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Exosomes are nano-sized extracellular vesicles that regulate cell growth and

defense by delivering bioactive cellular constituents. They are a promising

material for biomedical and cosmetic utilization, especially in medicinal crops

such as ginseng. One main hurdle to their usage is the need for a method to

isolate stable exosomes with high purity. In this study, we first tested two

methods to isolate exosomes from ginseng: ultracentrifugation, the most

widely used method; and the ExoQuick system, a polymer-based exosome

precipitation approach. We also designed and tested a third method in which

we combined ultracentrifugation and ExoQuick methods. Size distribution

analysis revealed that the exosome isolation purity by the ultracentrifugation

and ExoQuick methods alone were 34.1% and 59.7%, respectively, while the

combination method greatly improved exosome isolation purity (83.3%).

Furthermore, we found that the combination method also increases the

colloidal stability of isolated ginseng exosomes, and the increase was almost

double that of the ultracentrifugation method. Lastly, we showed that the

combination method can also be used to isolate high-purity and high-stability

exosomes from the model plant Arabidopsis. Overall, our findings indicate that

the combination method is suitable to isolate high-purity and high-stability

exosomes from plants including ginseng.

KEYWORDS

exosome, ginseng, colloidal stability, ultracentrifugation, ExoQuick system
Abbreviations: EQ, ExoQuick method; EV, Extracellular vesicles; Exo, Exosome; NTA, Nanoparticle

Tracking Analysis; TEM, Transmission electron microscopy; UC, Ultracentrifugation method; UC+EQ,

Combination of ultracentrifugation and ExoQuick method; PBS, Phosphate-buffered saline.
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Introduction

Exosomes are nano-sized (50–150 nm) extracellular vesicles

that are generated by the inward budding of endosomal

membranes and secreted into the extracellular space via

exocytosis (Tran et al., 2020; Liangsupree et al., 2021). As

exosomes have a lipid bilayer structure and can transfer

cellular constituents from host cells to recipient cells, it has

been suggested that they play a pivotal role in cell-to-cell

communication for cell growth and defense (Bobrie et al.,

2011; Maia et al., 2018; Wortzel et al., 2019; Zhang et al., 2019;

Vlachakis et al., 2021). Indeed, exosome contents can include

bioactive substances such as cytokines, transcription factors,

mRNAs, and microRNAs, and these constituents are affected

by the developmental and physiological state of host cells

(Gheinani et al., 2018; Pegtel and Gould, 2019; Kalluri and

LeBleu, 2020). Based on these findings, exosomes have received

attention as a promising resource for biomedical utilization. To

date, methods to identify and use functional exosomes have been

developed in animal systems. For example, exosomes isolated

from human umbilical cord-derived mesenchymal stem cells

(MSCs) improved fibrotic liver disease by inhibiting the

epithelial-to-mesenchymal transition of hepatocytes (Li et al.,

2013). In addition, exosomes isolated from human infrapatellar

fat pad derived-MSCs protect articular cartilage and ameliorate

gait abnormalities due to osteoarthritis via inhibition of the

mammalian target of rapamycin (mTOR) (Wu et al., 2019).

With over 50,000 therapeutic plants in the world, medicinal

crops have provided natural resources for the development of

many biomedical materials (Palombo, 2011; Sasidharan et al.,

2011; Katiyar et al., 2012; Ramalingum and Mahomoodally,

2014; Salmerón-Manzano et al., 2020). For instance, Panax

ginseng is an important medicinal crop that has been widely

used in East Asia, and modern studies have determined that

ginseng contains a variety of bioactive constituents with

therapeutic activity (Li and Li, 1973; Jayakodi et al., 2019; Cho

et al., 2021). Methods to isolate biomedical compounds from

ginseng for use in the biomedical and cosmetic industries have

been extensively studied. Recently, ginseng-derived exosomes

have attracted attention as a biomaterial. Despite the strong

potential of plant exosomes for medicinal and clinical utilization,

there are still challenges to overcome, such as establishing an

optimized method to isolate ginseng exosomes with high purity.

In this study, we attempted to develop and optimize a

method to isolate high-purity ginseng exosomes. We tested

different methods including ultracentrifugation, ExoQuick, and

a combined ultracentrifugation and ExoQuick method. The

ultracentrifugation method includes a series of centrifugation

cycles with different centrifugal forces and durations. Depending

on the centrifugal force, exosomes in a suspension can be

separated sequentially according to their physical properties

such as the density and size of the vesicles (Stanly et al, 2016;
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Li et al., 2017). The ExoQuick system traps and precipitates

exosomes using a polymer-based precipitation solution (Li et al.,

2017; Zhang et al, 2018; Jung et al., 2020). We hypothesized that

combining ultracentrifugation with the ExoQuick system would

improve ginseng exosome isolation purity, and further isolation

experiments using the combination method showed great

improvements in exosome isolation purity. In addition, zeta

potential analysis revealed that the combination method also

improved the colloidal stability of ginseng exosomes.

