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Although sugars and acids have a substantial influence on the taste of apple

fruits, the genetic and regulatory networks underlying their metabolism in fruit

remain insufficiently determined. To fully decipher the genetic basis of the

accumulation of sugars and acids in apple fruits, we adopted an integrated

strategy that included time-course RNA-seq, QTL mapping, and whole-

genome sequencing to examine two typical cultivars (‘HanFu’ and ‘Huahong’)

characterized by distinctive flavors. Whole-genome sequencing revealed

substantial genetic variation between the two cultivars, thereby providing an

indication of the genetic basis of the distinct phenotypes. Constructed co-

expression networks yielded information regarding the intra-relationships

among the accumulation of different types of metabolites, and also revealed

key regulatory nodes associated with the accumulation of sugars and acids,

including the genes MdEF2, MdPILS5, and MdGUN8. Additionally, on the basis

of QTL mapping using a high-density genetic map, we identified a series of

QTLs and functional genes underlying vital traits, including sugar and acid

contents. Collectively, our methodology and observations will provide an

important reference for further studies focusing on the flavor of apples.
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Introduction

Apples (Malus × Domestica Borkh.) are among the most

commercially important fruit crops cultivated worldwide with a

considerable global production (FAOSTAT, http://faostat.fao.

org). With increasing market demand, consumers are pursuing

higher quality apple fruits with good flavors, reflecting desirable

sugar and acid contents.

Among the quality-related traits of apple fruit, perhaps the

most important are appearance, flavor (Cappellin et al., 2015;

Guan et al., 2015; Xu et al., 2022), and texture (Sara et al., 2013;

Bink et al., 2014), which have been established to be quantitative

traits controlled by multiple genes. With respect to flavor, the

contents of sugars and acids in apple fruits have been

particularly well studied. For example, the MdbHLH3 gene has

been demonstrated to regulate the expression of MdPFPb to

promote sugar accumulation (Yu et al., 2022) and regulate the

expression of MdcyMDH to enhance acid content (Yu et al.,

2021). Similarly, the expression of MdTSTa and MdMa11 has

been found to promote the accumulation of sugars and acids in

fruits (Ma et al., 2021). Conversely, the expression ofMdSUT4.1

has typically been observed to be negatively correlated with the

accumulation of fructose (Peng et al., 2020). Furthermore, it has

been established that MdERDL6-1 can influence the

accumulation of glucose in vesicles by regulating the

expression of two types of transporter protein, MdTST1 and

MdTST2 (Zhu et al., 2021), whereas transient overexpression of

MdVGT1 and MdpGlcT2.1 promoted significant increases in

glucose concentration (Zhu et al., 2022), and MdWRKY126 has

been observed to influence the accumulation of malic acid in

apple fruits by regulating the expression of MdMDH5 (Zhang

et al., 2022).

RNA-Seq is an effective technique that can be used to examine

gene function and investigate vital trait-related biological

pathways, and in recent years, RNA-seq methodology has been

widely applied to characterize gene function in different crop

species such as pepper (Park et al., 2019), oilseed rape (Jian et al.,

2019; Song et al., 2021), tomato (Wen et al., 2019), and maize (Xu

et al., 2022). By deciphering the co-expression modules associated

with particular traits, we can potentially gain an in-depth

understanding of the underlying gene regulatory networks. For

example, an examination of the effect of low temperature on

anthocyanin accumulation, revealed the genes MdMYB22,

MdMYB12 and MdMYB114 to be specifically expressed within

co-expression modules highly associated with anthocyanin

accumulation (Song et al., 2019). Similarly, the Ma1 gene

identified in the “MEturquoise” module highly associated with

acidity provided insights for the study of fruit acidity (Bai et al.,

2015). In a parallel bud mutation study, several candidate genes

were identified in modules associated with sugar and acid

specificity, including MdDSP4, MdINVE, and MdSTP7, which

play important roles during fruit development (Zhao et al., 2019),

and the discovery of these genes has made an important
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contribution to the current focus of studies examining the

accumulation of sugars and acids in bud mutation.

Quantitative trait locus (QTL) mapping has been widely

employed to determine the genetic basis of important

quantitative traits in apples. For example, three major QTLs

associated with volatile organic compounds were detected in the

progeny population derived from a ‘Fiesta’ × ‘Discovery’ cross

(Costa et al., 2013), and the regulatory gene MdSDH2, which

controls the fructose content in fruits, was detected using an F1
population obtained from a cross between ‘Honeycrisp’ and

‘Qinguan’ (Wang et al., 2022). Furthermore, four QTLs

distributed on chromosomes 8 and 16 were found to be

associated with fruit acidity using a combined MapQTL and

BSA-seq approach, and it has been demonstrated experimentally

that MdSAUR37, MdPP2CH, and MdALMTII influence the

malic acid content in fruits (Jia et al., 2018). Moreover, QTL

analysis of different polyphenolic compounds among the

progeny of a ‘Royal Gala; × ‘Braeburn’ cross identified LAR1

and HCT/HQT as important enzymes affecting the

concentrations of polyphenolic compounds in apple fruit

varieties (David et al., 2012; Sun et al., 2015). However, despite

these important discoveries, completely deciphering the

associated genetic and regulatory networks remains a challenge.

