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Parthenocarpy is an extremely important trait that revolutionized the

worldwide cultivation of cucumber under protected conditions. Pusa

Parthenocarpic Cucumber-6 (PPC-6) is one of the important commercially

cultivated varieties under protected conditions in India. Understanding the

genetics of parthenocarpy, molecular mapping and the development of

molecular markers closely associated with the trait will facilitate the

introgression of parthenocarpic traits into non-conventional germplasm and

elite varieties. The F1, F2 and back-crosses progenies with a non-

parthenocarpic genotype, Pusa Uday indicated a single incomplete dominant

gene controlling parthenocarpy in PPC-6. QTL-seq comprising of the early

parthenocarpy and non-parthenocarpic bulks along with the parental lines

identified two major genomic regions, one each in chromosome 3 and

chromosome 6 spanning over a region of 2.7 Mb and 7.8 Mb, respectively.

Conventional mapping using F2:3 population also identified two QTLs, Parth6.1

and Parth6.2 in chromosome 6 which indicated the presence of a major effect

QTL in chromosome 6 determining parthenocarpy in PPC-6. The flanking

markers, SSR01148 and SSR 01012 for Parth6.1 locus and SSR10476 and SSR

19174 for Parth6.2 locus were identified and can be used for introgression of

parthenocarpy through the marker-assisted back-crossing programme.

Functional annotation of the QTL-region identified two major genes,

Csa_6G396640 and Csa_6G405890 designated as probable indole-3-

pyruvate monooxygenase YUCCA11 and Auxin response factor 16,

respectively associated with auxin biosynthesis as potential candidate genes.
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Csa_6G396640 showed only one insertion at position 2179 in the non-

parthenocarpic parent. In the case of Csa_6G405890, more variations were

observed between the two parents in the form of SNPs and InDels. The study

provides insight about genomic regions, closely associated markers and

possible candidate genes associated with parthenocarpy in PPC-6 which will

be instrumental for functional genomics study and better understanding of

parthenocarpy in cucumber.
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Introduction

Cucumber (Cucumis sativus L.) is grown commercially

in tropical and subtropical climates around the world

(Pradeepkumara et al., 2022). In the Indian sub-continent,

cucumber is grown from the highlands to the plains under

open fields and protected conditions, including riverbeds.

India is considered as the home of cucumber and has a wide

range of genetic diversity and variation depending on growth

habits, fruit size, fruit composition, and skin color besides

several other agronomically important traits (Staub et al.,

1997), but this variation has never been fully utilized in the

crop improvement. The cultivated cucumber has a narrow

genetic base with only 3-8% polymorphism within the

cultivated genotypes, and 10-25% between plant species

(Behera et al., 2011). The small, diploid genome (367 Mb),

annual growth pattern, autogamous mating system, and

relatively short life cycle (~ 3 months from generation to

offspring) provide important genetic benefits (Wang et al.,

2020) and detailed genomics-based studies in cucumber.

In most of the Angiosperms, fruit formation usually

occurs after successful pollination followed by fertilization

of eggs, which results in ovary growth, however, fruit

development without pollination and fertilization is referred

to as parthenocarpy (Li et al., 2014). Parthenocarpic fruits are

seedless as ovules fertilization is disrupted due to changes in

the basic genetic makeup involved in fertilization processes.

Sources of genetic parthenocarpy are either obligate or

facultative by nature. In sexually transmitted species,

parthenocarpic genotypes need to be facultative in nature

for successful development of fruits when pollinated.

Alternatively, the obligate parthenocarpy can be found in

asexually propagated plants (Gorguet et al., 2005). From a

consumer perspective, parthenocarpy is a possible way to

improve fruit quality and total productivity in several fruit

crops. If seed setting fails, flower mortality is a common way

to avoid wasting of resources. However, parthenocarpic
02
genotypes are also found in wild or non-fruit species,

indicating that there may be a variety of factors that cause

the formation of seedless fruit in higher plants. The viability

and permanence of parthenocarpy in a variety of plants is

mainly the result of human selection (Varoquaux et al., 2000).

Parthenocarpy in cucumber is determined by a complex

in t e r a c t i on be tween seve r a l g ene t i c f a c to r s and

phytohormones (Sharif et al., 2022; Gou et al., 2022).

Various phytohormones, especially gibberellins, cytokinins

and auxins are involved in the processes that follow

pollination and fertilization and these are essential factors

for fruit and seed development (Fos et al., 2001). Growing

seeds are major source of phytohormones that stimulate fruit

growth and development (Ozga et al., 2002). The use of

gynoecy in combination with parthenocarpy is necessary as

cucumber exhibits facultative parthenocarpy as seeded fruit

set can occur in parthenocarpic varieties when fertilised with

viable pollen source. Gynoecious varieties are advantageous

because of increased numbers of pistillate flowers, and thus

greater opportunities for higher fruit set and per unit

production. Parthenocarpic cucumber varieties offer

several advantages over conventional seeded varieties.