Furthermore, we successfully extracted high-purity and high-

stability exosomes from the model plant Arabidopsis with this

method, suggesting that the combination method is widely

applicable for isolating high-purity and high-stability exosomes

from plants including ginseng.
Materials and methods

Plant materials and growth conditions

The local landrace of Korean Panax ginseng, Jakyung, was

used in this work. To isolate exosomes from ginseng, 1 g of root,

stem, and leaf samples were collected from one-year-old and

three-year-old ginseng plants, which were grown in an open field

and purchased from a local farm at Jangseong, Korea (35°18′
45.7″N, 126°45’37.8″E). For the isolation of Arabidopsis

exosomes, Arabidopsis thaliana ecotype Columbia-0 (Col-0)

was used. One gram of leaf samples was collected from four-

week-old Arabidopsis plants grown in a growth chamber with a

light regime of 16 h/8 h (light/dark) at 23°C.
Exosome isolation by ultracentrifugation

Exosome isolation by ultracentrifugation was carried out as

previously described with slight modification (Wang et al., 2014).

Briefly, the ultracentrifugation method used in this study included

two experimental steps: crude extraction by centrifugation and

exosome isolation by ultracentrifugation. To obtain crude extracts

from ginseng and Arabidopsis, 1 g of plant samples was

homogenized using an HG-15D homogenizer (DAIHAN,

Korea) and 10 mL of 1x phosphate-buffered saline (PBS, pH

7.4) (Biosesang, Korea). The PBS was filtered through a 0.2 mm
membrane (Sartorius Stedim Biotech, Germany) before use in the

exosome isolation method. Homogenized samples were

centrifuged three times at 4°C to remove cell debris, fibers, and

large particles (1st centrifugation: 1,000 g for 10 mins, 2nd

centrifugation: 3,000 g for 20 mins, 3rd centrifugation: 10,000 g

for 60 mins). After the final centrifugation, supernatants were

collected, and the volume was brought to 10 mL with PBS buffer.

To isolate exosomes from the crude extracts, the extracts were

ultra-centrifuged three times, which included a sucrose density
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gradient ultracentrifugation process. The first ultracentrifugation

was performed at 150,000 g for 90 mins at 4°C using an SW 41 Ti

rotor and an Optima XE-100 ultracentrifuge (Beckman Coulter,

USA). The pellets formed by the first ultracentrifugation were

resuspended in 1 mL of PBS buffer. Then, the resuspended

samples were transferred to a sucrose gradient solution (8, 15,

30, 45, and 60% [w/v] in PBS) and centrifuged at 150,000 g for 90

mins at 4°C. The band between the 30% and 45% sucrose

solutions was collected, which corresponds to the density of

exosomes (1.12–1.20 g/cm3). The volume of the collected layers

was brought to 10 mL with PBS buffer, and then ultra-centrifuged

at 150,000 g for 90 mins at 4°C. The exosome pellets were

resuspended in 100 mL of PBS buffer.
Exosome purification using the
ExoQuick system

Ginseng and Arabidopsis exosome isolation using the

ExoQuick system (ExoQuick-TC™) was performed according

to the manufacturer’s instructions with minor modifications

(System Biosciences Inc., USA.). The ExoQuick method used

in this study included two experimental steps: crude extraction

by centrifugation and exosome precipitation by ExoQuick

solution treatment. The crude extraction step in the ExoQuick

method was identical to that in the ultracentrifugation method.

