
Frontiers in Plant Science

OPEN ACCESS

EDITED AND REVIEWED BY

Chuanlei Zhang,
Tianjin University of Science and
Technology, China

*CORRESPONDENCE

Daobilige Su
sudao@cau.edu.cn

SPECIALTY SECTION

This article was submitted to
Sustainable and Intelligent
Phytoprotection,
a section of the journal
Frontiers in Plant Science

RECEIVED 08 October 2022
ACCEPTED 04 November 2022

PUBLISHED 23 November 2022

CITATION

Qiao Y, Valente J, Su D, Zhang Z and
He D (2022) Editorial: AI, sensors and
robotics in plant phenotyping and
precision agriculture.
Front. Plant Sci. 13:1064219.
doi: 10.3389/fpls.2022.1064219

COPYRIGHT

© 2022 Qiao, Valente, Su, Zhang and
He. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author
(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Editorial
PUBLISHED 23 November 2022

DOI 10.3389/fpls.2022.1064219
Editorial: AI, sensors and
robotics in plant phenotyping
and precision agriculture

Yongliang Qiao1, João Valente2, Daobilige Su3*,
Zhao Zhang4,5 and Dongjian He6

1Australian Centre for Field Robotics (ACFR), Faculty of Engineering, The University of Sydney,
Sydney, NSW, Australia, 2Information Technology Group, Wagenigen University & Research,
Wageningen, Netherlands, 3College of Engineering, China Agricultural University, Beijing, China,
4Key Laboratory of Smart Agriculture System Integration, Ministry of Education, China Agricultural
University, Beijing, China, 5Key Laboratory of Agriculture Information Acquisition Technology,
Ministry of Agriculture and Rural Affairs of China, China Agricultural University, Beijing, China,
6College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling,
Shaanxi, China

KEYWORDS

artificial intelligence, plant phenotyping, precision agriculture, smart sensors,
agricultural robotics, UAV
Editorial on the Research Topic

AI, sensors and robotics in plant phenotyping and precision agriculture
Introduction

Plants and their production play an important role in retaining the sustainability for

the natural ecosystem and human beings’ food security. With the increasing global

population, rapid urbanization and climate change, how to improve plant protection

levels, increase plant breeding speed and make sure the agricultural planting in a

sustainable and low-carbon dioxide manner becomes challenging. One way to address

this issue is to develop the technology of plant phenotyping and precision agriculture

(Costa et al.). Plant phenotyping and precision agriculture as information- and

technology-based approaches, could evaluate a large amount of plants and provide

effective information to production management. Plant phenotyping assesses complex

plant traits such as plant morphology, plant stress, crop yield, plant physiological,

anatomical traits, and genotype performance under distinct environmental conditions.

Precision agriculture is aimed at examining spatial heterogeneities within crop stands

based on the spatial and temporal variability in crop and soil factors within a field

(Stafford, 2000 and Patrıćio and Rieder, 2018). High-throughput phenotyping in

precision agriculture is helpful to improve management practices, and efficient

phenotyping in the field also reduces the invested resources (e.g., fertilizer,

water, pesticide).
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In recent years, cutting-edge technologies for plant

phenotyping and precision agriculture are fundamental to

improve the productivity and sustainability of plant

production systems (Narvaez et al., 2017). Especially, the

development of Artificial Intelligence (AI), smart sensors and

robotics provides a non-invasive manner for assessing complex

traits in plants (as shown in Figure 1), measuring plant-

physiological parameters, diagnosing plant diseases, predicting

the yield and performance of plants at various organizational

scales (Purcell and Neubauer, 2023).