Motivated by the findings of recently reported studies, we have

adopted multi-level strategies, including genome sequencing,

RNA-seq, and QTL mapping, to further decipher the genetic

basis and regulatory networks associated with sugar and acid

metabolism during the development of apple fruit. In this study,

we examined the changes in sugar and acid contents in fruits of the

cultivars ‘Hanfu’ and ‘Huahong’ at different time points during

fruit development, analyzed the results based on whole-genome

sequencing to assess the amount of variation between these two

cultivars, and applied RNA-seq technology to elucidate the

regulatory networks associated with sugar and acid metabolism.

To identify candidate genes associated with sugar or acid

metabolism, we compared the genes identified within the

detected QTL intervals with those shown to be differentially

expressed based on RNA-seq analysis The findings of this study

provide new insights into the genetics and regulation of fruit sugars

and acids from different perspectives, and will serve as a valuable

basis for further research on sugars and acids in apple fruits.
Materials and methods

Plant materials and sampling

The two apple cultivars ‘Hanfu’ and ‘Huahong’ and 210

offspring used in this study were planted in the Liaoning

Institute of Pomology, Xiongyue, Yingkou, Liaoning, China

(40°17ʹN, 122°15ʹE). The fruits were harvested at 30, 90, and

150 days after blooming (DAB) with three biological replicates.

The classification of apple fruit developmental stages was based
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on previous research, with the three selected time points

corresponding to the juvenile, expansion, and maturity stages,

respectively (Janssen et al., 2008). Each harvested apple was

peeled, cut into pieces, and then frozen in liquid nitrogen and

stored at -80°C.
Determination of sugar and acid content
in fruit

For each fruit, we measured the sugar and acid contents.

Samples (10 g) were ground to a fine powder using a SPEX 6870

lyophilizer (SPEX, Metuchen, USA) under liquid nitrogen and

extracted with ultrapure water. The extract thus obtained was

centrifuged at 16000 × g for 10 min and the resulting supernatant

was passed through an OnGuard II Ag column (Dionex

Corporation, Sunnyvale, CA, USA). The extracts were filtered

using a Sep-Pak filter containing a 0.22-mm aqueous membrane.

The sugar and acid contents of apple fruits were determined using a

DIONEX ICS-5000 high-performance liquid chromatography

system (Dionex Corporation, Sunnyvale, CA, USA). In addition,

for each fruit, we determined the fruit weight, fruit diameter, fruit

length, fruit shape index, flesh firmness, soluble solids, and flesh

browning of freshly harvested samples. Data were analyzed using

Graphpad Prism software (V8.2.1) and an analysis of variance

(ANOVA) was used to test for differences between groups.
Resequencing of ‘Hanfu’ and ‘Huahong’

Genomic DNA was extracted from fruit samples using a

Genomic DNA Isolation Kit (TianGen, Beijing, China). Illumina

sequencing libraries were constructed using NEBNext DNA Library

Prep Mix (NEB), and paired-end sequencing was performed using

an Illumina HiSeq X ten platform (Illumina, San Diego, CA, USA).

Clean reads were mapped to the doubled haploid (DH) apple

genome using the Burrows–Wheeler Aligner (version 0.7.17)

(Janssen et al., 2008; Daccord et al., 2017), SNP and InDel calls

were processed using SAMtools software (Li et al., 2009a; Li, 2011),

and structural variant calling was performed using Delly software

(version 0.8.1) (Rausch et al., 2012).
RNA-Seq library construction,
sequencing, and data processing

Total RNA was extracted using a modified CTAB method.

An NEBNext Poly(A) mRNA Magnetic Isolation Module and

NEBNext Ultra Directional RNA Library Prep Kit for Illumina

(New England Biolabs, Massachusetts, USA) were used to isolate

mRNA for RNA-seq library preparation. cDNA libraries were

sequenced using the Illumina HiSeq X Ten platform (Illumina).

HISAT2 was used to compare quality-controlled data based on
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the reference genome (Kim et al., 2015), and StingTie was used

for transcript assembly and quantification (Pertea et al., 2015).

Raw data were extracted from each sample and differentially

expressed genes (DEGs) were detected using the default

parameters of DESeq2 (Love et al., 2014) software, with genes

having a false discovery rate (FDR) of less than 0.01 being

identified as differentially expressed.
Identification of co-expression modules

We conducted weighted gene co-expression network

analysis (WGCNA) of the expression data using the R package

WGCNA (Zhang and Horvath, 2005; Langfelder and Horvath,

2008). The threshold strength of the correlation matrix was

selected according to a pickSoftThreshold function of 8. The

resulting adjacency matrix was converted to a topological

overlap (TO) matrix using the TOM similarity algorithm, and

the genes were hierarchically clustered based on TOM similarity.

The hierarchical clustering tree was partitioned using a dynamic

hybrid tree pruning algorithm and the branches obtained after

tree pruning were defined as modules. We summarized the

expression of each module as a first principal component

(referred to as the module feature gene). Modules that were

highly correlated (a coefficient greater than 0.75) were merged.
QTL mapping

The genetic map used for QTLmapping was constructed using

Specific-Locus Amplified Fragment Sequencing (SLAF-seq)

technology (Sun et al., 2013) and HighMap software (Liu et al.,

2014) developed by the Beijing BMK Biotechnology Company for

high-density molecular marker construction (including

resequencing of the two parents and SLAF simplified genome

sequencing of 210 offspring) for the genetic segregation population

of apple cultivars (unpublished). The map, which included a total

of 7043 markers, had a total length of 2804.01 cM (unpublished).