Parthenocarpic varieties are able to set fruits sequentially

without suffering from first-fruit inhibition (Denna, 1973;

Sun et al., 2006a). Parthenocarpy should be combined with

stable gynoecious habit, because the fruits formed after

fertilization of parthenocarpic plants become misshapen,

have no economic value and lead to loss of productivity in

case the female flowers received viable pollen. Selection of

diverse genotypes to be used as a parent in the development of

the F1 hybrid to achieve higher yield, uniformity and

suitability for protected cultivation (2016; 2017; Jat et al.,

2015) is necessary in crop improvement programme.

Therefore, the development of molecular markers closely

associated with parthenocarpy and its marker-assisted

introgression into diverse back-grounds is necessary to

facilitate hybrid breeding programme.
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Marker assisted selection (MAS) can enhance the efficiency

of tradit ional breeding. In cucumber, breeding of

parthenocarpic lines based on molecular markers provides a

faster and more efficient way as selection can be based on

genotypes itself rather than the phenotypes. There are two key

requirements in successful of MAS, i.e. markers should be

closely linked to target genes and a moderately saturated or

high density genetic linkage map (Miao et al., 2011). The

development of genetic linkage maps in cucumber have made

possible for molecular characterization of important economic

traits which includes fruit quality (Wenzel et al., 1995),

resistance to diseases (Park et al., 2000; Zhang et al., 2010),

yield (Serquen et al., 1997b; Fazio et al., 2003a), gynoecious sex

and fruit colour (Miao et al., 2011) and yellow fruit flesh (Lu

et al., 2015). Genetic studies have been largely inconsistent on

the mode of inheritance for parthenocarpy in cucumber and

have ranged from proposals of a single gene to complex

multigenic inheritance (Pike and Peterson, 1969; De Ponti and

Garretsen, 1976; El-Shawaf and Baker, 1981; Kim et al., 1992b).

In the past, parthenocarpy has been studied by several workers

to unravel the genetic and physiological basis of this extremely

important trait (Fu et al., 2008; Li et al., 2014; Su et al., 2021; Gou

et al., 2022; Mandal et al., 2022). The parthenocarpic genotypes

of cucumber can set fruit without pollination however normal

seed formation happens with successful pollination with viable

pollen grains. This typical phenomenon in cucumber is

attributed to the facultative parthenocarpic nature. The

majority of the studies in the last two decades suggested that

multiple QTLs across the genome are responsible for

parthenocarpic fruit development in cucumbers. In a

European greenhouse-slicing cucumber genotype, EC-1

parthenocarpy was found to be determined by one major and

stable QTL in chromosome 2 (Parth 2.1) revealed through a F2:3
population (Wu et al., 2015). In north American pickling type

cucumber 2A, seven QTL were detected for parthenocarpy and

one QTL each on chromosomes 5 and 7 (parth5.1 and parth7.1)

and two on chromosome 6 (parth6.1 and parth6.2) were found

govern parthenocarpy (Lietzow et al., 2016). Besides, in a south

China ecotype cucumber, 4 novel QTLs associated with

parthenocarpy were detected (Niu et al., 2020).

There is a broad consensus based on the available reports

that parthenocarpic fruit set is complex in nature and genomic

regions in different chromosomes are responsible for induction

of parthenocarpic fruit development in cucumbers. The present

study was conducted to identify and map the genomic regions

associated with parthenocarpy in one of the commercially

cultivated gynoecious parthenocarpic genotype, Pusa

Parthenocarpic Cucumber-6 (PPC-6) through QTL-seq

approach. Identification of closely linked PCR-based markers

and possible identification of candidate genes associated with

parthenocarpy in PPC-6 would facilitate the marker-assisted

back-cross breeding and characterization of parthenocarpic trait

in cucumber.
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Materials and methods

Plant materials

The commercially cultivated parthenocarpic genotype, PPC-

6 is cultivated widely in India under protected condition and was

used as one of the parents for studying the inheritance and

development of mapping population for parthenocarpic trait. In

contrast, the non-parthenocarpic parent, Pusa Uday (PU), an

Indian type cultivar suitable for cultivation under open field

conditions was taken for the study. The F1 progeny was

developed by crossing the PU with PPC-6 under protected

conditions. Development of F1, F2 and back-cross progenies

were undertaken under protected conditions. The plants of

inbreds and developed progenies were grown under protected

conditions using the standard agronomic practices developed by

the Division of Vegetable Science, ICAR-Indian Agricultural

Research Institute, New Delhi.
Inheritance of parthenocarpy

The parthenocarpic line, PPC-6 was crossed with the non-

parthenocarpic cultivar, Pusa Uday (PU). The resulting F1
generation was selfed to obtain a sufficient number of F2
population. The female flowers were covered with a butter