The comprehensive plant phenotyping emerges from the

dynamic and local interaction of phenotypes with the spatially

and temporally dynamic environment above and below ground,

while assessing complex plant traits such as growth, tolerance,

resistance, physiology, ecology, plant stress and yield, which

benefits the farmers and plant breeders to identify phenotyping

parameters and select desirable genotypes that provide effective

information to make informed agricultural production

management decisions (Li et al., 2014). By assessing complex

plant traits (e.g., growth, development, resistance, physiology,

ecology), high yielding and stress-tolerance crop varieties adapt

to future climate conditions and resistant to pests and diseases,

produce enough food, feed, fiber, and fine chemicals in next

century to meet the needs of a growing population worldwide

(Abbasi et al., 2022).
Plant phenotyping

Plant monitoring and phenotyping can reflect many valuable

parameters and effective information for optimizing agricultural
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production management in smart farming. Traditional manual

based methods rely on experienced farmers, which is of low-

accuracy and poor efficiency. Nowadays, a range of sensors

(various RGB, multi-and hyperspectral cameras, 3D-sensors,

etc.) and platforms have been used to realize real-time, rapid,

and efficient plant phenotyping. According to different

perception principles, these sensors mainly have ground

feature spectrometers, spectral imaging sensors, and other

imaging spectrometers.

Qin et al. proposed a real-time and low-cost Ag-YOLO

model for crop monitoring and crop spraying, which achieved

0.92 F1-score with a speed of 36.5 frames per second (fps) on

Intel Neural Compute Stick 2 (NCS2). Liu et al. proposed a

portable wild phenotyping system based on segmentation results

from DeepLabV3+ model to obtain 45 traits, including 15 plant

traits, 25 leaf traits and 5 stem traits. The proposed system

provides a solution for maize phenotyping in the field and

benefit crop breeding. Lu et al. proposed a soybean yield in-

field prediction method based on bean pods and leaves image

recognition using a deep learning algorithm combined with a

generalized regression neural network (GRNN). According to

the experiments, the soybean yield of each planter was obtained

by accumulating the weight of all soybean pod types and the

average accuracy was up to 97.43%.

In addition, an identification model YOLO-VOLO-LS was

constructed for hydroponic lettuce grown in a greenhouse under

the conditions of different growth periods (Zhang and Li). By

combining the respective advantages of the target detection

mechanism and the classification mechanism, a nearly 100%

of the lettuce classification effect in the growth stages of days 1, 6,

12, 18, 24, and 30 were achieved. Wang et al. proposed a
FIGURE 1

AI, sensors and robotics in plant phenotyping and precision agriculture.
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lightweight model based on the improved You Only Look Once

version 4 (YOLOv4) to detect dense plums in orchards, which

achieved 86.34% detection accuracy.

For obtaining image-based phenotypic information of wheat

traits for spike morphology analysis and yield estimation, Zhang

et al. collectedwheat images fromfields and proposed an optimized

hybrid task cascade model for automatic dense wheat spike

segmentation. Experimental results showed that they achieved an

average precision (AP) of 90.7%, and an accuracy of 99.29%.for

wheat spike counting. Qiu et al. processed the color images of the

spike in YCbCr color space and then utilized Faster R-CNN to

detect the spikelets. Testing results showed that the root mean

squared errors between the automatic and manual counted

spikelets for four wheat lines were 0.62. Qi et al. proposed a novel

tea chrysanthemum–generative adversarial network (TC-GAN)

for tea chrysanthemum detection, which achieved an optimal

average precision (AP) of 90.09%.

Nitrate nitrogen plays an important role during crop growth,

and the operation of Increasing N fertilizer dosage and

application is usually one of the essential ways to boost crop

productivity. Su et al. proposed an ISE system combined with a

temperature sensor and a pH electrode to automatically measure

the concentrations of Nitrate nitrogen.

As sugar being the energy source of plants and plays an

important role in plant growth and development, Liu et al.

developed an enzyme-free electrochemical sensor for in situ

detection of reducing sugar, which demonstrated that the

COOH-GR–COOH-MWNT–AuNP-modified electrode

exhibited a good catalysis behavior. To investigate the study effect

of vegetation distribution on mean flow velocity and turbulence

characteristics in a channel,Wang et al. constructed a flow velocity

distributionmodel to study themicroscopicmechanismof the flow

velocity distribution in the upper layer of vegetation, which

provides a solution forflowmeasurement in the ecological channel.

