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Introduction: Precise identification of crop insects is a crucial aspect of

intelligent plant protection. Recently, with the development of deep learning

methods, the efficiency of insect recognition has been significantly improved.

However, the recognition rate of existing models for small insect targets is still

insufficient for insect early warning or precise variable pesticide application.

Small insects occupy less pixel information on the image, making it more

difficult for the model to extract feature information.

Methods: To improve the identification accuracy of small insect targets, in this

paper, we proposed S-ResNet, a model improved from the ResNet, by varying

its convolution kernel. The branch of the residual structure was added and the

Feature Multiplexing Module (FMM) was illustrated. Therefore, the feature

expression capacity of the model was improved using feature information of

different scales. Meanwhile, the Adjacent Elimination Module (AEM) was

furtherly employed to eliminate the useless information in the extracted

features of the model.

Results: The training and validation results showed that the improved residual

structure improved the feature extraction ability of small insect targets

compared to the original model. With compare of 18, 30, or 50 layers, the S-

ResNet enhanced the identification accuracy of small insect targets by 7% than

that on the ResNet model with same layer depth.

KEYWORDS

deep learning in agriculture, small target insect, insect identification, ResNet model,
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1 Introduction

Along with diseases and weeds, insect infestation is an

important factor affecting the crop production. The insects

could damage crops at all growth stages, which would

seriously reduce the yield and quality of crop products (Bao

et al., 2021). Therefore, accurate identification of insects and

more efficient pest control are essential to increase the growers’

economic interest. The conventional insect identification relies

on the visual diagnosis experience of plant protection experts

and growers. However, this diagnostic method is time-

consuming, inefficient, and highly subjective. The diagnose

ability could be insufficient in large scale crop cultivation.

Thus, intelligent insect identification system is demanded to

apply timely pest control strategies.

Significant progress has been made in insect identification

using machine vision technology. For example, Larios et al.

(2008) classified stonefly larvae based on Scale-Invariant Feature

Transform (SIFT) and the histograms of the target features.

Samanta and Ghosh (2012) implemented the diagnosis of eight

insect species in tea plantations using correlation-based feature

selection and artificial neural networks based on a dataset

containing 609 samples. Using Support Vector Machine

(SVM), Ebrahimi et al. (2017) identified the thrips in crop

canopies. Although the above methods have shown exemplary

performance in pest identification, conventional machine

learning algorithms must be applied after the procedure of

image pre-processing, which was time-consuming for massive

data processing in practice. Thus, there were few capable models

for pest early-warning or precise control applications.

In recent years, deep learning had received increasing

attention from researchers due to its superior performance in

feature extraction, model generalization and fitting (Liu et al.,

2022). Among them, Convolutional Neural Networks(CNNs)

had been used extensively in large-scale image recognition tasks

and had achieved good results. Due to the excellent performance

of CNNs, they had also been used in pest identification. For

example, an improved AlexNet model successfully identified ten

insect species in complex farming contexts with an accuracy as

high as 98.67% (Cheng et al., 2017). By analyzing the effects of

convolutional kernels and layers, Wang et al. (2017)

reconstructed a model including the elements from AlexNet

and LeNet-5 for the classification of 82 insect species, with an

accuracy of 92%. Thenmozhi and Reddy (2019) proposed an

effective deep CNNs model to classify insects in three open

access datasets. Data augmentation methods such as reflection,

scaling, rotation, and panning were introduced to prevent model

overfitting. The final classification accuracy of the model

achieved 96.75%, 97.47%, and 95.97%, respectively.

With the addition of an pre-trained MobileNet-V2 as a

backbone and an attention mechanism, Chen et al. (2021)

classified the pests in an open access dataset with the average
Frontiers in Plant Science 02
accuracy of 99.14%. Jiao et al. (2022) introduced a feature

enhancement module and an adaptive enhancement module

to the R-CNN model. The improved model was tested using the

AgriPest21 dataset, achieved a recognition accuracy of 77%. The

good feature extraction capability of CNNs allows the model to

learn higher-level semantic information. It also benefits the

improvement of the model recognition accuracy and

robustness, as well as the reduction of human efforts (e.g.,

manual extraction of features). However, all the above studies

used image training resources with high proportion of insect

targets in all image pixels, which containing various information

of the insect features. In practical photographing procedure

during precise insect control process, the insect targets could

just occupy a quite low proportion of pixels in the collected

images. During the forward propagation of CNNs, the pest

information in the learning layer gradually decreases.