paper bag, one day prior to anthesis to avoid cross-pollination,

and pollens collected from the freshly opened male flowers were

used for pollination. The observations were recorded for

development of parthenocarpic fruits up to the 20th node. If a

plant produced parthenocarpic fruits up to the 1st to 5th nodes, it

was considered an early parthenocarpic plant while if the fruit

set occurred beyond the 10th node, plants were categorized as

late parthenocarpic. A total of 498 F2 progenies were grown for

recording observation on parthenocarpy and observation was

recorded from 400 plants. The observations were recorded

separately for early parthenocarpy, late parthenocarpy, and

non-parthenocarpy. The goodness of fit of the observed values

to the expected segregation ratio for parthenocarpic and non-

parthenocarpic plants was tested using the classical Chi-square

(c2) test as expressed below (Panse and Sukhatme, 1985):

c2 =
(Observed − Expected)2

Expected
DNA extraction and whole genome
resequencing

Approximately 15g of leaf samples were collected for DNA

isolation from 30-35 day-old seedlings at the active vegetative

stage during early morning hours. The collected leaf samples

were packed in aluminum foil and labeled properly, then frozen
frontiersin.org

https://doi.org/10.3389/fpls.2022.1064556
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Devi et al. 10.3389/fpls.2022.1064556
into liquid nitrogen and stored at -80°C for further use. Total

DNA was isolated from the individual parental lines, F1 hybrids,

and mapping populations using the modified cetyl trimethyl

ammonium bromide (CTAB) method (Saghai-Maroof et al.,

1984). The genomic DNA samples were adjusted to 50ng

DNA/µl and stored at 4°C until used as the templates for PCR

amplification and sampling for sequencing. The quality and

quantity of the extracted DNA were estimated with an

Eppendrof Biospectrometer confirmed by running on 0.8%

w/v agarose gel.
QTL-seq for identification of genomic
regions associated with parthenocarpy

For QTL-seq analysis, 498 F2 progenies derived from the

crossing of the PU × PPC-6, were grown under polyhouse with a

partially controlled environment along with their parents.

Observation on parthenocarpy was recorded 45 days after

sowing when the plants were in the full reproductive stage.

One plant from each of the parents, PU and PPC-6 along with

two extreme bulks constituting twenty plants each from the

parthenocarpic and non-parthenocarpic types were used for

sampling (Figure 1). Young leaves from each selected plant

were used for the isolation of genomic DNA. After DNA

isolation and purification, quantification was done using a

Qubit (Thermofisher Scientific, USA). An equal quantity of

DNA from each plant taken for bulking to constitute the

final bulks.
Pre-processing of reads

Paired-end Illumina reads were obtained for both the

parents and the bulks in duplicates. All the reads were 2*150
Frontiers in Plant Science 04
in length. FastQC version 0.11.8 (Andrews, 2010) was used for

visualization of various read parameters and the presence of low-

quality bases and of Illumina adapters. Based on the FastQC

report the reads were cleaned and trimmed using Trimmomatic

v0.39 (Bolger et al., 2014) with command parameters

‘ILLUMINACLIP:TruSeq3-PE.fa:2:30:10:2:keepBothReads

SLIDINGWINDOW:4:15 MINLEN:50’. Here, TruSeq3-PE.fa is

a fasta file containing Illumina adapter sequences. The obtained

high-quality reads were used further for the identification of

QTL regions.
QTL-Seq analysis

QTL-Seq is a fast and efficient method to identify loci related

to agronomically important traits (Takagi et al., 2013) in plants.

Bulked Segregation Analysis (BSA) is the root of QTL-Seq that

detects genomic location(s) showing significant variations in

contrasting parents and progenies, produced by the contrasting

parents. BSA relies on two main parameters, namely, SNP-index

and D (SNP-index) (Abe et al., 2012; Takagi et al., 2013). SNP-

index is the ratio of a number of reads having a variation, to the

total number of reads at a particular position. While D (SNP-

index) is the difference in the SNP indices of contrasting bulks.