Hyperspectral imaging is advantageous in delivering reliable

and comprehensive analysis of characteristics or properties of

plant materials, which is a powerful modality for measuring

spectral and spatial information of samples simultaneously (Lu

et al., 2020). Lu et al. classified industrial hemp cultivars, growth

stages, and plant organs (leaves vs. flowers) using hyperspectral

imaging technology. Based on regularized linear discriminant

analysis, an accuracy of up to 99.6% was achieved in

differentiating the five hemp cultivars. Liu et al. designed a

near-infrared (NIR) phenotypic sensor for predicting wheat

gain quality, and the R2 of the relative diffuse reflectance

(RDR) of all four wavelengths of the phenotypic sensor and

the reflectance of the diffusion fabrics were higher than 0.99.
Plant diseases detection

Diseases are the main causal factors affecting crop growth

and yield. Reliable and timely plant disease detection is
Frontiers in Plant Science 03
important for plant protection activities, field crop growth and

plant breeding. AI and computer vision based diagnosis and

detection of plant diseases must consider that the occurrence of

plant disease depends on specific environmental factors and

diseases often exhibit a heterogeneous distribution in fields

(Mahlein, 2016).

Wang et al. proposed a YOLOv3-tiny-IRB algorithm to

improve the detection accuracy of tomato diseases and pests

under conditions of occlusion and overlapping in real natural

environment, which achieved the mean average precision (mAP)

of 98.3, 92.1, and 90.2%, respectively under three conditions: (a)

deep separation, (b) debris occlusion, and (c) leaves overlapping.

Zhang et al. proposed YOLOv5-CA based GDM detection

approach for grape downy mildew disease detection, and the

experimental results show that the proposed YOLOv5-CA

achieved a detection precision of 85.59%, a recall of 83.70%,

and a mAP@0.5 of 89.55%, which are superior to the popular

methods, including Faster R-CNN, YOLOv3, and YOLOv5.

Chen et al. proposed 2D histogram Otsu based approach for

segmenting maize foliar disease images, the experimental results

indicated that the method effectively improved the segmentation

of the three maize disease spot images and could obtain more

apparent disease spot areas. Zhang et al. extracted handcrafted

and deep features from the color image and color-infrared (CIR)

image, and the DFs coupled with parallel feature fusion resulted

in diagnosis accuracies of over 70%.
Robotics and UAVs in smart farming

Robotics and UAVs have shown great efficiency and

effectiveness in the agriculture field. In recent years, many

agricultural related robotics and UAVs have been designed

and developed to manage crops, plants, livestock and fishes

(Qiao et al., 2019; Su et al., 2021; Li et al., 2022 and Du et al.,

2022). Based on the Simultaneous Localization and Mapping

(SLAM), place recognition and autonomous navigation, robots

or UAVs can autonomously drive and perform actions such as

harvesting, picking and trimming.

In robotic precision spray of vegetables, accurate and reliable

detection and tracking of every vegetable is of utmost

importance. Hu et al. proposed LettuceMOT, a multiple object

tracking (MOT) method to correlate these re-appeared

vegetables with their previous identities. The experimental

results show that LettuceMOT outperformed existing state-of-

the-art MOT methods (e.g., ByteTrack, FairMOT, TraDeS

and SORT).

To achieve the rapid harvesting of table grapes planted with

a standard trellis in the grape industry, Jiang et al. carried out a

dual-arm high-speed grape-harvesting robot to improve low

picking efficiency. Robotic arm and camera view analysis of

the workspace harvesting process was performed using

MATLAB, and it can be concluded that the structural design
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of this robot meets the grape harvesting requirements with a

standard trellis. The field performance test verifies that the

average harvesting cycle of the robot with both arms reached 9

s/bunch, and the success rate of bunch identification and

harvesting success rate reached 88% and 83%, respectively,

which were significantly better than those of existing

harvesting robots worldwide.

In terms of agricultural navigation technologies, Xie et al.

proposed the miniaturization scheme of zooming detection arc

based on variable central angle and established the adjustment

equation of the detection distance of photoelectric switches at

each position, a small integrated photoelectric arc array

navigation sensor with a cost of about $65 is developed using

an embedded microcontroller. However, there is still a problem

of external noise and other factors causing the failure of the

navigation system. To solve this problem, Lv et al. proposed an

agricultural scene-based multi-sensor fusion method via a

loosely coupled extended Kalman filter algorithm to reduce

interference from external environment. Specifically, the

proposed method fuses inertial measurement unit (IMU),

robot odometer (ODOM), global navigation and positioning

system (GPS), and visual inertial odometry (VIO), and uses

visualization tools to simulate and analyze the robot trajectory

and error. In experiments, the high accuracy and the robustness

of the proposed algorithm were verified when sensors fail. The

experimental results show that the proposed algorithm has

better accuracy and robustness on the agricultural dataset than

other algorithms.