Therefore, it could be more difficult to extract the appropriate

insect features for correct identification.

In summary, CNNs had been used extensively in the field of

insect identification. As their ability to automatically acquire

target features from training datasets not only avoided labor-

intensive feature engineering and complex image processing

processes, but also allowed the model to learn more high-level

semantic information which could improve the recognition

accuracy and robustness of the model. However, these

methods still had some limitations in identifying small target

insects. The small target of insects in the real environment

(Targets occupied less pixel information on the RGB image,

Figure 1) led to the problem that CNNs might not be able to

extract sufficiently detailed recognition features for the small

target insects in the image. It might cause the trained classifiers

to be less accurate for insect recognition. Currently, a large

number of researchers had also started to focus on the difficult

problem of small target insect identification. For example, Wang
FIGURE 1

Small inset targets in the actual environment.
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et al. (2021) proposed Sampling-balanced Region Proposal

Network(S-RPN) model. This model firstly added attention

module to the residual structure to obtain richer detailed

features of small target insects. Secondly, S-RPN reconstructed

the Region Proposal Network (RPN) to obtain higher quality

target proposals. Finally, S-RPN achieved detection of small

target insects and obtained good results. However, the two-stage

detection mode took a lot of time to generate proposals, which

was not conducive to the real-time detection of small target

insects (Wen et al., 2022). Meanwhile its only enriched the insect

feature information by the attention mechanism, but the actual

pest size was much smaller than the general small target. It might

cause the features to fade away with the convolution operation.

Therefore, its backbone model was not sufficient for extracting

pest feature information. Wen et al. (2022) proposed Pest-YOLO

v4 to obtain better detection performance for small target insects

by optimizing the loss function and the choice of prediction box.

To effectively identify maize insects, Zhang et al. (2022)

improved YOLO v4 by designing a multiscale hybrid attention

mechanism to improve the model’s focus on small target pests

and fuse the effective information of multi-scale additional

features. However, all the above methods achieve small target

insect recognition by optimizing proposals, loss functions, and

fusing contextual features, and rarely enhance the feature

capability of small target pests by optimizing the backbone

network, which led to the loss of target feature information

during the forward propagation of the model. Even though
Frontiers in Plant Science 03
fusing contextual features could effectively utilize multi-level

feature information. When features were mixed with small,

medium and large targets (background information). The

dominance of large and medium targets would weaken the

features of the small targets thus leading to the missed

identification of the small targets.

An S-ResNet model based on improving ResNet was

proposed to solve the difficulty of small target insect feature

extraction and the large amount of redundant information

mixed in the extracted features in this study. Firstly, the

extraction ability of model for small target insects was

enhanced by optimizing the convolution kernel and increasing

the branches of the residual structure. Secondly, the feature of

different layers was reused to maximize the retention of small

target insect feature by introducing Feature Multiplexing

Module(FMM). Finally, Adjacent Elimination Module(AEM)

was used to eliminate background information between

adjacent feature layers that hinders the accuracy of small

target pest recognition.

The main work of this paper was as follows:

1. The ability of convolutional kernel to extract detailed

information about small target pests was tested. Compared with

ResNet, S-ResNet model rarely used large convolutional kernels

and replaced them with small convolutional kernels. Small

convolutional kernels were more advantageous than larger in

the extraction of small target insect detail features. Small

convolutional kernels could retain richer detail features.
FIGURE 2

Data-augmentation operations of the original images.
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2. Benefiting from the inspiration of Single Shot MultiBox

Detector(SSD), this paper analyzed the multi-level feature reuse

module. The lower-level features retained more small target

detail information, which was more beneficial to small target

insect identification. In addition, the adjacent erasure module

was also analyzed, where the feature layers gradually lose small

target detail information during the forward propagation of the

model. In order to retain the small target features, element-by-

element subtraction was performed for the adjacent layers to

suppress redundant information and improved the recognition

accuracy of small targets.

3. In summary, an S-ResNet model was designed in this

paper for identifying small target insects. To address the

problems of insufficient feature extraction ability and excessive

redundant background information of existing models for small

target pests, the ResNet model was optimized to improve its

feature extraction and retention ability for small target insects.

Since S-ResNet was a model for classification tasks, it could be

ported to detection or segmentation tasks as a backbone feature

extraction model in the future.
2 Materials and methods

2.1 Image dataset

The size of small targets in this study was referred to the MS

coco dataset (Lin et al., 2014), which considered that an image in

which the actual target occupied pixels less than 32 × 32.