The phenotypic data, genotypic data, and number of individual

plants were imported into MapQTL 6.0 mapping software, and the

QTLs associated with sugar and acid contents were analyzed based

on a mixed model and interval mapping, with the 95% confidence

interval of LOD values being calculated using the Permutation test

of MapQTL 6.0 software.
Results

Phenotype characteristics of ‘Hanfu’ and
‘Huahong’ during fruit development

Fruits of the two important apple cultivars ‘Hanfu’ (HF,

‘Toko’ × ‘Fuji’) and ‘Huahong’ (HH, ‘Golden Delicious’ ×
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‘Megumi’) were collected for fruit quality assessment at 30, 90,

and 150DAB, which correspond to the juvenile, expansion,

and maturity stages of fruit development, respectively. We

found that concentrations of malate, fumarate, citrate,

succinate, and oxalate declined during the course of

development. Moreover, at each of the three stages assessed,

the contents of all five acids were significantly higher in HH

than in HF (Figure 1A). In contrast, we detected increases in

the concentrations of fructose, sucrose, glucose, sorbitol, and

soluble solids from 30 DAB to 150 DAB. Among these sugars,

the concentrations of fructose in HH fruit at 150 DAB and

sucrose at 90 DAB and 150 DAB were significantly higher than

those in HF, whereas at all stages, we detected more sorbitol

and less glucose in HH. However, there were no significant

differences between the two varieties with respect soluble

solids contents (Figure 1B). In addition, HH fruit had a

higher fruit shape index (fruit length/fruit diameter) and
Frontiers in Plant Science 04
fruit weight than HF at 150DAB (Figures 1C, D), and at

maturity, HF fruit was found to be firmer than that of HH,

whereas the latter was more resistant to browning at all stages

(Figures 1E, F). Collectively, these findings indicate the

distinct flavors of these two cultivars and accordingly

suggested differences in the genetic basis of these

distinct favors.
Whole-genome resequencing
identified mutations between
‘Hanfu’ and ‘Huahong’

To examine the underlying differences between the two

cultivars at the genomic level, we performed whole-genome

resequencing analys i s , obta in ing 153 ,786 ,736 and
A

B

D E F

C

FIGURE 1

Fruit phenotype at different stages of ‘HanFu’ and ‘Huahong’ fruit development. (A) Contents organic acid in fruit of the two cultivars at three
stage of development [30, 90, and 150 days after flowering (DAB)]. (B) Contents of sugars, sorbitol, and soluble solids in fruits of the two
cultivars at the three stages of development. (C) Physical measurements of fruit length, diameter, and fruit shape index of the two cultivars at
the three developmental stages. (D–F) Phenotypes of fruit weight, flesh firmness, and flesh browning showing variation during development.
The error bars represent the standard deviation (SD) among the replicates (n = 5). *, **, and *** indicate significant difference between the two
cultivars at P < 0.05, 0.01, and 0.001, respectively, as determined using Student’s t-test.
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158,603,659 reads for HF and HH, respectively, with

corresponding coverages of 96.20% and 96.64% (Table S1).

The sequencing reads provided an average 30× coverage of

the apple DH genome, with approximately 31.23 million

reads assigned to the apple DH genome and approximately

30.12 million reads were uniquely mapped reads (Table S1).

In total, 9,220,533 SNPs and 737,698 InDels distributed

across 17 chromosomes were identified in variant detection

analysis of HF versus HH (Figures 2A, B and Table S2). There

were no correlations between chromosome length and the

number of SNPs and InDels. For example, although the

numbers of both SNPs and InDels were higher on the

longest chromosome, Chr15, than on other chromosomes,

the lowest numbers of SNPs and InDels were detected on

Chr13 and Chr6, respectively (Table S2). In addition, the

presence of large segmental structure variants (SVs) was

detected, which, like SNPs and Indels, were unevenly

distributed across the 17 chromosomes (Figures 2A, C).
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Transcriptome profiles of ‘Hanfu’ and
‘Huahong’ flesh during fruit development

Using the three replicate fruit samples collected at the three

assessed developmental stages (30, 90, and 150 DAB), we

performed RNA-Seq analysis to determine differences in gene

expression in the flesh of the two cultivars during fruit

development. RNA-Seq generated 143.8 gigabytes (Gb) of

clean data (Q30 > 93.14%) with 7.00–9.37 Gb obtained from

the 18 complementary libraries. After removing low-quality

reads, a total of 46,783,954–62,640,562 reads per library were

obtained, of which 73.93%–80.89% could be uniquely assigned

to the apple DH genome (Table S3). All genes were quantified

and mapped based on fragments per kilobase transcript per

million (FPKM), among which, the expression of 40,134 genes

was detected across the three fruit developmental stages (Table

S4). High Pearson correlation coefficients (>0.95) indicated high

quality control among the biological replicates (Figure S1).
FIGURE 2

Circular overview of the variations between ‘HanFu’ and ‘Huahong’. The outer circle (A) shows the numbers of genes within a 1-Mbp window;
the intermediate circle (B) shows the number of SNVs between HanFu’ and ‘Huahong’ within a 1-Mbp window; and the inner circle (C) shows
the number of SVs between ‘HanFu’ and ‘Huahong’ within a 1-Mbp window.
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Overall, approximately 24.96%–28.79% of the genes were

characterized by low expression, 38.11%–41.19% showed

moderate expression, and 25.55%–27.11% and 6.74%–7.07%

were identified as highly and very highly expressed,

respectively (Figure S2 and Table S4).
Genes differentially expressed between
‘Hanfu’ and ‘Huahong’ at different stages
of fruit development

