AUTHOR=Hu Yi , Gou Xiaowei , Tsunekawa Atsushi , Cheng Yunxiang , Hou Fujiang TITLE=Assessment of the vegetation sensitivity index in alpine meadows with a high coverage and toxic weed invasion under grazing disturbance JOURNAL=Frontiers in Plant Science VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2022.1068941 DOI=10.3389/fpls.2022.1068941 ISSN=1664-462X ABSTRACT=
Maintaining healthy ecosystems is essential to ensure sustainable socio-economic development. Studies combining remote sensing data with grassland health assessments, extensively performed at different scales, are important for monitoring grassland health from a spatiotemporal perspective to enable scientific grazing management. However, most studies only use quantitative grassland degradation indices, such as grassland cover; this is done despite the fact that some degraded grasslands maintain a high level of cover solely by virtue of the proliferation of toxic weeds. Thus, seeking indices that are a more accurate representation of the health status of grassland vegetation is of utmost importance. Therefore, in order to accurately characterize the ecological integrity of grasslands (i.e., while limiting the impact of confounding variables such as weeds), we chose the grassland health comprehensive evaluation index VOR (vigor, organization, and resilience) to assess the health of grasslands on the Tibetan Plateau. We applied the VOR evaluation indices to two rangelands with different grazing intensity on the Tibetan Plateau, and extracted 11 commonly used vegetation indices based on remote sensing images of rangelands,then modeled them with the data from field surveys. Our results show that the FVC, PS, and VOR were higher in lightly grazed pastures than in heavily grazed pastures in the 2017 and 2018 growing seasons. At the beginning of the sampling period, Poaceae accounted for a greater proportion in the HG pasture. However, by August 2018, the proportion of Poaceae in the LG pasture exceeded that in the HG pasture. the proportion of Forbs in the HG pasture was significantly greater than that in the LG pasture. This indicates that vegetation response to grazing disturbance is not only a volume reduction but also a vegetation composition change. The ratio vegetation index was the most sensitive to the vegetation health response, enabling the quantification and prediction of regional vegetation health and objectively reflecting the actual condition of the grassland ecosystem. According to a multiple regression analysis, the main climatic limiting factor in the region is precipitation, which positively correlated with VOR; whereas, grazing disturbance is an important driving factor, and it is inversely correlated with VOR.