Images of 10 common insect species in the field were

collected to construct the dataset, including Aphid, Red Spider,

Locust, Sweet potato Whitefly, Rice Leaf Roller, Asian Rice

Borer, Corn Borer, Land Tiger, Bollworm, and Cluster
Frontiers in Plant Science 04
Caterpillar. Pest images were obtained from open access

datasets such as Ip102 (Wu et al., 2019), Pest24 (Wang et al.,

2020), or publicly available images on the internet. Images with

insect targets pixel numbers more than that of the defined small

targets were excluded. Finally, 250 images of each class of insects

were included.

CNNs performed well in many machine vision tasks.

However, these models relied heavily on big data sources to

avoid overfitting. Unfortunately, many application areas lacked

big data sources, such as agriculture for small target insects.

Therefore, data augmentation was one of the effective solutions

to the problem of limited data sources. Data augmentation

consists of a series of techniques used to increase the amount

and quality of training datasets so that they could be used to

build better deep learning models (Shorten and Khoshgoftaar,

2019). Krizhevsky et al. (2017) used data augmentation in their

experiments to increase the size of the dataset by 2048 orders of

magnitude. This was achieved by randomly cropping 224 × 224

blocks of regions from the original image, flipping them

horizontally, and changing the intensity of the RGB channels

using PCA color enhancement. This data enhancement helped

reduce overfitting when training deep neural networks. The

authors claimed that their method reduced the error rate of

the model by more than 1%. To address the risk of underfitting

due to insufficient amount of data sources, this study performed

data augmentation operations on images of ten insect species.

Each original image was expanded into 20 different images by

common data augmentation means (e.g., rotation, random flip,

brightness dithering, added noise, and Figure 2 showed the

results of data augmentation). Finally, 50,000 images were

obtained. To balance the number of categories, each species of

pest was given 5000 images, and the training and validation sets

were divided in a 9:1 ratio (Table 1).
TABLE 1 Image amount of each insect species in the dataset (Random sampling from each category of insects).

Label Class Original Expansion
datasets

Train(90%) Validation(10%)

0 Aphid 250 5000 4500 500

1 Red Spider 250 5000 4500 500

2 Locust 250 5000 4500 500

3 Sweet potato Whitefly 250 5000 4500 500

4 Rice Leaf Roller 250 5000 4500 500

5 Asian rice borer 250 5000 4500 500

6 Corn Borer 250 5000 4500 500

7 Land Tiger 250 5000 4500 500

8 Bollworm 250 5000 4500 500

9 Cluster Caterpillar 250 5000 4500 500

Total 10 2500 50000 45000 5000
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2.2 Convolutional neural networks

The basic structure of a convolutional neural network was

shown in Figure 3. It consists of several parts, such as input,

convolutional layer, pooling layer, fully connected layer and output.

The mathematical principle of the convolution layer could

be expressed as Equation 1. The convolution kernel (filter) slide

through the layer’s feature layer in a specified stride and

performed Hadamard multiplication with the corresponding

feature map values according to a certain weight.

ylj = f o
i∈Fj

xl−1i *k
l
ij + bli

 !
(1)

where, Fj represented the convolution region of different

feature maps; bli represented the bias term; f represented the

added activation function that could add nonlinear factors to the

network and thus improve the model’s expressiveness. The

common activation functions for CNNs were ReLu,

Sigmoid, etc.

The Pooling layer could effectively reduce the parameters

transferred to the next layer of the model, improve the

computational speed, and enhance the robustness to feature

location shifts and deformations. The Pooling layer was

commonly used with Maximum Pooling and Average Pooling.

When the input size was m×n and the Convolution Kernel was

p×q, Maximum Pooling formula could be applied as shown in

Equation 2. When Average Pooling was applied, it would take

the average of the specified region.

yij = max (xi+r,j+s)

i ≤ m − p

j ≤ n − q

(2)
2.3 ResNet network basic structure

The ResNet model had achieved excellent results on the

ImageNet dataset (Deng et al., 2009; He et al., 2016). The
Frontiers in Plant Science 05
residual structure (Figure 4) allowed the output from one layer

of the network to be quickly transferred to the next or even more

deeper layers using skip connections.

The principle of residual structure was shown in Equation 3.

H(x) represented the output, and F(x) represented the result

after the convolution layer. After introducing the residual

structures, if F(x) became 0 during the forward propagation,

the input x would automatically continue to pass through the

branch of the identity so that the problem of degradation due to

the deep network layers could be avoided.