The range of SNP index varies from 0 to 1 depending on the

parent chosen as a reference. For instance, if parent 1 is used as a

reference, and the reads aligned at a particular locus do not have

any variation this means that all the loci have been contributed

from parent 1 and hence SNP-index = 0, but if all the reads

aligned at a particular locus show variation, then it means that

the loci have been contributed by another parent and therefore

SNP-index = 1. For calculating the SNP-index, a sliding window

approach was used with window size of 2000 kb and 100 kb

increment followed by their averaging. Graphs were plotted for

the D (SNP-index) against the chromosomal location. A D (SNP-
FIGURE 1

Fruit set in the contrasting parental lines (A) Pusa Parthenocarpic Cucumber-6 with parthenocarpic fruit development (B) Pusa Uday with no
parthenocarpic fruit set under protected condition.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1064556
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Devi et al. 10.3389/fpls.2022.1064556
index) value close to zero, indicates that no significant QTL is

present at that locus for the studied trait. To obtain significant

results, statistical confidence intervals of D (SNP-index) were

also plotted for all SNP positions with read depth assuming that

there are no QTLs as null hypothesis at 95% level of significance

(Takagi et al., 2013). We used QTL-seq version 2.2.2 for the

detection of significant QTL regions for parthenocarpy in

cucumber (Sugihara et al., 2020). The parameters used were

[-n1 20 -n2 20 -o qtlseq_results -F 2 -e Cucumis sativus] where

n1 and n2 are the numbers of individuals in each bulk, -o is the

output directory, F is the filial population (here we had F2) and -e

is the dataset of reference genome for identification of the effects

due to SNPs. All the other parameters were kept as default. This

software uses BWA for the read alignment, SAMtools for

filtering and BCF tools for variant calling (Figure 2).
Conventional mapping using
F2:3 progenies

Phenotyping was conducted in F2:3 population developed

through selfing of the individual F2 progenies for conventional

molecular mapping of the parthenocarpy. An single F1 plant was

selfed to obtain the F2 population. An F2:3 population

comprising of 94 progenies derived from the cross between

parthenocarpic and non-parthenocarpic parents was used to

construct linkage map of cucumber. The F2:3 progeny rows along
Frontiers in Plant Science 05
with parental lines were raised under an insect-proof net house

during Kharif, July-October, 2021. The F2:3 progenies were

grown in two replications with 10 plants in each replication

for recording the observation on parthenocarpy. Eight female

flowers were bagged one day prior to anthesis from the fifth node

onwards on the main stem and eight more from the laterals. At

10 days after anthesis, well-developed and malformed fruits were

counted as parthenocarpic fruit, whereas aborted ones were

recorded as non-parthenocarpic (Figure 3) as suggested by

Wu et al. (2016).

Genotyping was done using a large set of PCR-based

markers uniformly distributed all throughout the cucumber

genome. For the parental polymorphic survey, 1285 SSRs,

Indels, CAPS markers were selected from the Cucumis sativus

genome representing 7 linkage groups. In the present

experiment, previously reported markers were used for the

polymorphic study between the two genotypes, PPC-6 and PU

(Miao et al., 2011; Zhu et al., 2016). Linkage analysis was

performed using identified 123 polymorphic SSRs, Indels,

CAPS markers for the construction of linkage map by

IciMapping 4.1.0.0 at LOD threshold of 3.0 (Lander et al.,

1987). Segregation of 123 SSRs, Indels, CAPS markers, and

parthenocarpy was analyzed and genetic distance between

markers was calculated using the Haldane and Kosambi map

function (Kosambi, 1944). Parthenocarpy locus was mapped

using Inclusive Composite Interval Mapping (ICIM) in

ICIMapping 4.1.0.0 software (Wang et al., 2016).
FIGURE 2

Schematic representation of the pipeline used for the QTL- Seq analysis.
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Results

Inheritance of parthenocarpy

In the present study, the inheritance pattern of

parthenocarpy was studied based on the classical dominant-

recessive Mendelian model by grouping the cucumber plants

into three categories of their fruit development i.e. early

parthenocarpic, late parthenocarpic, and non-parthenocarpic

fruit development. This information would facilitate the

adoption of appropriate breeding strategies for the

development of stable parthenocarpic cucumber lines and

will improve the efficiency of selection procedures. The

genotype, PU produced non-parthenocarpic fruits and it was

considered to be homozygous for non-parthenocarpic fruit

development. The development of parthenocarpic fruits in

PPC-6 is characterised by early parthenocarpy with fruit

setting from the beginning or from the base of the plant.

Therefore, PPC-6 was used as a homozygous genotype for
Frontiers in Plant Science 06
parthenocarpic fruit development. The F1 hybrid derived from

the cross of PU × PPC-6 with heterozygous conditions

produced some parthenocarpic fruits on the lower nodes, i.e.