To precipitate ginseng and Arabidopsis exosomes from crude

extracts, 2 mL of the ExoQuick solution was added to 10 mL of

crude extracts (crude extracts:ExoQuick solution = 5:1) and

mixed well by inverting. The mixtures were incubated at 4°C

overnight without rotation or mixing. The incubated mixtures

were centrifuged at 1,500 g, 4°C for 30 mins. Exosome pellets

were resuspended in 100 mL of PBS buffer.
Exosome isolation using both
ultracentrifugation and the
ExoQuick system

The ultracentrifugation-ExoQuick combination method

includes three experimental steps: a crude extraction by three

rounds of centrifugation, exosome isolation by three rounds of

ultracentrifugation, and exosome purification by ExoQuick

solution treatment (Supplementary Figure 1). The crude

extraction by centrifugation and exosome isolation by

ultracentrifugation steps were identical to those in the

ultracentrifugation method described above. In the

combination method, the exosome pellets formed by the third

ultracentrifugation were resuspended in 10 mL of PBS buffer and

treated with 2 mL of ExoQuick solution. The subsequent

precipitation step was performed identically to that in the

single ExoQuick method.
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Nanoparticle tracking analysis and Zeta
potential measurement

To investigate the total number and size distribution of

extracellular vesicles including exosomes, Nanoparticle

Tracking Analysis (NTA) was performed using Nanosight

NS300™ (Malvern Instruments, UK). To do this, isolated

exosome samples were diluted 1:10 with PBS buffer, and 1

mL of the diluted samples was injected into the sample

chamber. NTA results were analyzed using the NTA 3.2

software (Malvern Instruments, UK). To investigate the

colloidal stability of the ginseng and Arabidopsis exosomes

isolated by the three different methods (ultracentrifugation,

ExoQuick, and combination methods), zeta potential values

were measured using the ELSZ-2000ZS zeta potential and

particle size analyzer (Otsuka Electronics, Japan). Exosome

samples were diluted 1:2 with PBS buffer, and 200 mL of

samples were measured at 25°C. The results were analyzed

using the ELSZ-2000 version 7.0 software (Otsuka

Electronics, Japan).
Electron microscopy observation

To visualize ginseng and Arabidopsis exosomes,

transmission electron microscopy (TEM) was used. Isolated

exosome samples were fixed in 4% paraformaldehyde for one

hour, and 5 mL of fixed samples were placed on the carbon

support film of a nickel grid and incubated to allow the sample

to be adsorbed to the grid. Grids were washed with 60 mL of 2%

uranyl acetate. TEM observation was performed using a JEM-

2100F Field Emission Transmission Electron Microscope

(JEOL Ltd., Japan) at 200 kV and images were captured

using an UltraScan 4000 CCD camera (Gatan Inc. USA.). For

cryo-transmission electron microscopy observation (Cryo-

TEM), 5 mL of the isolated exosome samples were loaded

onto copper Quantifoil grids with a 1.2 mm diameter hole

and an inter-hole distance of 1.3 mm (Electron Microscopy

Sciences, USA). Prior to freezing, the grids were glow

discharged for 45 sec on each side. Grids were frozen using a

Vitrobot, and the frozen samples were observed using the JEM

3200FS (JEOL Ltd., Japan) transmission electron microscope at

120 kV.
Statistical analysis

Data are averages of at least two biological replicates with

three technical replicates for each. The statistical analysis was

performed using Microsoft Excel 2016, and the statistical

difference between the samples and their control was

determined using a two-tailed Student’s t-test with a P <0.01.
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Results

Isolation of ginseng exosomes by
ultracentrifugation

Ultracentrifugation is the most widely used method to

isolate exosomes (Théry et al., 2006; Li et al., 2017; Coughlan

et al., 2020). To determine the purity of ginseng exosomes

isolated by the ultracentrifugation method, we extracted

exosomes from one-year-old ginseng roots using this method,

which includes two experimental steps: crude extraction by three

rounds of centrifugation, and exosome isolation by three rounds

of ultracentrifugation. To obtain crude extracts, 1 g of ginseng

roots collected from one-year-old ginseng plants was

homogenized in 10 mL PBS buffer (Figure 1) and centrifuged

three times at 4°C. To isolate ginseng exosomes from the crude

extracts, a total of three rounds of ultracentrifugation was

performed, and the second round of ultracentrifugation, which

used sucrose density gradient solutions, formed two yellow

layers (Figure 1A). The upper layer, which corresponds to the

density of exosomes (1.12–1.20 g/cm3), was collected, and

exosome pellets were obtained by the third round of

ultracentrifugation. To examine whether the pellets contain

exosomes, the pellets were observed by transmission electron

microscopy (TEM) and Cryo-transmission electron microscopy
Frontiers in Plant Science 04
(Cryo-TEM) (Supplementary Figure 2, Figure 1B). Although

exosome-like nanoparticles were observed by TEM, this

approach was not sufficient to clearly visualize whether the

nanoparticles were exosomes (Supplementary Figure 2). To

determine whether exosomes were present, we observed the

samples using Cryo-TEM. The pellets obtained by the

ultracentrifugation method contain ginseng exosomes, which

are surrounded by a lipid bilayer and range in size between 50–

150 nm, indicating that ginseng exosomes can be extracted by

the ultracentrifugation method (Figure 1B).