H(x) = F(x) + x (3)

New models could be constructed by stacking residual

structures into ResNet with different depths, such as ResNet-

18, ResNet-34, and ResNet-50. The number of residual structure

repetitions was shown in Table 2, where different of residual

structures were stacked in Layer1 to Layer4. With a new

convolutional layer added into each residual structure,

ResNet50 would be generated from ResNet34, while they have

the same times of stacked residual structure but different

network depths.
3 S-ResNet

3.1 Network structure of the S-ResNet

The conventional ResNet model did not have the high reuse

rate for large-scale features. When identifying small insects,

small-scale feature information could be easily lost during

forward propagation, which would lead to false identification

results (Liu et al., 2022). As there were few branches of the

residual structures, the feature extraction and expression ability

of the model should be limited (Qiu et al., 2021). Even more,

there would be little extraction of deep semantic information. In

this section, a feature extraction model called S-ResNet designed

for small insect target identification. The model was improved

from the ResNet model, by varying its convolution kernel. The

branch of the residual structure was added, and the Feature
FIGURE 3

The structure of a common convolutional neural network.
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Multiplexing Module (FMM) was illustrated. Therefore, the

feature expression capacity of the model was improved using

feature information of different scales. Meanwhile, the Adjacent

Elimination Module (AEM) was furtherly employed to eliminate

the useless information in the extracted features of the model.

The general structure of the model was shown in Figure 5. The

part of the model that consist of stacked residual blocks was

defined as Residual Body Module (RSB). The amount of stacked

residual structures in the RSB module varies in different ResNet

model as presented in Table 2. The improved residual structure

was used for feature extraction of small insect targets. At the

same time, to prevent feature loss of small target pest

information during propagation. A branch was added before

each RSB module, which was fused with the output content of
Frontiers in Plant Science 06
RSB after convolution operation to enhance the feature

extraction ability of small insect targets. Then the AEM

operation was performed by sequentially outputting features of

different dimensions, furtherly extracting the feature

information of small insect targets. Finally, the feature channel

depth was reduced via the convolutional layer. The probability

of the output category was achieved after Global Average

Pooling, Fully Connected Layer, which would indicate the

classification results of each insect species.
3.2 Reduction of the convolution
kernel size

The ResNet model used a 7×7 convolutional kernel as the

steam for feature extraction. It was easy to recognize large targets

in the image because of its larger perceptual field and original

image mapping area. However, detailed information of the small

insect targets would be lost during convolution procedures with

the 7×7 convolutional the kernel, making the identification of

small insect targets more difficult. Multiple small convolutional

kernels were applied in this study instead of large convolutional

kernels according to the algorithm proposed by Simonyan and

Zisserman (2014). Using ResNet-34 as the benchmark, ablation

experiments were conducted to select proper number of 3×3

convolutional kernels for small insect target identification. The

test results were shown in Table 3.

As presented in Table 3, the accuracy of the ResNet-34

model was improved after using the 3×3 convolution kernel,

where using three 3×3 convolution kernels could achieve the

same perceptual field as a 7×7 convolution kernel. The

recognition accuracy was increased from 88.4% to 88.7%.

Meanwhile, the model size was slightly reduced.

The visualization operation of the feature obtained from the

7×7 and 3×3 convolution kernels were shown in Figure 6. It

showed that the 3×3 convolution kernel could get a relatively
TABLE 2 The amount of residual block repetitions for ResNet models of different depths.

Layers Output ResNet-18 ResNet-34 ResNet-50

Conv 1122 1 1 1

Layer1 562 2 3 3

Layer2 282 2 4 4

Layer3 142 2 6 6

Layer4 72 2 3 3

FC 10 1 1 1

FC means a Fully Connected Layer, which outputs the predicted probability in 10 classes of insects in one picture. The value in the table represents the amount of stacked residual
modules in each model. For example, the ResNet-34 consists of 34 layers with one Conv, three residual structures in Layer1, four residual structures in Layer2, six residual structures in
Layer3, three residual structures in Layer4 and one FC.
Conv means a convolutional layer (containing BN layer and activation function).
f

FIGURE 4

Residual structure.
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clear outline of the small insect target. Therefore, a 3×3

convolution kernel was used to replace the 7×7 convolution

kernel in the first layer of the original model. The improved

model was less likely to lose the detailed information of small

insect targets due to the smaller perceptual field.
Frontiers in Plant Science 07
3.3 Residual structure improvement

Addition of branches to the residual structure could improve

the feature extraction ability of a model generated from ResNet

(Ren et al., 2019; Bao et al., 2021). The residual structure was
FIGURE 6

Feature visualization using a 7×7 and a 3×3 convolution kernels.
TABLE 3 The effect of convolution kernel number on the ResNet-34 model.