10th node and above (Supplementary Figure 1). In segregating

F2 individuals, early, late and non-parthenocarpic fruits were

recorded. Out of 400 plants, 307 produced either early

parthenocarpic or late parthenocarpic fruits and 93 plants

were recorded as non-parthenocarpic plants. The c2 value

indicated a good fit for segregation of parthenocarpy (early,

late and non-parthenocarpy) in the F2 population populations

confirmed with the expected ratio of 1:2:1 for early

parthenocarpy, later parthenocarpy and non-parthenocarpy,

respectively (Table 1). In the back cross progeny with the non-

parthenocarpic genotype, PU the segregation for late

parthenocarpy and early parthenocarpy were in the ratio of

1:1. Similarly, segregation of the plants for early parthenocarpy

and late parthenocarpy was in the ratio of 1:1 for early and late

parthenocarpy in the back-cross progenies with the

parthenocarpic parent (Table 2).
FIGURE 3

The pattern of fruit set in the segregating population at 10 days after anthesis (A-H).
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Pre-processing of reads

The raw reads for both the parents and bulks were subjected

to quality check and removal of adapter sequences. After pre-

processing, the non-parthenocarpic parent (NPP), PU retained

41383222 clean reads while parthenocarpic parent (PP), PCC-6

retained 41255039 clean reads. In case of both the bulks, i.e.,

Parthenocarpic bulk (PB) and Non-Parthenocarpic bulk (NPB),

99904977 and 103354754 cleans reads were obtained,

respectively (Table 1).
Identification of candidate genes in the
QTL regions

After alignment and filtering of clean reads followed

by variant calling using BWA, SAM tools and BCF tools, two

QTL regions related to parthenocarpy were detected. The major

QTL was detected on chromosome 6 while a minor QTL region

was detected on chromosome 3 (Figure 4; Supplementary

Table 1). SNP index of the parthenocarpic and non-

parthenocarpic bulks is presented in Supplementary Figure 2.

For both the regions, 99% confidence interval was considered.

The region covered under the QTL region of chromosome 6

expanded from 13,500,000 till 21,300,000 and 7,000,000 till

9,700,000 for chromosome 3 (Figure 5; Table 3). A total

of 5714 variants (SNP and Indels) were identified in

chromosome 6 while we found 1129 variants on chromosome

3 (Supplementary Table 2). To view the effect of these

variations on the protein sequence, we used the SNPeff

software using Cucumis sativus database. All the identified
Frontiers in Plant Science 07
variations were divided into several categories based on the

impact on the protein. These categories are High, Moderate,

Low and Modifier. Chromosome 3 has 4, 67, 110 and 948

SNPs in each category, respectively while chromosome 6 has

12, 183, 348 and 5171 SNPs, respectively (Figure 6;

Supplementary Table 2).
Molecular mapping of parthenocarpy
through conventional approaches

A total of 1285 SSR, Indel and CAPS markers were screened

for parthenocarpy in polymorphic survey between PU and PPC-

6 parental lines to identify polymorphic markers with ability to

distinguish the parental lines. The markers were selected for all

linkage groups of cucumber. A total of 1285 markers were used

for parental polymorphic survey and among them 123 (11.28%)

were polymorphic among the parental lines and produced clear

and easily identifiable amplicons (Supplementary Table 3). The

F2 mapping population comprising of 94 individuals, were

genotyped using selected polymorphic markers and respective

F2:3 progenies were evaluated for parthenocarpy. A total of 123

polymorphic markers were used for linkage analysis and others

were rejected, due to non-amplification, missing data and

difficulty in scoring. To confirm the parthenocarpic locus,

specificity of the markers genotyping data of these 123

polymorphic markers were used for the construction of

linkage map of parthenocarpic locus using Inclusive

Composite Interval Mapping (ICIM) method of Ici Mapping

(4.1.0.0) software at LOD threshold of 3.0 (Lander et al., 1987)

(Figure 7). The linkage map of these polymorphic 123 SSRs,
TABLE 1 Evaluation of the parents along with F1 and F2 and back-cross progenies for studying the inheritance of parthenocarpy.

Crosses / Parents Total number of plants EP LP NP Expected Ratio c2 -value P-Value

PU 10 0 0 10 – – –

PPC-6 10 10 0 0 – – –

PU × PPC-6 (F1) 10 0 10 0 – – –

PU × PPC-6 (F2) 400 87 220 93 1:2:1 4.18 0.12

(PU × PPC-6) × PU 60 0 26 34 1:1 1.06 0.31

(PU × PPC-6) × PPC-6 60 27 33 0 1:1 0.60 0.43
fron
EP, Early parthenocarpy; LP, late parthenocarpy; NP, Non-parthenocarpy.
TABLE 2 Summary of reads’ statistics of the re-sequenced samples of the parents along with the contrasting bulks.

Sample Input Read Pairs Clean reads % Clean reads

PU (NPP) 43632883 41383222 94.84412

PPC-6 (PP) 43799473 41255039 94.19072

Parthenocarpic bulk (Bulk 1) 105030659 99904977 95.11982

Non-parthenocarpic bulk (Bulk 2) 107216823 103354754 96.39789
NPP, non-parthenocarpic parent; PP, parthenocarpic parent.
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Indels, CAPS markers is presented in Supplementary Figure 3.