Genes with a greater than 2-fold change and an FDR of less

than 0.01 were identified as being differentially expressed using

the DESeq R package. In total, we identified 7521 genes showing

significantly different expression between HH and HF at the

three developmental stages (Table S5), with the numbers of

DEGs at stages 30, 90, and 150 DAB being 2887, 3393, and 5197,

respectively (Figure 3A and Table S5). Among those genes

showing differential expression at 30DAB, 1664, including 77

transcription factor-encoding genes (TFs), showed significantly
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higher expression, and 1223, including 48 TFs, showed

significantly lower expression in HH than in HF (Figure 3B

and Table S5). Comparatively, at 90 and 150 DAB, the numbers

of up- and down-regulated genes were 1688 vs. 1705 and 2920

vs, 2277, respectively, including 101 vs. 97 and 113 vs. 201 TFs

(Figure 3B and Table S5). Among the Aux/IAA, GNAT, and

bZIP TF families, the numbers of up-regulated members were

significantly higher than those of the down-regulated TF

members, whereas contrastingly, in the HSF, GRAS, WRKY,

bHLH, and zf- HD TF families, the numbers of down-regulated

members were significantly higher than those of the up-

regulated members (Figure 3C and Table S5).

Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analysis revealed that differentially expressed genes

(DEGs) were significantly distributed among 31 metabolic

pathways (P < 0.05) (Table S6 and Figure S3). Among the

enriched metabolic pathways, three, namely, starch and

sucrose metabolism, plant hormone signal transduction, and

flavonoid biosynthesis, reached a highly significant level of

enrichment (P < 0.001) (Table S6 and Figure S3). In addition,
A

B

C

FIGURE 3

Differentially expressed genes between ‘HanFu’ and ‘Huahong’ at three stages of fruit development. (A) A Venn diagram showing the number of
differentially expressed genes (DEGs) at the three stages of fruit development. (B) A histogram showing the number of up-regulated and down-
regulated DEGs and transcription factors (TFs). (C) A heatmap showing the number and percentage (color) of up- and down-regulated TFs
belonging to different families.
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the starch and sucrose metabolism pathway were enriched in the

30down, 90down, 150up, and 150down gene sets (Figure 4A and

Table S7); the flavonoid biosynthesis pathway was enriched in

the 30down, 90down, and 150up gene sets (Figure 4A and Table

S7); and the DNA replication pathway was enriched in the

90down gene set (Figure 4A and Table S7). Gene Ontology (GO)

enrichment analysis of the DEGs identified 49 terms (Table S8

and Figure S4). At 30 and 90 DAB, genes associated with

biological regulation and cell communication categories were

up-regulated, whereas secondary metabolism and stress

categories were enriched at 150 DAB (Figure 4B and Table S9).
Identification of co-expression modules
among DEGs

To investigate the gene regulatory networks comprising

DEGs, we performed weighted gene co-expression network

analysis (WGCNA), which accordingly identified 13 modules

among the DEGs, with gene numbers ranging from 36 to 1716

(Figures 5A, B). Module-trait relationship analysis revealed that
Frontiers in Plant Science 07
seven of these modules were significantly associated with at least

one property in the 18 samples (|r| ≥ 0.7, P < 0.01) (Figure 5C

and Table S10). The module “MEpurple” was identified as being

correlated with most (10) traits (i.e., fructose, sucrose, glucose,

malate, fumarate, and succinate contents; fruit length, diameter,

and weight; and pulp firmness). The module “MEturquoise” was

found to be highly correlated with all assessed organic acids, and

the modules “MEyellow” and “MEbrown” were clearly

associated with sorbitol content and flesh browning,

respectively (Figure 5C and Table S10). We also identified the

following module-trait relationships: “MEblue” - citrate and

oxalate; “MEblack” - glucose, citrate, and oxalate; and

“MEred” - glucose, citrate, and oxalate (Figure 5C and

Table S10).
Deciphering key co-expression modules

As mentioned in the previous section, the “MEpurple”

module was found to be significantly correlated with most of

the assessed fruit traits (Table S10). Within this module, there
A B

FIGURE 4

Enrichment analysis of differentially expressed genes between ‘HanFu’ and ‘Huahong’ at three stages of fruit development. (A) A bubble diagram
showing the result of KEGG pathway analysis of the up- and down-regulated differentially expressed genes (DEGs). The size of the bubbles
indicates the ratio of the number of DEGs in the pathway to that of the total number genes identified. (B) A heatmap showing the result of GO
enrichment analysis of the up- and down-regulated DEGs.
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were 124 genes identified as being differentially expressed

between HF and HH, among which, four genes (MdACCH1,

MdEF2, MdMIF2, and MD04G1216300) were identified as hub

genes (Table S11 and Figure 6). The expression of MdACCH1,

MdEF2, and MdMIF2 gradually increased during the course of

development, reaching peak levels at 150DAB. Contrastingly,

MD04G1216300 showed an opposite trend, with the lowest

levels of expression being detected at 150 DAB (average FPKM

= 29.86). Notably, the MdEF2 gene, which encodes a ZF-HD

transcription factor, showed the greatest difference between the

development of HF and HH. These findings thus provide

evidence to indicate that MdEF2 plays an important role in

regulating multiple traits in apple fruits.
Frontiers in Plant Science 08
Module-trait significance analysis revealed that the

“MEblack” module, which contained 444 genes differentially

expressed between HF and HH during the three developmental

periods, was significantly correlated with glucose, citrate, and

oxalate contents (Table S10). Analysis of corresponding co-

expression network revealed three genes (MdNU160 ,

MdRHD32, and MdRHD32) showing a high correlation with

other genes in the network, thereby identifying these as the hub

genes of the module (Table S11 and Figure S5). Analysis of the

expression of these hub genes revealed a gradual increase

throughout the development of HF and HH, with MdRHD32

showing the pronounced change during 30–150 DAB.