To understand how the isolated EVs including exosomes are

distributed in size, the samples were investigated by

Nanoparticle Tracking Analysis (NTA) using Nanosight

NS300™ (Figure 1C). The NTA approach revealed that the

resuspensions contained 1.65×1012 EVs and that EV size ranged

between 29–499 nm (Figure 1C). Among the EVs, the number of

exosomes (50–150 nm) was around 5.62×1011. This suggested

that ginseng exosomes make up 34.1% of the total EVs extracted

by the ultracentrifugation method (Figure 1D).
Isolation of ginseng exosomes using the
ExoQuick system

The ExoQuick method uses a polymer-based precipitation

solution, ExoQuick-TC, to isolate exosomes. ExoQuick-TC
B

C D

A

FIGURE 1

Isolation of ginseng exosomes by ultracentrifugation. (A) Exosome isolation from one-year-old ginseng roots (1 g) by the ultracentrifugation
method (left, whole plant; middle, crude extraction by centrifugation; right, exosomal band separation by sucrose density gradient
ultracentrifugation). Arrow points to the exosome-containing layer. (B) Visualization of isolated ginseng exosomes by cryo-transmission electron
microscopy (Cryo-TEM) (left), and at higher magnification (right). (C) Nanoparticle Tracking Analysis (NTA) of the isolated exosome samples.

Nanoparticle image (left) and size distribution results (right) were obtained using a Nanosight NS300™. The green box indicates the region
containing extracellular vesicles 50–150 nm in size (exosomes), and red indicates the standard deviation (SD). (D) The total number of
extracellular vesicles (EV) and exosomes (Exo) isolated by the ultracentrifugation method (UC) (left), and exosome isolation purity (right). Purity is
expressed as a percentage (%), calculated from the ratio of the number of exosomes to the total number of isolated EVs. Error bars indicate SD.
The asterisk indicates statistically significant differences between the samples (p value < 0.01, Student’s t-test). Scale bar = 3 cm in (A) and 100
nm in (B).
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establishes a polymer network that allows exosomes to be

isolated, and previous studies reported that the ExoQuick

method improves exosome isolation purity in an animal cell

system (Alvarez et al., 2012; Peterson et al., 2015; Jung et al.,

2020). To address whether exosome isolation purity in ginseng

can be improved by the ExoQuick system, we attempted to

extract exosomes from one-year-old ginseng roots using this

system. The ExoQuick method we designed in this approach

included two experimental steps; crude extraction by three

rounds of centrifugation, and exosome precipitation by

ExoQuick solution treatment. The crude extraction step in the

ExoQuick method was identical to that in the ultracentrifugation

method. Crude extracts obtained from 1 g of one-year-old

ginseng roots were treated with ExoQuick solution to

precipitate exosomes (crude extract:ExoQuick solution = 5:1),

and the pellets were resuspended in 100 mL PBS buffer (pH 7.4)

(Figure 2A). When the resuspended samples were visually

examined using Cryo-TEM, exosomes surrounded by a lipid

bilayer were observed (Figure 2B). These findings suggested that

EVs, inc luding exosomes , can be iso lated by the

ExoQuick method.

To investigate the size distribution of isolated EVs, NTA was

performed. The NTA result showed that the resuspended

solutions contained 1.08×1012 EVs, and their size ranged

between 42–389 nm (Figure 2C). Among the total EVs

isolated by the ExoQuick method, the number of exosomes
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(50–150 nm) was approximately 6.4×1011. This finding

indicated that ginseng exosomes make up 59.7% of the total

EVs extracted by the ExoQuick system, suggesting that the

ExoQuick method extracts exosomes from ginseng roots with

59.7% purity (Figure 2D). The exosome isolation purity of the

ExoQuick method was approximately 75% higher than that

obtained using the ultracentrifugation method (34.1%). These

data indicate that exosome isolation purity is affected by

isolation methods and that the ExoQuick system improves

exosome isolation purity in ginseng. Also, this finding

suggested that combining ultracentrifugation and the

ExoQuick system may further improve the isolation purity of

ginseng exosomes.
Isolation of ginseng exosomes by
combining ultracentrifugation and the
ExoQuick system