Out of total 123 markers,10 markers were mapped on 1st linkage

group, 20 on 2nd linkage group, 15 on 3rd linkage group, 12 on

4th linkage group, 17 on 5th linkage group, 30 on 6th linkage

group and 19 on 7th linkage group (Supplementary Figure 4).

Two major effect QTLs associated with parthenocarpy (Parth6.1

and Parth6.2) were mapped to chromosome 6 (Figure 7). These

two QTLs had LOD scores of 5.06, 4.59 and phenotypic variance
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of 16.69% and 12.93%, respectively. The additive effects of

Parth6.1 and Parth6.2 were -13.71 and -12.49, respectively

indicating the contribution of the parthenocarpy trait from

male parent PPC-6. The markers flanking Parth6.1 locus were,

SSR 01148 and SSR 01012, spanning a distance of 5.0 cM. The

markers flanking Parth6.2 locus were SSR10476 and SSR 19174,

spanning a distance of 5.0 cM. The results from this experiment

depicted that markers SSR 01148, SSR 01012, SSR10476, and
FIGURE 4

D(SNP-index) with statistical confidence intervals (orange, 99%; green, 95%). The major QTL identified on chromosome 6 and a minor QTL
region on chromosome 3 of cucumber by QTL-seq (shown in white outline).
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FIGURE 5

Chromosome 3 and 6 of cucumber showing the identified QTL region for parthenocarpy trait (in orange-coloured regions).
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SSR 19174 on chromosome 6 are closely associated with

parthenocarpic traits in cucumber.
Functional annotation of the identified
QTL regions

To identify the major genes, present in these regions, a

reference genome annotation file of cucumber (http://ftp.ebi.ac.

uk/ensemblgenomes/pub/release-53/plants/gff3/cucumis_

sativus) was used. A total of 998 genes were present in

chromosome 6, while 485 genes were present in chromosome

3 of the QTL region (Supplementary Sheet 4). Among the

identified genes, majority of them were under the category of

hypothetical protein. Two genes, Csa_6G396640 and

Csa_6G405890 designated as probable indole-3-pyruvate

monooxygenase YUCCA11 and Auxin response factor 16,

respectively were the potential candidate genes associated with

auxin biosynthesis in plants which is crucial in parthenocarpic

fruit development in cucumber. Csa_6G396640 gene showed

only one variation (insertion) at position 2179 in PU while in

case of Csa_6G405890, more variations were observed between

the two parents which includes both SNPs and few

INDELs (Figure 8).
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Discussion

Parthenocarpic fruit development in cucumber is extremely

important for its cultivation under protected condition. Studies on

inheritance of parthenocarpy by different workers depicted its

complex genetics and number of genes/QTLs associated with

resistance to parthenocarpy. In cucumber, parthenocarpy is

facultative in nature and extent of parthenocarpy varies across

different developmental stages of the plants (Joldersma and Liu,

2018). Pike and Peterson (1969) have reported that an incomplete

dominant gene, P determines parthenocarpy in cucumber. They

have postulated that development of early parthenocarpic fruits in

the lower nodes is controlled by the dominant homozygous state,

PP while late parthenocarpy and lower extent of parthenocarpy are

represented by the heterozygous state, Pp. Whereas, homozygous

recessive state, pp is responsible for non-parthenocarpic fruit

development. In the homozygous condition, PP produces

parthenocarpic fruits early, with the first developing generally by

the fifth node. Heterozygous Pp plants produce parthenocarpic

fruits later than homozygous plants and are fewer in number. The

homozygous recessive pp produces no parthenocarpic fruits.

Besides, several other studies have also reported monogenic

control of parthenocarpy in cucumber (Hawthorn and

Wellington, 1930; Kvasnikov et al., 1970; Juldasheva, 1973;
FIGURE 6

Distribution of SNP according to the effect in chromosome 3 and 6 of cucumber.
TABLE 3 Identified QTL regions in cucumber for parthenocarpy and their distribution in chromosome 3 and 6.