Trial Number of 3×3 convolutions Number of 7×7 convolutions Accuracy/% Model Size/MB

1 0 1 88.4 87.33

2 1 0 88.6 86.87

3 2 0 88.7 87.06

4 3 0 88.7 87.21

Note: Bolded font represented the best result in a column.
FIGURE 5

S-ResNet overall structure diagram. “A” donates the element-by-element summation; “C” donates the fusion of the number of feature channels;
“Conv” donate a convolutional layer; “RS” donates a residual structure(The improved residual structure is shown in Figure 7B); “RSB” donates a
RSB module; “BN” donates a normalization operation and “ReLu” is the activation function.
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improved in this study to strength the feature extraction ability

of the model for small insect targets, as shown in Figure 7. The

improved residual structure contained three branches. The input

feature underwent a dimensional boost operation with a 1×1

convolution kernel, in which the resolution of the feature did not

change and the depth of channels was doubled. Then the feature

was divided equally into two branches as shown in Figure 7B.

The left branch underwent further feature extraction with 3×3

convolution and 1×1 convolution operations, while the right

branch did the skip connection operations. Output of the two

side branches were formed into a new feature using channel

fusion operation. Then, the dimensionality of its fused feature

was reduced with a 1×1 convolution kernel. The output was then

added with the feature of the branch directly from Input for a
Frontiers in Plant Science 08
fusion with the element-by-element summation method as

shown in Figure 7B. With this kind of operation, the feature

information of the small target was retained in maximal extent.

The improved residual structure could extract and express

feature information at different scales more effectively than the

original model, while avoiding the problem of small insect target

information loss in the forward propagation.
3.4 Feature multiplexing module and
adjacent elimination module

The deep learning model could extract different feature

information at different convolutional layers during
BA

FIGURE 7

The original residual structure (A) in ResNet model and the improved residual structure (B) in S-ResNet model. Conv3_3 and Conv1_1 donate
convolution operations with the convolution kernel size of 3×3 and 1×1 respectively; BN donates a normalization operation; ReLu is the
activation function;“C” donates the fusion of the number of feature channels; "+" represents the summation of feature maps.
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forwarding propagation, which could be used to identify various

target sizes. The target detail information decreased while the

affluent semantic information increased as the model move from

shallow to deep layers. Liu et al. (2016) proposed an SSD model

in which the feature extracted from the backbone was

multiplexed to detect targets in various sizes. The Feature

Multiplexing Module (FMM, Figure 8) based on the above

idea was introduced in the model of this study to improve the
Frontiers in Plant Science 09
feature reuse. The features extracted by the RSB2 to RSB4

modules were reused when they were input into the Adjacent

Elimination Module (AEM, Figure 8) recording to Neighbor

Erasing and Transferring Network (NETNet) proposed by (Li

et al., 2020), which has achieved good results in detecting small

targets on the MScoco dataset. The AEM was an operation

between two adjacent network layers. When the size of a feature

image in layer m was described as hm×wm×cm, the feature
FIGURE 8

Feature Multiplexing Module and Adjacent Erasing Module. “U” represented an upsampling operation to expand the resolution of the feature
map by a factor of two and a 1×1 convolution operation to reduce the number of channels; “-” represented an element-by-element subtraction
operation for the feature map; “+” represented an element-by-element addition operation for the feature map.
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information in layer l should be fl={xl,xl+1,xl+2,…,xn}∈Rhl×wl×cl ,

and the feature information in layer l+1 should be fl+1={xl+1,xl+2,

xl+3,…,xn}∈Rhl+1×wl+1×cl+1 , where hl > hl+1 and wl > wl+1.

Usually, during the forward propagation from fl to fl+1, the

reduced part xl might contain the detailed information of the

target. Due to little detailed information on small insect targets,

they could be easily overlooked by the model during forward

propagation. Therefore, the element-by-element subtraction of

the feature at different scales using Equation 4 to eliminate

redundant background features and retain target information.

f 0s = fl ⊖ fl+1

= xl , xl+1, xl+2,…, xLf g⊖ xl+1, xl+2, xl+3,…, xLf g (4)

Specifically, the output of the RSB4 was subjected to an

Upsampling operation to double its feature size to ensure that

the feature could be subtracted element by element. Then the

depth of the feature was reduced using a 1×1 convolution filter.