Combined with our finding that MdRHD32 was the most
A B

C

FIGURE 5

Weighted gene co-expression network analysis of differentially expressed genes between ‘HanFu’ and ‘Huahong’ over three development
stages. (A) A clustering dendrogram of the differentially expressed genes (DEGs), with dissimilarity based on topological overlap, together with
assigned module colors. (B) The numbers of genes harbored in each module. (C) Module-trait associations. Each row corresponds to a module
eigengene, and each column to a trait. Each cell contains the corresponding correlation and P values. The table is color coded by correlation as
indicated in the color legend.
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strongly associated in the co-expression network, we predicted

that MdRHD32 play an important regulatory role in sugar and

acid accumulation during apple fruit development.

The “MEblue” module, comprising 1,134 DEGs, was

assessed as showing a high correlation with citrate and oxalate

(Table S10). Co-expression network analysis identified two hub

genes, MdFTSHC and MD04G1091300 based on the degree of

association with other genes (Table S11 and Figure S6), the

expression levels of both of which were up-regulation during all

three developmental stages. On the basis of the combined

findings of the co-expression network and gene expression

analyses, we hypothesized that these two hub genes may play

important roles in the accumulation of citrate and oxalate.

The “MEbrown”module, containing 1,096 DEGs, was found

to show a significant correlation with fruit flesh browning (Table

S10). Five genes showing the highest association in the co-

expression network, namely, MdPILS5, MD14G1011900,

MdGUN8, MdPMEI3, and MdANRPN, were identified as hub
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genes in this module (Table S11 and Figure S7). Analysis of gene

expression at the different stages of development revealed that

there were different reductions in gene expression during the 30–

90 DAB stage, with the changes in MdANRPN expression being

the most evident. Given the observed changes in MdANRPN

expression at all developmental stages, we speculate that

MdANRPN plays an important regulatory role in apple

fruit browning.

Similar to the “MEblack” module, the “MEred” module

containing 446 DEGs also showed significant correlations for

glucose, citrate, and oxalate (Table S10). The constructed co-

expression network revealed five genes, MD07G1239500,

MdPUB35, MdXTH33, MdMES17, and MdZIP1, to be strongly

associated with other genes, and these were accordingly

identified as hub genes of the “MEred” module (Table S11 and

Figure S8). Among these genes, the expression of MdMES17 in

HF was found to be significantly higher than that of other genes

at the same stage.
FIGURE 6

The co-expression network of the “MEpurple” module. The green diamonds indicate transcription factors (TFs) and the red diamonds indicate
the hub genes, which are also TFs. The purple and red filled circles denote the genes and hub genes in this module, respectively. The width of
edges corresponds to the weight value between different genes, with a larger width being indicative of a larger weight.
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The “MEturquoise” module, which contained the highest

number of DEGs (1,716 DEGs) was significantly associated with

malate, fumarate, succinate, citrate, oxalate, glucose, and fruit

diameter (Table S10). Co-expression network analysis identified

the five genes MdPSAF, MdU603, MdRR17, MD15G1264900,

and MD12G1264100 as potential hub genes (Table S11 and

Figure S9), among which, the expression of MdPSAF was

observed to be significantly higher than that of the others. On

the basis of differences in the variation of MdPSAF expression

during fruit development and the strong correlation shown in

the co-expression network, we hypothesized that MdPSAF has a

regulatory effect on the accumulation of glucose and multiple

acids in apple fruits.

The “MEyellow”module containing 939 DEGs was found to

be specifically associated with fruit sorbitol content (Table S10).

Co-expression network analysis revealedMdAB1K8 andMdRK1

to be the most highly associated genes within the co-expression

network, and these were duly identified as module hub genes

(Table S11 and Figure S10). Comparative analysis of the gene

expression of MdAB1K8 and MdRK1 in HF and HH at each of

the assessed developmental stages indicated that MdRK1 plays

an important role in the accumulation of sorbitol in fruits.
Sugar and acid metabolism during apple
fruit development

To gain insights into the molecular mechanisms underlying

changes in the sugar and acid contents of apple fruit, we

analyzed the DEGs identified as being associated with sugar

and acid metabolism.

In the glycolytic pathway, glucose is progressively cleaved to

phosphoenolpyruvate (PEP), which is catalyzed by pyruvate kinase

(PK, EC 2.7.1.40) (Wulfert et al., 2020; Zhang et al., 2020). We

identified three genes that were differentially expressed between the

two cultivars, namely, MD13G1000500, MD02G1244000 and

MD11G1104800 (Table S12 and Figure 7A). Pyruvate phosphate

double kinase (PPDK, EC 2.7.9.1) is the rate-limiting enzyme of the

C4 pathway in plants, in which pyruvate is catalyzed to produce

PEP (Wang et al., 2008; Shi et al., 2020). Interestingly, all of the three

DEGs encoding PPDK (MD16G1179400, MD13G1177500 and

MD16G1179500) were observed to show a higher level of

expression in HF at 30 and 150 DAB, thereby tending to indicate

the heightened activity of these genes during the early and late

stages of apple fruit development (Table S12 and Figure 7A). From

the cell cytoplasm, pyruvate crosses the mitochondrial membrane

and enters the mitochondrial matrix, wherein it is further catalyzed

in the tricarboxylic acid (TCA) cycle. Among the DEGs, we

identified seven key genes associated with the TCA cycle,

including pyruvate dehydrogenase (PDH, EC 1.2.4.1), citrate

synthase (CS, EC 2.3.3.1), isocitrate dehydrogenase (IDH, EC

1.1.1.42), succinate dehydrogenase (SucDH, EC 1.3.5.1), and

fumarate hydrolase (FUM, EC 4.2.1.2) (Table S12 and
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Figure 7A). Interestingly, with the exception of IDH, all these