Chromosome QTL Start End Length (bp) nSNPs

Parth3.1 1 7,000,000 9,700,000 2,700,000 1129

Parth6.1 2 13,500,000 21,300,000 7,800,000 5714
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Meshcherov and Juldasheva, 1974). Later on, most of the studies

reported polygenic control of parthenocarpy (El-Shawaf and Baker,

1981; Sun et al., 2006; Yan et al., 2009; Lietzow et al., 2016;Wu et al.,

2016). In the present study, we have recorded that there was varied

types of parthenocarpy in the F2 progenies although the

parthenocarpic parent, PPC-6 was early parthenocarpic type and

started fruiting from 3-5 nodes onwards. We have recorded the

plants as early parthenocarpic when fruiting started from 5th node

onwards and late parthenocarpy when parthenocarpic fruit set was
Frontiers in Plant Science 10
recorded after 10th node and considered all the early and late-type

plants as parthenocarpic. Based on these observations, the

parthenocarpy was found to be controlled by single recessive

gene. The present information supported the earlier observation

by Pike and Peterson (1969) which postulated that homozygous

dominant, heterozygous and homozygous recessive forms are

responsible early parthenocarpy, late parthenocarpy and non-

parthenocarpy, respectively. However, it was evident there was a

significant contribution of the back-ground evidenced from the
FIGURE 7

Linkage map of parthenocarpic locus on chromosome 6, constructed using SSR markers. Marker names, LOD score are depicted on the right
side of the estimated map and the genetic distances shown in cM.
FIGURE 8

Variation in the Csa_6G396640 and Csa_6G405890 genes associated with indole-3-pyruvate monooxygenase YUCCA11 and Auxin response
factor 16, respectively in the parents PU (p3_r) and PPC-6 (p4).
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extent of parthenocarpy and therefore, it is possible to introgress

parthenocarpy traits in different elite and non-conventional

genotypes of cucumber through marker-assisted back-cross

breeding with identification and development of molecular

markers closely associated with parthenocarpic trait.

In the recent times, discovery of molecular markers and

physical map construction is greatly facilitated by advancement

in next-generation sequencing technology (Cao et al., 2021). QTL-

seq combines the next-generation sequencing technology with

BSA for rapid detection of QTLs for any particular trait and

facilitate development of closely associatedmolecular markers and

identification of candidate genes. Thereafter, QTL-seq has been

widely used for the detection of QTLs, identification of closely

linked molecular markers and identification of candidate genes for

number of traits in different crops (Singh et al., 2016; Wang et al.,

2016; Wei et al., 2016; Chen et al., 2017; Wen et al., 2019; Arikit

et al., 2019; Li et al., 2020). In cucumber, QTL-seq has been used

successfully for the identification of QTL for early flowering traits

(Lu et al., 2014), flesh thickness (Xu et al., 2015), sub-gynoecy sex

expression (Win et al., 2019), pre-harvest sprouting of the seeds

(Cao et al., 2021) and resistance to powdery mildew (Zhang et al.,

2021). Based on the QTL-seq results, twomajor QTLs, one each in

chromosomes 3 and 6 were identified based on the D(SNP-index).
The QTL, Parth3.1 was Parth6.1 were spanned 2.7 Mb on

chromosome 3 and 7.8 Mb on chromosome 6, respectively.

Besides, a large number of variants were detected in both the

genomic regions in the form of SNPs and InDels. The identified

SNPs and InDels in the genomic regions detected through QTL-

seq will be extremely useful in the development of molecular

markers and fine mapping of the genomic region associated with

parthenocarpy in cucumbers. However, the QTL region identified

through QTL-Seq are often not very precise and needs further

validation and authentication through additional method of

molecular mapping (Xu et al., 2017). Therefore, we have

employed mapping of parthenocarpy through conventional F2:3
population. Based on the QTL-seq results, two major QTLs, one

each in chromosomes 3 and 6 were identified.

In cucumber, systematic efforts have been made for

molecular mapping of number of qualitative traits but for

quantitative traits like parthenocarpy progress is slow and

hence very few public sector parthenocarpic varieties/hybrids

are available in market. Now-a-days, role of marker-assisted

selection (MAS) is increasing in conventional plant breeding

(Miao et al., 2011). Due to narrow genetic base and low

polymorphism, around 30 linkage maps have been constructed

(Kennard et al., 1994). These linkage maps involved use of

RAPDs (Randomly Amplified Polymorphic DNA) or AFLP

(Amplified Fragment Length Polymorphism) (Fukino et al.,

2008 and Yuan et al., 2008) that are not breeder friendly.

Hence, co-dominant markers like SSR/InDel are best suited for

marker-assisted breeding and are breeder friendly.

Two major QTLs for parthenocarpy at chromosome 6

(Parth6.1 & Parth 6.2) were identified using the F2:3 mapping
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population. Locus Parth6.1 was flanked by SSR01148 and

SSR01012 with a LOD score of 5.06 and 16.69% of PVE

(Phenotypic Variance Explained) reflecting that this locus is a

major effect QTL. Second QTL Parth 6.2was flanked by SSR10476

and SSR19174 primers and LOD value was 4.59 with 12.93% of

PVE explaining another major effect QTL. Previously, Lietzow

et al. (2016) identified seven QTLs associated with parthenocarpic

fruit set, one on each chromosomes 5 and 7 (parth5.1 and

parth7.1) and two on chromosome 6 (parth 6.1 and parth 6.2)

were consistently identified in all experiments. Wu et al. (2016)

identified seven novel QTLs on chromosomes 1, 2, 3, 5 and 7. The

identification of QTLs is a valuable resource for cucumber

breeders for the development of parthenocarpic cultivars (Dey

et al., 2022). Molecular markers flanking major effect

parthenocarpy QTLs can prove useful in the Marker Assisted

Breeding (MAB) programme. However, there is need to further

saturate linkage map to narrow-down genetic distance between

flanking molecular markers to get markers better suited for

foreground selection in endeavour of higher/quality production

of cucumber.