The output of the RSB3 was subjected to feature erasure to

extract information of small insect targets. Similarly, the output

of RSB3 was feature-erased with the output of the RSB2 module

after Upsampling operation. Then the results obtained from the

two feature erasures were summed element by element to get the

final output feature. After a series operation of convolution,

Pooling, and activation function, Fully Connected Layers were

employed for classification.
4 Experiments

4.1 Setup

The hardware platform used for the experiments was a

desktop computer with a NVIDIA RTX 2060 GPU unit. The

operating system was Linux Ubuntu 20.04. The CUDA version

was 10.1. The source code of the neural network was

implemented in Python under the framework Pytorch. The
Frontiers in Plant Science 10
initial learning rate was 0.0001. The training model epoch was

set to 200. The model was optimized using the Adaptive

Moment Estimation (Adam) optimizer. The batch size was 64

for training and 32 for validation in each epoch.

The model performance was evaluated with accuracy,

precision and recall. To furtherly measure the model’s merit,

the model size was also used to assess the complexity of the

model. Cross-Entropy Loss Function which was closely related

to the probability distribution of events was considered as the

loss function as in Equation 5.

L =
1
Noi

Li = −
1
Noi o

M

c=1
yic log (pic) (5)
4.2 Impact of augmented dataset on
model performance

To verify the effect of data augmentation on model training, S-

ResNet 34 was employed for model training respectively with

the original dataset and the augmented data in this study. The

experimental parameters were set as described in Section 4.1. The

results of the loss values on the training dataset and the accuracy

variation on the validation dataset were shown in Figure 9. The

maximum classification accuracy of the model trained with original

dataset was 81.47%, while that of the model trained with augmented

dataset was 95.26%. Meanwhile, the training procedure with

augmented dataset converged faster and processed more

smoothy. Therefore, the following experiments in this study were

conducted with the augmented dataset.
4.3 Effect of improved residual structure
on model performance

Several types of S-ResNet and ResNet models with different

layers were compared and tested without adding FMM and
FIGURE 9

Loss Value and Accuracy changes of S-ResNet34 on the datasets before and after expansion.
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AEM to verify the impact of the improved residual structure on

the model identification performance. The comparison results

were listed in Table 4.

When the improved residual structure was added to the

ResNet model, the performance of all aspects was better than the

original ones, in which the accuracy of the 18-layer ResNet

network increased with greatest variation of 2.9%. However,

with the increase of model depth, the model recognition

accuracy did not rise significantly. The recognition accuracy

even decreased in ResNet101 model. To furtherly demonstrate

the feature extraction capability for small insect targets, this

study used Gradient-weighted Class Activation Mapping(Grad-

Cam) (Saini et al., 2020) for visualization operations, which

showed the essential regions of the image used for model

prediction. The outputs of the second, third, and forth RSB
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modules were visualized using Grad-Cam as shown in Figure 10.

With the increase of forwarding propagation depth, the model

did not entirely focus on the target location in the images.

Instead, a large amount of background information was mixed,

which resulting in the insignificant increase in the accuracy of

small insect target identification. Therefore, model optimization

to enhance the small target insect feature information extraction

was necessary.

4.4 Impact of FMM modules and AEM on
network performance

Different feature information from the RSB module was

processed in the FMM and AEM modules, after which the

network suppressed irrelevant background information and
FIGURE 10

Heat map visualization with S-ResNet34 feature extraction module. The heat maps of class activation features in b are the output of the 2nd,
3rd, and 4th RSB modules (from left to right). Red pixels represent the area of concern of the model while the blue pixels represent the area of
considered background.
TABLE 4 Impact of improved residual structure on network performance.

Trial Model name Number of improved residual structures Accuracy/% Precision/% Recall/% Model Size/MB

1
ResNet18 0 86.7 86.7 85.9 46.8

S-ResNet18 8 89.6 91.2 90.1 43.5

2
ResNet34 0 88.4 88.7 86.3 87.3

S-ResNet34 16 90.3 91.4 89.4 82.6

3
ResNet50 0 90.6 91.3 89.3 102.6

S-ResNet50 16 90.4 92.9 90.5 98.6

4
ResNet101 0 89.9 90.7 87.3 169.9

S-ResNet101 33 90.8 91.8 91.3 160.6

Note: The bold font represented that the S-ResNet model which added the improved residual structure had higher accuracy compared to the original ResNet model.
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would focus on small target pest feature information. The

modules were added to the ResNet model (i.e., the S-ResNet

model designed in this study) and compared with the model

before improvement on their feasibility of the feature processing.