To test the hypothesis that exosome isolation purity in

ginseng can be improved by applying a combination of

ultracentrifugation and the ExoQuick method, we designed a

combination method that includes three experimental steps:

crude extraction by centrifugation, exosome isolation by

ultracentrifugation, and exosome precipitation by ExoQuick-

TC treatment. We then attempted to extract ginseng exosomes
B

C D

A

FIGURE 2

Isolation of ginseng exosomes by the ExoQuick system. (A) Exosome isolation from one-year-old ginseng roots (1 g) by the ExoQuick method
(left, whole plant; middle, crude extraction by centrifugation; right, ginseng exosome precipitation by the ExoQuick system). Arrow points to the
ginseng exosome pellet. (B) Visualization of the isolated ginseng exosomes by Cryo-TEM (left) and at higher magnification (right). (C) NTA
results of the isolated exosome samples. The nanoparticle image (left) and size distribution results (right) were obtained using a Nanosight

NS300™. The green box indicates the region containing extracellular vesicles 50–150 nm in size (exosomes), and red indicates SD. (D) Total
number of extracellular vesicles (EV) and exosomes (Exo) isolated by the ExoQuick method (EQ) (left), and the exosome isolation purity (right).
Purity is expressed as a percentage (%), calculated from the ratio of the number of exosomes to the total number of isolated EVs. Error bars
represent SD. The asterisk indicates statistically significant differences between the samples (p value < 0.01, Student’s t-test). Scale bar = 3 cm in
(A) and 100 nm in (B).
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using this combination method (Figure 3A). Sucrose gradient

ultracentrifugation of the crude extracts formed two yellow

layers and the upper layer was collected and precipitated using

ExoQuick-TC™ solution to obtain exosome pellets. When the

pellets were observed using Cryo-TEM, 50–150 nm vesicles with

membrane structure were detected (Figure 3B), indicating that

the pellets included ginseng exosomes. To address how the

combination method affects exosome isolation purity, we

investigated the total number of EVs and their size

distribution by an NTA assay. The total number of EVs in the

samples was 1.87×1011, and EV sizes ranged between 43–244 nm

(Figures 3C, D). Among the total EVs, the number of exosomes

was 1.56×1011, indicating that approximately 83% of the total

isolated EVs were exosomes. This result suggested that

combining ultracentrifugation and the ExoQuick system

significantly improves exosome isolation purity in ginseng.
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Exosome isolation purity using the combination method was

approximately 2.4-fold and 1.5-fold higher than that of the

ultracentrifugation and ExoQuick methods alone, respectively

(Figures 3E–G; Supplementary Table 1).
Combination method is a suitable tool
for isolating high-purity exosomes in
plants

To address whether the ultracentrifugation-ExoQuick

combination method can extract high-purity exosomes from

different tissues or different developmental stages of ginseng, we

applied this method to leaves, stems, and roots of three-year-old

ginseng plants, and then performed an NTA assay (Figures 4A,

B). The total number of EVs isolated from 1 g of leaves, stems,
B

C D

E F G

A

FIGURE 3

Improvement of ginseng exosome isolation purity by the combination of ultracentrifugation and ExoQuick system. (A) Exosome isolation from
one-year-old ginseng roots (1 g) by combining ultracentrifugation (UC) and the ExoQuick (EQ) system (left, crude extraction by centrifugation;
middle, exosomal band separation by sucrose density gradient ultracentrifugation; right, exosome precipitation by the ExoQuick system). The
arrow and arrowhead indicate the exosome-containing layer and the exosome pellet, respectively. (B) Cryo-TEM image of exosomes isolated by
the combination method (left) and visualized at higher magnification (right). (C) NTA results of the isolated exosome samples. Nanoparticle

image (left) and size distribution results (right) were obtained using a Nanosight NS300™. The green box indicates the region containing
extracellular vesicles 50–150 nm in size (exosomes), and red indicates SD. (D) Total number of extracellular vesicles (EV) and exosomes (Exo)
isolated by the combination of ultracentrifugation and ExoQuick method (UC+EQ) (left), and exosome isolation purity (right). Purity is expressed
as a percentage (%), calculated from the ratio of the number of exosomes to the total number of isolated EVs. (E-G) Comparative analysis of
exosome samples isolated by ultracentrifugation alone (UC), ExoQuick alone (EQ), and the combination of ultracentrifugation and ExoQuick (UC
+EQ). (E) number of EVs; (F) number of exosomes; (G) exosome isolation purity). Error bars represent SD and asterisks indicate statistically
significant differences between the samples (p value < 0.01, Student’s t-test). Scale bar = 3 cm in (A) and 100 nm in (B).
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and roots were 1.49×1012, 1.27×1012, and 2.79×1012,

