, Supplementary Table 7). In

addition, the CgCYC1 gene was only expressed in the stem,

indicating that the Class II TCP genes function in

plant development.

Flowers showed strong expression of class II genes such

CgCIN2, CgCIN5, and CgCIN6 (Figure 6A), indicating high

expression and their potential significance in driving tissue

differentiation. The gene expression of CIN homologs in C.

goeringii was studied further in order to elucidate the precise

functions of the Class II TCP genes by analyzing in the leaves,

flowers, and stems using RT−qPCR (Figure 6B; Supplementary

Table 8). The CgCIN2 showed high expression in the sepals and
A

B

FIGURE 3

The TCP gene location on the chromosome of C. goeringii and collinearity between P. equestris and D. catenatum. (A) The chromosomal location
of CgTCP genes. (B) The collinearity analysis suggested that the three orchids presented nearly one-to-one correspondence of TCP proteins.
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lips, the CgCIN5 showed high expression in the lips and

columns, the CgCIN6 showed extremely high expression in

columns, of three examined CIN genes were barely detected in

the stems and roots (Figure 6B). To understand the underlying

functions of the TCP gene in C. goeringii, a functional study of

these two classes will be a crucial next step.
Discussion

As a traditional flowering plant, C. goeringii and their

products have significantly contributed to the Chinese flower

industry. However, the molecular biological mechanisms of

orchid development have seldom been reported. TCP proteins

are crucial for the development and growth of plants. Numerous

plant species, including A. thaliana (Riechmann et al., 2000),

Hypoxis decumbens (Madrigal et al., 2017), P. equestris (Lin et al.,

2016), and D. catenatum (Zhang et al., 2021a), the TCP gene

family have been discovered. However, the analysis of the TCP

gene family in orchids was still insufficient. The TCP gene family

of C. goeringii was identified using a variety of methods in this

work, and the evolution of CgTCP proteins as well as their

functional properties were examined.

Non-model plant gene family studies have greatly increased

due to advances in whole-genome sequencing. This study
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identified 14 CgTCPs from C. goeringii and divided them into

two main clades (Table 1 and Figure 1). Compared with other

orchids, the number of TCP genes in C. goeringii was less than

that in D. catenatum (25) and P. equestris (23) (Lin et al., 2016;

Zhang et al., 2021a). C. goeringii may have suffered gene loss

during evolution. The three orchids have similar numbers of

CIN genes but different numbers of PCF and CYC genes. There

are 11 PCF genes in both D. catenatum and P. equestris, four

PCF genes in C. goeringii, three CYC genes in D. catenatum and

P. equestris, and only one CYC gene in C. goeringii. The different

TCP gene numbers may be related to the life form. The physical

and chemical properties of CgTCP proteins were similar to those

of D. catenatum and P. equestris. All CgTCP proteins were

predicted to be located in the nucleus, except for CgCIN1, which

is also located in the chloroplast and may contribute to new

functions. Furthermore, we performed the evolution of TCP

genes in orchids and other land plants (Supplementary Figure 1).

Previous study suggested TCP gene family may origin from the

common ancestor of Phragmoplastophyta, and expanded

through the whole-genome duplication during the evolution

(Liu et al., 2019; Wang et al., 2022). Our results supported that

lower plants have a smaller number of TCP genes and TCP

family has undergone expansion in the course of plant evolution.

We also investigated the evolution of orchid TCP genes and

found that almost all subfamilies of TCP are present in orchids,
A B

C

FIGURE 4

Gene structure, conserved motifs, and conserved domains of TCP genes. (A) Phylogenetic tree and gene structure of the TCP genes of C.
goeringii, P. equestris and D. catenatum. (B) Predicted motifs of the TCP genes of C. goeringii, P. equestris and D. catenatum. (C) Sequence logo
of motif 1, which encodes the TCP domain.
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and D. catenatum possessed more members compared with

other orchids. Comparing with other monocots, orchids Class

II-A genes were expanded, PeCIN8 which located in Class II-A

plays curial role in ovule development (Lin et al., 2016), the

expanded genes may relate to orchid ovule unique development.

The conserved gene structure in the same clade of the TF

gene family had been carried out in previous researches (Wang

et al., 2021; Ke et al., 2021; Zhang et al., 2022; Chen et al., 2022).

This study revealed that C. goeringii has an exon–intron

structure similar to that of Camellia sinensis and Prunus

mume (Zhou et al., 2016; Shang et al., 2022) (Figure 4).

Almost all sequenced orchids have been reported to have long

introns (Cai et al., 2015; Zhang et al., 2016; Zhang et al., 2017;

Yuan et al., 2018; Ai et al., 2021; Sun et al., 2021; Zhang et al.,

2021b; Li et al., 2022), but in CgTCPs, only four genes have long

introns, and eight CgTCPs have no introns. The motif analysis of

C. goeringii, P. equestris and D. catenatum indicated that class I,

which contains motifs 1, 2, and 4, was conserved and that

class II, which contains different motifs in different clades, was
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more variable (Figure 4). The conservatism of Class I genes may

result in the crucial role in plants, which mostly exist in all

phylostrata plants (Supplementary Figure 1). The CgTCP

alignment was also analyzed in this study, and the results

showed that the TCP domain and R domain were conserved

in orchids (Figure 2).