The test results were presented in Figure 11 and Table 5.

The accuracy of each model stabilized on the validation set

after 200 epochs (Figure 11), which indicated that the

performance of the model had been fully demonstrated. The

MobileNet had the worst performance in these models. The S-

ResNet101 and RepVGG model showed similar convergence

speed, but S-ResNet101 was higher accurate. The S-ResNet101

and S-ResNet50 model were basically the same in terms of
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accuracy. There are two possible reasons. 1) It was possible that

the current amount of data was not sufficient for the large size of

the model. 2) Even though the improved model had significant

advantages for small target insect feature extraction, there were

still some problems that need to be explored in the future. In a

word, it could be seen that the recognition accuracy of the model

on the validation dataset was significantly improved after adding

the feature processing module. And the S-ResNet model in this

study had better convergence speed than other models. The

output of the S-ResNet34 model was visualized using Grad-Cam

(Figure 12). The final output of the model focused on the target

pest area rather than the background area. Thus, the introduction
TABLE 5 Impact of feature processing modules on model performance.

Trail Model name FMM+AEM Accuracy/% Model Size/MB

1
ResNet18 – 86.7 46.8

S-ResNet18 √ 93.6 49.5

2
ResNet34 – 88.4 87.3

S-ResNet34 √ 95.3 91.2

3
ResNet50 – 90.6 102.6

S-ResNet50 √ 97.2 105.5

4
ResNet101 – 90.8 169.9

S-ResNet101 √ 97.8 173.2

5 VGG-16 – 90.5 218.8

6 Inception_v3 – 91.2 92.9

7 MobileNet_v3 – 84.3 16.1

8 DenseNet121 – 92.3 30.8

9 RepVGG_A2 – 95.8 112.8

10 RepVGG_B1 – 96.6 229.7

Note: The bold font represented the higher accuracy of the model proposed in this paper compared to other models.
FIGURE 11

Variation of loss values and accuracy of different models on the validation set(Smoothing value=0.6).
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FIGURE 13

Confusion matrix for the identification results of 10 classes of small insect targets. Aphid (0), Red Spider (1), Locust (2), Sweet potato Whitefly (3),
Rice Leaf Roller (4), Asian Rice Borer (5), Corn Borer (6), Land Tiger (7), Bollworm (8), and Cluster Caterpillar (9).
FIGURE 12

Heat map of the output after adding the feature processing module.
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of FMM and AEM modules could be practical for accuracy

improvement of the model on identifying small insect targets.
4.5 Identification results of different
categories of insects

The S-ResNet50 and the S-ResNet101 model was tested on the

validation dataset in this study to analyze the improved model’s

effectiveness on recognizing small insect targets. The validation

results were shown in a confusion matrix (Figure 13). Labels 0 to 9

correspond to10different insect species, specifically:Aphid (0),Red

Spider (1), Locust (2), Sweet potato Whitefly (3), Rice Leaf Roller

(4), Asian Rice Borer (5), CornBorer (6), Land Tiger (7), Bollworm

(8), and Cluster Caterpillar (9).

The results showed that the model achieved good

recognition accuracy for most insect species, while labels 0, 1,

and 3 had slightly lower recognition accuracy compared to other

species (Label 1 performed better on S-ResNet101 model than S-

ResNet50). This could be attribute to their living environment

where these pest targets were relatively small or similar to the

natural background color.
5 Discussion

Crop pests were one of the main risk of yield loss to agriculture

production. Automatic, fast and accurate identification of pests was

essential for infestation level prediction of pests in the field and the

improvement of integrated pest management strategy. In this study,

we proposed a recognitionmodel for small target insects in the field.

Compared with the ResNet model and other advanced models, the

model in this paper was able to achieve better recognition accuracy

with low additional overhead on small target insect datasets.

As can be seen in the confusion matrix (Figure 12), the

category of labels 0 and 3 still suffers from a lack of recognition

accuracy (accuracy of about 96%) with insects of small size and

similarity to their environment. There were many reasons for this,

as the dataset size could be one of the major impact factors.