respectively. Although EVs smaller than 50 nm or bigger than

150 nm were partially detected, most EVs in the extracts were

between 50–150 nm. In the leaf, stem, and root extracts, the

number of exosomes was 1.20×1012, 1.00×1012 and 2.44×1012,

respectively, indicating that exosome isolation purity from these

tissues was 80.1%, 78.9%, and 87.4%, respectively (Figures 4C,

D). Furthermore, the exosome isolation purity of the three-old-

year ginseng plants was almost identical to that of the one-year-

old ginseng plants (Supplementary Figure 3). These findings

suggested that the ultracentrifugation-ExoQuick combination

method is a suitable technique to extract exosomes with high

purity in plants including ginseng, and this finding was

supported by an exosome isolation test using the model plant

Arabidopsis (Figure 5).

To obtain Arabidopsis crude extracts, 1 g of leaves from four-

week-old plants was homogenized using 10 mL PBS buffer (pH

7.4) and centrifuged three times (Figure 5A). Sucrose gradient

ultracentrifugation of the crude extracts formed two green

layers, and the upper layer was treated with ExoQuick-TC

solution to precipitate exosomes (Figure 5B). As expected,

Cryo-TEM visualization revealed that the Arabidopsis pellets

contained membrane-bound vesicles 50–150 nm in size,

suggesting that Arabidopsis exosomes can also be extracted by

the combination method (Figure 5C). In addition, by comparing

the NTA results of EV samples extracted by ultracentrifugation

alone, ExoQuick alone, and the ultracentrifugation-ExoQuick

combination method, it was found that the combined method

improves exosome isolation purity even in Arabidopsis
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(Figures 5D–G). In the Arabidopsis EV samples extracted by

the ultracentrifugation and ExoQuick methods alone, exosome

purity was 75.9% and 78.7% respectively. In contrast, the

combinat ion method increased exosome puri ty to

approximately 100% (Figure 5G). These findings indicated that

the combination method increases exosome isolation purity by

around 23% compared with that achieved by ultracentrifugation

and ExoQuick methods alone in Arabidopsis. The data also

suggest that the combination method can be widely used for the

isolation of high-purity exosomes from plants including ginseng.
Combination method also improves
colloidal stability of isolated exosomes

Colloidal stability is a key factor determining the functional

maintenance and storage of isolated exosomes. The colloidal

stability of isolated exosomes is greatly affected by isolation

methods and sample types (Jeyaram and Jay, 2018; Midekessa

et al., 2020). Zeta potential analysis, which measures the surface

potential of colloidal particles, is widely used to estimate the

colloidal stability of isolated exosomes. Previous studies

suggested that the zeta potentials of isolated exosomes range

between −6 and −30 mV, and values less than −20 mV indicate

high colloidal stability (Lee, 1998; Soares Martins et al., 2018;

Kim et al., 2021). The zeta potentials of Arabidopsis exosomes

extracted by the three different methods were measured and

compared. As expected, the zeta potentials were significantly

different among the isolation methods, and we found that the
B C

D

A

FIGURE 4

Validating the combination method using various ginseng tissues. (A) Image of a three-year-old ginseng plant. (B) NTA results of ginseng
exosome sample extracted from 1 g of leaves, stems, and roots by the combination method. Green boxes represent regions containing
extracellular vesicles 50–150 nm in size (exosomes), and red indicates SD. (C, D) Total number of isolated extracellular vesicles (EV) and
exosomes (Exo) (C), and exosome isolation purity (D). Purity is expressed as a percentage (%), calculated from the ratio of the number of
exosomes to the total number of isolated EVs. Error bars represent SD. Asterisks indicate statistically significant differences between the samples
(p value < 0.01, Student’s t-test). Scale bar = 3 cm.
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ExoQuick system decreased zeta potentials (Figures 6A, B;

Supplementary Table 2). The zeta potential of exosomes

isolated by the ultracentrifugation method was −17.1 mV.