DEGs exhibited higher expression in HH during all stages of

development (Table S12 and Figure 7A). Of the two IDHs, the

gene expression (FPKM) of MD11G1266500 approached 5.94 at 30

DAB and the expression of both was higher in HF at all

developmental stages (Table S12). Oxaloacetic acid (OAA) is

catalyzed by NAD-malate dehydrogenase (NAD-MDH, EC

1.1.1.37) to malate, which passes through the mitochondrial

membrane into the cytoplasm. Simultaneously, pyruvate is

converted to malate by the action of the NADP-malate enzyme

(NADP-ME, EC 1.1. 1.40). Malate generated by both pathways is

re-oxidized to OAA by NAD-MDH and to PEP by the action of

phosphoenolpyruvate carboxykinase (PEPCK, EC 4.1.1.31)

(Malone et al., 2007; Shen et al., 2017; Famiani et al., 2018),

completing the first step of gluconeogenesis (Figure 7A). We

observed notable differences in the expression pattern of the

DEGs associated with malate metabolism in mitochondria, with

almost all these DEGs exhibiting higher expression in HF (Table

S12). All our observations indicated that there are systematical

differences regarding the biosynthesis of acids.

With respect to the biosynthesis of sugars, we identified a

total of 28 DEGs in the investigated pathways (Table S12 and

Figure 7B), although failed to detect any consistent difference

between the two cultivars, thereby tending to indicate a more

complex underlying genetic basis for the biosynthesis of sugars.

In addition, we found 96 DEGs with differential expression in

the analysis of metabolic pathways (Figure 7C). These DEGs are

associated with various metabolic pathways such as cell wall

synthesis, polyphenol synthesis, etc.
QTL mapping analysis and candidate
gene prediction

On the basis of QTL mapping analysis, we identified 7

significant QTLs distributed among four chromosomes that

were associated with sugars, with phenotypic variation

explained (PVE) values of between 13.3% and 25.7%. Among

these QTLs, four were found to explain more than 10% of the

phenotypic variation (Fru06.1, Fru09.1, Suc04.1, and Glu09.1),

and the remaining three explained more than 20% (Fru06.2,

Glu06.1, Sor08.1) (Table 1). The physical location of these QTL

regions in the genome was determined based on markers within

the QTL regions. The number of genes within these QTLs

ranged from 45 to 568, totaling 2,362 candidate genes for

soluble sugars (Table S14).

Comparatively, we identified a total of 25 significant QTLs

associated with the five assessed acids distributed across seven

chromosomes, with (PVE) values ranging from 12.9% to 86%.

Among these, 18 main-effect QTL explained more than 10% of

the phenotypic variation and 7 explained more than 20%

(Fu08.1, Fu08.2, Fu09.1, Su05.1, Su14.1, Su14.2, and Ox06.1,

Ox14.1) (Table 1). Interestingly, the QTL Su14.2 mapped to
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FIGURE 7

Analysis of the differentially expressed genes associated with metabolic pathways in ‘HanFu’ and ‘Huahong’. (A) The metabolic pathways of
glucose for major acids (malic acid, fumaric acid, citric acid, succinic acid, oxalic acid) in apple fruit. (B) The metabolic pathways of glucose,
fructose, sorbose, and sucrose in apple fruit. (C) A heat map of differentially expressed genes (DEGs) involved in cell wall synthesis and genes
encoding other genetic regulatory pathways. A heatmap showing log2-Fold changes of DEGs (‘HanFu’ vs. ‘Huahong’).
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chromosome Chr14 (Table S13), corresponding to 11.20–16.44

Mb on the genome, exhibited the highest LOD score (4.15) and

PVE value (50.6%) (Table 1), thereby indicating that this region

of Chr14 has a strong genetic effect regarding this phenotype.

Using RNA-seq analysis, we predicted the candidate genes

within the detected QTL regions. As indicated previously, we

detected seven QTLs associated with sugar contents (sucrose,

fructose, glucose, and sorbose), which collectively harbored a total

of 2,363 genes. Among these, RNA-seq analysis revealed 424 DEGs

within the QTL intervals (Table S16). As candidate genes associated

with sugar content, we selected six of these DEGs based on the gene

annotation information (Table S17). Among these, MdBAM3

(MD06G1112400), encoding a b-amylase, is involved in starch

degradation and maltose metabolism in chloroplasts (Fulton et al.,

2008).MdBAM2 (MD09G1275700) similarly encodes a b- amylase,

although this appears to be less active than the MdBAM-encoded
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enzyme, and has a weaker interaction with starch and maltose (Li

et al., 2009b;Monroe, 2020).MdSPSA3(MD04G1013500), encoding

a sucrose phosphate synthase, plays an important role in sucrose

synthesis as a rate-limiting enzyme that catalyzes the synthesis of

sucrose from glucose and F6P (Qazi et al., 2012). MdGUX8

(MD06G1058200) encodes a putative glucuronosyltransferase,

whereas MdPLST3(MD09G1209000) encodes a plastid glucose

transporter protein involved in the transport of glucose to the

cytoplasmic matrix, and MdAGPL1(MD08G1027900), encoding

an ADP-glucose pyrophosphorylase, plays a role in starch synthesis.