Compared to ImageNet and COCO datasets which had millions

of images, the existing small target insect dataset had less image

data. Expanding of image data frame could benefit to fitting the

large model training requirements and achieve the desired insect

identification results. In the DPeNet model-based automatic

insect monitoring system developed by Zhao et al. (2022), 325

original images were collected and expanded to 22,815 for model

training by means of data enhancement. Compared with

Muscidae (99.1%), Araneae (100%), Apis (100%) and other

insects with larger target sizes (1.5-2 cm), the trained model in

this study had the recognition rate of 97.7% for small target pests

(1-3 mm). In the dataset of Pest24 (Wang et al., 2020), the

recognition of insects with small size and little images was also

poor for all types of detectionmodels (AP below 30%). In contrast,
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the AP could reach more than 90% for some insects in large size

and with rich images in the dataset. Meanwhile, insects had

different degrees of damage to crops in different life cycles. To

achieve insect prevention, images of insect classes at various

growth stages need to be collected. In the dataset of IP101 (Wu

et al., 2019), images of insects at different growth stages including

eggs, larvae, pupae and adults were collected. However, it was also

a serious challenge for model recognition due to different

appearance features. In summary, the size and number of

insects had significant impact on the recognition effect of the

model. To ensure a uniform data distribution, each small target

pest category in this study had the same number of images.

However, in the presence of a large number of pest species in

agriculture, ten categories of pests were still difficult to meet the

requirements of crop prevention and monitoring pests. A richer

and more diverse dataset of small target insects was one of the

important means to ensure accurate crop prevention and control.

In the natural environment, it was difficult for the model to

locate the main position of the insect due to the interference of

complex background (Figure 10). Liang et al. (2022) collected

rice insect images in different scenarios (field environment, trap

light captures and indoor whiteboard) and used Yolov5 to detect

insects in these three scenarios. The results showed that the

model had a lower recognition rate for insects acquired in the

field and trap light scenarios and a higher recognition rate for

indoor whiteboard insects. This result was related to the training

background where the rice background taken in the indoor

whiteboard background was single, less distracting and with

clearer pest features. In contrast, field backgrounds were diverse,

more complex and could be affected by various factors such as

light, slope and cultivation. Qiu et al. (2021) found that

recognition rates were affected by the sampling background in

grassland coveted night moth recognition counts (pest

recognition accuracy was higher on a white background than

on a circular grid background). The FMM+AEM module

introduced in this study effectively eliminated the background

information (Figure 11) and enhanced the recognition accuracy

of small target pests. However, the dataset in this paper

contained fewer insect targets in a single image. Thus, further

testing of the model performance was needed when facing issues

such as dense insect population and high adhesion level.

Meanwhile, the simple classification task could hardly meet

the demand for multi-class insect prediction and monitoring.

The more advanced detection task performed better in pest

warning. As the high modularity of deep learning models, it was

cheaper to pre-train the backbone feature extraction model and

then port it to detection or segmentation tasks.

Timely and accurate identification of insects was an important

prerequisite for effective control. Existing convolutional neural

network-based pest identification models suffer from poor real-

time performance and complex structures could not be easily

deployed. Although the Pest-YOLO (Wen et al., 2022) was

effective for detecting dense and tiny pests, the model was run in
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a specific environment. Limited by the performance of hardware, it

still remains a difficult problem to enhance the model maintain

recognition performance while minimizing its number of

parameters. Lightweight models have attracted more researchers’

attention because of their great advantages in inference speed and

number of parameters. Peng et al. (2022) proposed a SNPF

lightweight model based on the ShuffleNet V2 model. By

adjusting the number of output channels of the original model

and the number of core module stacks, the SNPF model identified

agricultural insects with higher accuracy (4% improvement), faster

(11.9 ms inference time) and lower number of parameters (30.6%

reduction). The lightweight design of the model is also one of the

next priorities of this research direction, so that it can meet the

deployment requirement on portable mobile devices.

6 Conclusion

In this study, an S-ResNet model was proposed for identifying

small crop insect targets. The proposed method contains three key

components: the optimization of the residual structure, the

modification of the convolutional kernel and the introduction of

the FMM+AEM module. The S-ResNet model proposed in this

paper showed a significant improvement in the accuracy of

recognizing small target pests compared to the ResNet model

(the highest S-ResNet101 achieves 97.8% recognition accuracy,

with improvement of 7%) through comparison tests with 10 types

of pest image collection. Compared with other advanced deep

learningmodels, themodel in this studymaintains its advantage in

recognizing small target pests. The model proposed in this study

could provide an alternative technique for monitoring and

precision control of small target insect in future.
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