Exosomes isolated by the ExoQuick method alone and by the

combined ultracentrifugation-ExoQuick method had zeta

potential values of −21.3 and −25.9 mV, respectively. This

suggested that the ExoQuick system increased the colloidal
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stabil ity of isolated exosomes, and that combining

ultracentrifugation with the ExoQuick system is most effective

to improve the colloidal stability of isolated Arabidopsis

exosomes. This finding was further supported by the zeta

potentials of ginseng exosomes. The zeta potential of ginseng

exosomes extracted by the ultracentrifugation method was

−20.61 mV. The zeta potentials of exosomes isolated by the
B C

D

E F G

A

FIGURE 5

Isolation of Arabidopsis exosomes by the combination method. (A) A four-week-old Arabidopsis plant. (B) Exosome isolation from Arabidopsis
leaves (1 g) by the combination method (left, crude extraction by centrifugation; middle, exosomal band separation by sucrose density gradient
ultracentrifugation; right, exosome precipitation by the ExoQuick system). Arrow and arrowhead indicate the exosome-containing layer and
exosome pellet, respectively. (C) Cryo-TEM image of Arabidopsis exosomes isolated by the combination method. (D) NTA results of ginseng
exosome samples extracted by ultracentrifugation alone (UC), ExoQuick alone (EQ), and the combination method (UC+EQ). Green boxes
represent regions containing extracellular vesicles 50–150 nm in size (exosomes), and red indicates the SD. (E-G) Comparative analysis of
Arabidopsis exosome samples isolated by the three different methods (E, number of extracellular vesicles, EVs; F, number of exosomes; G,
exosome isolation purity). Error bars represent SD and asterisks indicate statistically significant differences between samples (p value < 0.01,
Student’s t-test). Scale bars = 3 cm in (A), 100 nm in (B).
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ExoQuick and the combination methods were −28.88 and

−29.54 mV, respectively (Figures 6C, D ). Collectively, these

findings suggest that combining ultracentrifugation with the

ExoQuick system is an effective method to isolate high-purity

and high-stability exosomes from plants including ginseng.
Discussion

Exosomes carry a variety of bioactive compounds that

regulate cell growth and defense (Akuma et al., 2019; Xia et al.,

2019; Fu et al., 2020; Pinedo et al., 2021; Song et al., 2021). There is

increasing evidence that plant-derived exosomes can have

therapeutic effects and health benefits (Ju et al., 2013; Mu et al.,

2014; Raimondo et al., 2015; Zhuang et al., 2015; Deng et al., 2017;

Munir et al., 2020; Cho et al., 2021; Kim et al., 2021; Cai et al.,

2022). For example, exosomes or exosome-like nanoparticles

isolated from grapes strongly promote the division of intestinal

stem cells and regeneration of mucosal epithelium in the dextran

sulfate sodium-induced colitis mouse model (Ju et al., 2013).

Similarly, broccoli-derived nanovesicles have preventive and

therapeutic effects for colitis (Deng et al., 2017). In addition,

exosomes or exosome-like nanovesicles isolated from lemon and

ginger have anti-cancer activity and protective effects against

alcohol-induced liver damage, respectively (Raimondo et al.,

2015; Zhuang et al., 2015; Cho et al., 2021). This strongly

suggests the potential application of plant exosomes in the

pharmaceutical and cosmetic industries and highlights the

importance of an optimized method to isolate plant exosomes

with high purity and stability. In this study, we determined that

combining ultracentrifugation with the ExoQuick system allows
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for the extraction of plant exosomes with higher purity than the

ultracentrifugation or ExoQuick methods alone.

In Arabidopsis, the purity of exosomes isolated by

ultracentrifugation or the ExoQuick method was approximately

70%. However, the purity of exosomes isolated by the

combination method was almost 100%, indicating that this

method increases isolation purity by 30% in Arabidopsis

compared with ultracentrifugation or ExoQuick methods alone.

The increase in isolation purity of the combination method was

more dramatic in ginseng. The purity of exosomes isolated by

ultracentrifugation or by the ExoQuick method was 34% and 59%,

respectively, and that of the combination method was 83%. This

indicates that the combination method increases ginseng exosome

isolation purity approximately 2.4-fold and 1.5-fold compared

with the single methods. These results suggest that the

combination of ultracentrifugation and the ExoQuick system is

an effective and stable method to extract ginseng exosomes with

high purity, which is further supported by our data showing that

the combination method can also be applied to various ginseng

tissues. However, as expected, the increase in exosome isolation

purity was accompanied by a decrease in the total number of

isolated exosomes. For example, the total number of ginseng

exosomes isolated via the ultracentrifugation, ExoQuick, and

combination methods were 5.62×1011, 6.45×1011, and 1.56×1011

respectively. Therefore, the combination method decreases the

total number of exosomes by approximately four-fold compared

with the single methods. These findings indicate that while the

combination method improves isolation purity, there is a

reduction in the total number of exosomes obtained.