With respect to the five assessed acids (malate, fumarate,

oxalate, succinate, and citrate), we detected 25 associated QTLs,

harboring a total of 3,934 genes (Table S15), among which, 643

DEGs were identified within the QTL intervals based on RNA-

seq (Table S16). With reference to the annotation information

obtained for these DEGs, we selected three as acid-associated
TABLE 1 Summary statistics for the classification of significant QTL for sugars and acids.

Trait QTLs Chromosome Start End Size_of_QTL LOD PVE Number of genes

malate Ma01.1 Chr01 0.32 6.79 6.47M 2.61 13.4 76

malate Ma01.2 Chr01 2.05 2.05 0.00M 2.56 13.1 0

malate Ma01.3 Chr01 5.64 5.64 0.00M 2.56 13.1 0

malate Ma05.1 Chr05 30.77 32.01 1.24M 2.98 18.5 107

malate Ma05.2 Chr05 31.39 32.96 1.57M 2.52 12.9 148

malate Ma05.3 Chr05 32.39 34.37 1.98M 2.52 12.9 139

malate Ma08.1 Chr08 9.42 19.51 10.09M 2.94 14.9 476

malate Ma08.2 Chr08 12.57 19.51 6.94M 3.03 16.3 261

malate Ma08.3 Chr08 13.49 18.54 5.05M 2.95 15.7 161

malate Ma08.4 Chr08 16.05 25.85 9.80M 2.8 14.2 372

malate Ma08.5 Chr08 19.47 20.80 1.33M 2.72 14.3 46

malate Ma08.6 Chr08 21.33 23.31 1.97M 2.54 13.4 86

fumarate Fu08.1 Chr08 3.78 3.96 0.18M 3.11 23 15

fumarate Fu08.2 Chr08 16.37 22.04 5.67M 3.9 27.3 191

fumarate Fu08.3 Chr08 20.30 24.59 4.29M 3.51 17.8 180

fumarate Fu09.1 Chr09 10.66 10.66 0.00M 21.46 86 0

citrate Ci14.1 Chr14 1.75 10.24 8.49M 3.47 18 568

citrate Ci17.1 Chr17 0.37 1.25 0.88M 3.96 19.5 89

succinate Su05.1 Chr05 31.39 35.72 4.33M 4.38 21.3 345

succinate Su05.2 Chr05 33.97 38.02 4.05M 4.04 19.9 361

succinate Su14.1 Chr14 9.97 9.97 0.00M 3.51 48.4 0

succinate Su14.2 Chr14 11.20 16.44 5.24M 4.15 50.6 131

oxalate Ox06.1 Chr06 36.81 37.10 0.30M 2.72 22.2 36

oxalate Ox09.1 Chr09 12.35 14.49 2.14M 2.5 13.3 146

oxalate Ox14.1 Chr14 18.81 18.81 0.00M 2.72 14.6 0

fructose Fru06.1 Chr06 8.39 26.86 18.47M 3.09 18.5 568

fructose Fru06.2 Chr06 32.97 36.59 3.62M 3.49 25.7 356

fructose Fru09.1 Chr09 34.47 35.36 0.89M 3.27 16.8 45

sucrose Suc04.1 Chr04 0.05 4.73 4.67M 3.61 18.2 368

glucose Glu06.1 Chr06 8.39 26.86 18.47M 2.93 22.4 568

glucose Glu09.1 Chr09 19.93 30.01 10.08M 2.54 13.3 218

sorbitol Sor08.1 Chr08 0.09 2.04 1.95M 3.99 22.1 239
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candidate genes (Table S17). Among these, MdNADPME

(MD08G1111500) encodes an NADP-dependent malic enzyme

involved in catalyzing the oxidative decarboxylation of malic

acid (Shi et al., 2015; Chen et al., 2019); MdMDHC

(MD05G1238800) encodes a malate dehydrogenase involved

in the conversion of oxaloacetate to malic acid (Etienne et al.,

2013); andMdALMT9(MD06G1214800) encodes an aluminum-

activated malate transporter protein involved in the efflux of

malic acid (Gao et al., 2018).
Discussion

The use of co-expression modules to
identify candidate genes associated with
sugar and acid contents in apple fruits

In this study, we performed RNA-seq analysis to identify

genes showing differential expression between the two apple

cultivars ‘HanFu’ and ‘Huahong’ at different stages of fruit

development and used these DEGs as a basis for subsequent

co-expression module analysis. By screening the modules with

significant associations with the traits of interest, we accordingly

identified hub genes that are speculated to play key roles in the

regulation of these traits.

Among the modules characterized, the “MEpurple” module

was found to be significantly associated with fruit length, weight,

and sugar contents. In the model plant Arabidopsis thaliana,

AtMIF2 binds specifically to AtKUN to form a transcriptional

repressor complex that inhibits the expression of AtWUS.