Parthenocarpy is a complex trait and determined by

interaction of large number of metabolic pathways interlinked

with each other. Among the different metabolism, auxin,

gibberellins and cytokinins are reported to play key role

determining parthenocarpic fruit set in cucumber (Li et al.,

2014; Su et al., 2021; Sharif et al., 2022; Gou et al., 2022). Cross-

talk between the important phytohomones in determining

parthenocarpy in PPC-6 was recently reported by Mandal et al.

(2022). The QTL region identified through QTL-seq had two

important genes with a possible association with parthenocarpic

phenomenon. Indole-3-pyruvate monooxygenase YUCCA11

(Csa_6G396640) was found to be have one SNP in the non-

parthenocarpic parent, PU when compared with the

parthenocarpic reference genotype. Besides, the auxin response

factor 16 (Csa_6G405890) present in the QTL region also showed

variation in terms of Indels and SNPs in the parental lines. These

two identified genes with key role in auxin biosynthesis could be

possible candidate genes for induction of parthenocarpy in

cucumber. Auxin, through its influence in cell division and

expansion is key determinant in development of fleshy fruits

and reported to be integral part in the initial signal for

fertilisation and increased fruit (Godoy et al., 2021). After

parthenocarpic fruit set their further development is influenced

by auxins which was evidenced by the upregulation of the auxin

biosynthesis-related genes in the later stages of fruit development

in parthenocarpic genotypes in our earlier study (Mandal et al.,

2022). Indole-3-pyruvate is one of the important routes for

tryptophan-dependent auxin biosynthesis which is believed to

be common in all plants (De Smet et al., 2011). Auxin is the key

phytohormone besides gibberellins and cytokinin reported to play

important role in the induction of parthenocarpy (Sharif et al.,

2022). Among the different auxin biosynthesis pathways, the role

of Trp-IPyA (tryptophan-indole-3-pyruvic acid) in
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parthenocarpic fruit development has been reported by several

workers. The role of the YUCCA10, PavYUCCA10, SlTAR1,

ToFZY2, ToFZY3 and PARENTAL ADVICE-1 (PAD-1) genes in

parthenocarpic fruit development of loquat, tomato and eggplants

have been reviewed in details by Sharif et al. (2022). However,

narrow down of the QTL region through fine mapping is required

for the precise identification of candidate genes associated with

parthenocarpy in cucumber.
Conclusion

In cucumber parthenocarpic fruit set is extremely important

trait facilitated large scale protected cultivation worldwide. In one

commercially cultivated parthenocarpic genotype, PPC-6, it was

found that, single incomplete dominant gene control this trait in

spite of significant effect of genetic back-ground in expression of

parthenocarpy. QTL-seq analysis in combination with

conventional mapping using F2:3 population identified one major

effect QTLs, Parth6.1. The flanking markers, SSR01148 and SSR

01012 for Parth6.1 locus were identified for their use in marker-

assisted back-crossing programme. Two major genes,

Csa_6G396640 and Csa_6G405890 designated as probable indole-

3-pyruvate monooxygenase YUCCA11 and Auxin response factor

16, respectively associated with auxin biosynthesis as potential

candidate genes. The study provides insight about the genetics

and genomic regions, closely associated markers and possible

candidate genes associated with parthenocarpy in PPC-6 for

functional genomics studies and future fine mapping.
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Linkage map of parth locus on chromosome 6, constructed using SSR

markers. Marker names, LOD score are depicted on the right side of the
estimated map and the genetic distances shown in cM on the left are

calculated using software IciMapping ver. 4.1.0.

SUPPLEMENTARY FIGURE 4

Distribution of primers across the seven linkage groups and frequency of
the amplified and polymorphic markers used for the study.
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Amplification pattern of the selected markers closely associated with

parthenocarpy in cucumber genotype, PPC-6.
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Identified QTL regions in chromosome 3 and 6 through QTL-seq.
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Identified SNPs and InDels in the QTL regions of chromosome 3 and 6,
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List of the polymorphic markers used for construction of linkage map and
molecular mapping of parthenocarpy using F2:3 population.
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