Colloidal stability is an important factor influencing the

functional maintenance and storage stability of isolated
B

C D

A

FIGURE 6

The combination method improves the colloidal stability of isolated exosomes. Zeta potential measurements of Arabidopsis (A, B) and ginseng
(C, D) exosomes isolated by ultracentrifugation (UC), ExoQuick (EQ), and the combination (UC+EQ) methods. For this analysis, exosomes were
isolated from 1 g of four-week-old Arabidopsis leaves and one-year-old ginseng roots. Error bars represent SD and asterisks indicate statistically
significant differences between the samples (p value < 0.01, Student’s t-test).
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exosomes. Flocculation of exosomes negatively affects their

colloidal stability (Mu et al., 2014; Wang et al., 2015; Helwa

et al., 2017; Umar et al., 2018; Kim et al., 2022). Zeta potential is

key to estimating the colloidal stability of isolated exosomes

(Clogston and Patri, 2011; Soares Martins et al., 2018; Samimi

et al., 2019; Midekessa et al., 2020). In this study, we showed that

the ultracentrifugation-ExoQuick combination method

improved the colloidal stability of exosomes. In ginseng, the

zeta potential of exosomes extracted by the combination method

was −29.54 mV, which was 43% lower than that of exosomes

extracted by the ultracentrifugation method. Similarly, in

Arabidopsis, the zeta potential of exosomes isolated by the

combinat ion method was −25 .89 mV, which was

approximately 50% lower than that of exosomes isolated by

the ultracentrifugation method. These data suggest that the

combination method improves the colloidal stability of

isolated exosomes as well as the isolation purity.

Our NTA results suggested that the improvement of

colloidal stability is not directly caused by a decrease in

isolated exosome numbers. For example, the total number of

ginseng exosomes isolated by ultracentrifugation was around

two-fold higher than that of Arabidopsis exosomes isolated by

the same method, but the zeta potentials of ginseng exosomes

were approximately 20% lower than that of Arabidopsis

exosomes. In addition, the total number of ginseng exosomes

isolated by the combination method was four-fold lower than

that of the ExoQuick method alone, but their zeta potential

values were similar. Instead, we noticed that all exosome samples

isolated by methods including the ExoQuick precipitation step

displayed lower zeta potential values than those isolated by the

ultracentrifugation method without the ExoQuick precipitation

step. This finding suggests that the ExoQuick precipitation step

is likely key to improving the colloidal stability of isolated

exosomes. Collectively, our findings indicate that the

ultracentrifugation-ExoQuick combination method improves

both the isolation purity and colloidal stability of ginseng

exosomes. We propose that this technology may be widely

used in scientific research as well as for industrial applications

of ginseng exosomes.
Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material. Further

inquiries can be directed to the corresponding author.
Author contributions

GJ conceived the original screening and research plans. SJ,

HJ, and GJ designed and supervised the experiments. JJ, HJ, EK,
Frontiers in Plant Science 10
and EJ performed the experiments and analyzed the data. YY

and GJ wrote the article with contributions from all authors. GJ

agrees to serve as the author responsible for contact and ensures

communication. All authors contributed to the article and

approved the submitted version.
Funding

This work was carried out with the support of the New

Breeding Technologies Development Program (Project No.

PJ01653503), Rural Development Administration, Republic

of Korea. This work was also supported by the Korea

Institute of Planning and Evaluation for Technology in Food,

Agriculture and Forestry through Agricultural Machinery/

Equipment Localization Technology Development Program,

funded by Ministry of Agriculture, Food and Rural Affairs

(122022-03-1-HD020), and the National Research Foundation

of Korea Grant funded by the Korean Government

[NRF-2022R1A2C1003615].
Acknowledgments

We thank Deok Hyun Seo (Chonnam National University)

for their valuable technical support in the microscopic analysis.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fpls.2022.1064412/full#supplementary-material
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2022.1064412/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2022.1064412/full#supplementary-material
https://doi.org/10.3389/fpls.2022.1064412
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jang et al. 10.3389/fpls.2022.1064412
References
Akuma, P., Okagu, O. D., and Udenigwe, C. C. (2019). Naturally occurring
exosome vesicles as potential delivery vehicle for bioactive compounds. Front.
Sustain. Food Syst. 3, 23. doi: 10.3389/fsufs.2019.00023

Alvarez, M. L., Khosroheidari, M., Ravi, R. K., and DiStefano, J. K. (2012).
Comparison of protein, microRNA, and mRNA yields using different methods of
urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney
Int. 82 (9), 1024–1032. doi: 10.1038/ki.2012.256

Bobrie, A., Colombo, M., Raposo, G., and Théry, C. (2011). Exosome secretion:
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