Repression of this gene affects carpel number and ultimately fruit

size (Bollier et al., 2018). In apple,MdACCH1 catalyzes the terminal

reaction of the ethylene biosynthesis pathway, in which ACC is

converted to ethylene (Shi and Zhang, 2012), with expression

reaching peak levels during the period of fruit ripening, which is

consistent with our RNA-seq results. ACC can also promote plant

fruit ripening by influencing the activity of plant hormones, such as

salicylic acid and the growth hormone indole acetic acid (IAA)

(Song et al., 2005). The “MEbrown” module obtained in this study

was established to be specifically associated with fruit browning. In

this regard, MdANRPN has been demonstrated to yield precursors

required for the synthesis of proanthocyanidins or condensed

tannins (Bogs et al., 2005), and also catalyzes NADPH-dependent

double reduction of anthocyanins (Gargouri et al., 2009; Gargouri

et al., 2010). MdPILS5, which encodes a novel growth hormone

transporter protein, regulates intracellular growth hormone

distribution (Barbez et al., 2012; Liu et al., 2018), whereas

MdCEL1 is a key enzyme involved in cellulose formation in the

cell wall, which is closely associated with plant growth, xylem

development, and cell wall thickening (Palomer et al., 2006; Shani

et al., 2006). MdPMEI3 encodes a pectin esterase inhibitor that

regulates the demethylation of pectin in apical meristematic tissues,

thereby influencing protoplast formation and foliar structure
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patterns (Lionetti et al., 2007). Overexpression of AtPMEI3 has

been shown to promote HG hypermethylation and influences the

formation of floral primordia (Li et al., 2021). The hub gene

MdFTSHC, detected in the “MEblue” module, is an ATP-

dependent zinc metalloprotease containing an AAA (an ATPase

associated with various cellular activities) and a Zn2+

metalloprotease structural domain that plays a key role in the

hydrolysis of membrane proteins (Adam et al., 2005; Wagner et al.,

2012). In the “MEred” module, the hub gene MdXTHs encodes a

cell wall enzyme involved in the linking of xylans to

oligosaccharides or other available xylan chains, and is believed to

play important roles in regulating growth and development

(Yokoyama et al., 2004; Becnel et al., 2006; Maris et al., 2011).

MdMES17 encodes a methyl esterase that efficiently and specifically

hydrolyzes methylindole-3-acetic acid (MeIAA) to IAA (Yang et al.,

2008). The roots of Arabidopsis plants overexpressing AtMES17

have been found to be characterized by an enhanced sensitivity to

MeIAA, although not to IAA. Among genes in the “MEyellow”

module, MdABC1K8 encodes a BC1 complex kinase, and mutants

of MdABC1K8 are characterized by the production of higher levels

of lipoproteins that, in conjunction with the activity ofMdABC1K7

(Manara et al., 2015), influences the synthesis or accumulation of

chloroplast lipids and regulates the composition of chloroplast

membranes in response to stress. The hub genes identified in the

present study, based on co-expression network analysis, will provide

a reference for studying the gene regulatory networks associated

with fruit quality traits.
A combination of RNA-seq analysis and
QTL mapping was used to identify
candidate genes associated with sugar
and acid accumulation

On the basis of the co-localization of DEGs and QTL regions,

we identified six sugar-associated candidate genes from among 283

DEGs with annotation information. Among these genes, MdSPS3

encodes a sucrose phosphate synthase, the orthologs of which have

been extensively studied in prunes, peaches, grapes, and tomatoes,

in which it plays a catalytic role in sucrose synthesis, thereby

enhance fruit sweetness. The proteins encoded by MdBAM2 and

MdBAM3 have measurable b-amylase activity, with higher activity

being detected in the latter (Fulton et al., 2008). In Arabidopsis,

AtBAM3 plays an important role in nocturnal starch degradation,

and in AtBAM3 mutants in which total b-amylase activity is

reduced, there is a corresponding increase starch content. The b-
amylase encoded by AtBAM2 has been observed to have very low

activity and a poor glucan binding capacity. Notably, in AtBAM2,

there is no reduction in total b-amylase activity, and thus it is

assumed that AtBAM2 has no effect on amylolysis (Li et al., 2009b).

In contrast to most studies, Monroe et al. (2017) found that the

AtBAM2-encoded b-amylase had significant catalytic activity under

specific physiological circumstances, a unique result that provides
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evidence to indicate a novel pathway for the study of AtBAM2.

ADP-glucose pyrophosphorylase, an enzyme comprising four large

and two small subunits, plays a regulatory role as the rate-limiting

enzyme of the amylogenic pathway. Among these subunits, one of

the large subunits (AtAGPL3) is capable of promoting starch

synthesis (Hwang et al., 2006). Within the intervals of the 20

acid-associated QTLs, we detected 643 DEGs, three of which were

identified as candidates. Among these, MdNADPME encodes an

NADP-dependent malic enzyme involved in catalyzing the

oxidative decarboxylation of malic acid (Chen et al., 2019), and

has been identified as one of the essential enzymes for malic acid

metabolism. It is accordingly speculated that differences in the

accumulation of malic acid in ripe apples could be attributable to

the differential expression of this gene (Shi et al., 2015). Of the other

two candidates, themalate dehydrogenase encoded byMdMDH is a

key enzyme in malate metabolism involved in the conversion of

oxaloacetate to malate (Etienne et al., 2013), whereas MdALMT9

encodes an aluminum-activated malate transporter protein

involved in the efflux of malate and citrate, and plays an

important role in the aluminum tolerance of plants (Liu et al.,

2009; Kochian et al., 2015; Gao et al., 2018).

Although the candidate genes identified based on a

combined QTL mapping and RNA-seq approach differ from

the hub genes determined using WGCNA, we nevertheless

believe these candidate genes to be informative from the

perspective of characterizing changes in sugar and acid

contents during the different stages of fruit development.
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