Gene location in scaffolds and chromosomes and genomic

comparison are closely related to the gene structure and function

(Ren et al., 2000). The gene location analysis results showed that

CgTCPs were scattered on eight chromosomes, and no gene

tandem repeats were found in C. goeringii (Figure 3A). The

genomic comparisons among D. catenatum, P. equestris and C.

goeringii in chromosomes or scaffolds showed that their TCP

genes were in an almost 1:1 correspondence, supporting that no

duplication events occurred in CgTCPs (Figure 3B). In addition,

P. equestris exhibited a more syntenic relationship between its

scaffold or chromosome than D. catenatum, indicating that there

were few chromosomal structure variations after the two

species diverged.
A

B

FIGURE 5

Cis-acting elements and GO enrichment analysis in the promoter regions of TCP genes. (A) Elements analysis of C. goeringii, P. equestris and D.
catenatum, the same regulatory functions are presented in the same color. (B) Gene Ontology (GO) terms of C goeringii TCP genes; the
detailed data are listed in Supplementary Table 5.
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Studies of promoter regions that regulate gene expression at

the transcriptional level by cis-acting elements promote our basic

understanding of gene regulation and expand the toolbox of

available promoters (Hernandez-Garcia and Finer, 2014). A

series of functional types of regulatory elements in the

promoter regions have been identified in TCP genes, including

the following categories: growth and development elements,

stress-responsive elements and phytohormone-responsive

elements (Figure 5). We identified a large proportion of light

responsiveness elements in the promotor region, indicating that

orchids TCP genes are regulated by the light signal to work in

concert with plant growth and development (Supplementary

Table 4). Furthermore, CgTCPs perform important functions

regulated by phytohormones, which contain many elements

responsive to MeJA, ABA, GA, and auxin. Based on previous

studies, the TCP3, TCP14 and TCP15 genes regulate cell

expansion and differentiation by auxin (Koyama et al., 2010;

Ferrero et al., 2021), and CgTCPs may interact with auxin by a
Frontiers in Plant Science 10
similar mechanism. In the inflorescence shoot apex and embryo

root apical meristem, GA-induced DELLA protein degradation

releases TCP genes to stimulate shoot elongation and seed

germination (Nicolas and Cubas, 2016). In leaves, TCP-CIN

genes interact with the CK receptor HISTIDINE KINASE 4

(AHK4)/CRE1 (CYTOKININ RESPONSE 1) and can promote

the expression of the CK response genes ARR7 and ARR15 (Das

Gupta et al., 2014). In seeds, the TCP14 gene could promote

germination by regulating ABA signaling (Tatematsu et al.,

2008). The cis-element analysis and GO analysis indicate that

the TCP genes are mainly regulated by phytochromes and light

and play an important role in different plant tissues of growth

and development.

TCP transcription factors control key vegetation and

reproductive developmental processes and participate in the

growth patterns of meristems and organs (Nicolas & Cubas,

2016). Class II TCP genes contain genes mainly involved in

lateral organ development (Crawford et al., 2004; Ori et al., 2007).
A

B

FIGURE 6

The expression pattern and RT−qPCR verification of TCP genes in seven tissues in C. goeringii. (A) Expression heatmap of TCP genes in seven
tissues in C. goeringii. (B) Expression pattern of CgCIN2, CgCIN5 and CgCIN6 in seven tissues in C. goeringii by RT−qPCR. We performed the
ANOVA multiple comparisons in the statistical test, star marks *, **, ***, and **** representing adjusted p < 0.05, p < 0.01, p < 0.001, and p <
0.0001, respectively (Supplementary Table 8).
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In this study, we found and verified that CgCIN2, CgCIN5 and

CgCIN6were highly expressed in various flower components (sepal,

petal, lip and column) and relatively highly expressed in leaves

(Figure 6; Supplementary Table 8). Liu et al. (2017) found that the

downregulation of five class II TCP genes may be related to the

delayed flowering phenotype of Arabidopsismutants. We speculate

that CgCIN2, CgCIN5 and CgCIN6may produce a marked effect on

the regulation of florescence.
Conclusion

TCP transcription factor proteins are known to play a crucial

role in many aspects of plant growth and development. Here, we

identified 14 TCP genes of C. goeringii and classified them into

two clades by a phylogenetic analysis, with more members found

in Class II. The sequence alignment, motif, gene structure and

collinearity analyses indicated that CgTCPs were conserved and

that no gene duplication events occurred in C. goeringii. The cis-

element and GO analyses indicated that CgTCPs are regulated by

light and various phytochromes. Furthermore, the expression

pattern and RT−qPCR analyses suggested that CgCIN2, CgCIN5

and CgCIN6 may produce a marked effect on the regulation of

florescence. Altogether, this study presents a comprehensive

analysis of the structure and expression pattern of TCP genes

in C. goeringii. These results provide a reference for further

understanding how TCP genes participate in plant vegetative

and reproductive growth and development and explain the

plasticity of plant morphogenesis.
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