For phenotypic feature detection in the study of automatic

trimming, Tang et al. optimized and designed a long-belt finger-

clip precision seed metering device, which includes a diffuse

reflection photoelectric sensor and rectangular optical fiber

sensor to monitor the number of corn seeds in the seeding

process. To automatically trim hedges, Zhang et al. proposed a

binocular vision-based shape reconstruction and measurement

system, based on stereo correcting algorithm and an improved

semi-global block matching (SGBM) algorithm The center

coordinate and radius of the spherical hedges can be

measured. The outdoor test shows that the average error and

average relative error of spherical hedges radius by the proposed

system are 4.02 mm and 0.44%, respectively. The average

location deviation of the center coordinate of spherical hedges

is 18.29 mm.

Fu et al. quantified the forces on the stalks caused by root

anchorage in corn harvesting, and a root force measurement

system was designed and applied in this study. The bending

moment and torsional moment on the upright and lodged corn

stalks were measured in corn harvesting. By analyzing the

bending moment curves on the lodged corn stalks, it was

proposed that for the harvesting of corn lodged in the

forward, reverse, and lateral direction, the corresponding

harvester header improvement suggestions are enlarging the
Frontiers in Plant Science 04
size of pins on the gathering chains, reducing the speed of

gathering chains, and lengthening the snouts with a sleeker

surface, respectively. This study provides base data for the root

anchorage effect on lodged corn and provides references for the

improved design of the corn harvester header.

On the other hand, UAV based platform are also popular in

the precision agriculture and plant phenotyping applications

because their large cover range and higher data scanning speed.

In addition, UAVs can fly automatically with less human

intervention during data collection. Zhaosheng et al. improved

wheat ears identification performance in a field environment

using improved YOLOX-m model. To develop a data processing

pipeline for performing fast and accurate pre-harvest yield

predictions of cotton breeding fields using aerial image,

Rodriguez-Sanchez et al. used a Support Vector Machine

(SVM) classifier with four selected features to identify the

cotton pixels present in each plot image, which achieved an

accuracy of 89%, a precision of 86%, a recall of 75%, and an F1-

score of 80% at recognizing cotton pixels. This study

demonstrates that aerial imagery with machine learning

techniques can be a reliable, efficient, and effective tool for

pre-harvest cotton yield prediction. Krul et al., 2021 studied

the feasibility to apply UAV for indoor farming monitoring and

control. The performance of different state-of-the-art visual

simultaneous localization and mapping (VSLAM) algorithms

with a small and low-cost UAV was assessed. The authors found

that ORB-SLAM was the algorithm that perform best in such an

environment. Tests in the farming facilities where performed

and different maps were generated.

Finally, agricultural management could also benefit from the

collaboration between aerial and ground robotic systems. The

aerial robotics could survey a field using different types of

sensors and payloads. Moreover, it could provide the ground

robot a detailed map with specific positions where the ground

robot need to inspect further or perform some action with an

actuator. Conesa-Muñoz et al., 2016 proposed a multi-robot

system to reduce the amount of herbicide during site-specific

treatments. The combination of aerial-ground robotics systems

allows to reach a 97% spray accuracy and a mean deviation lower

than 7cm. Zhang et al., 2022 investigated the spatial-variability

of orchards flower blossom from an aerial and ground

perspective. Several point clouds where acquired in a

commercial orchard (Elstar) field using a UAV and a ground

vehicles. The feasibility of combing data from both platforms to

assess flowering intensity at the tree-level, was demonstrated,

yielded R2>0.7 and RMSE lower than 20.
Conclusions

Plant phenotyping and precision agriculture is becoming a

very important topic for future agriculture. The increasing
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population and climate change push us to take actions to plant

crops against pests, diseases, and harsh environments (e.g. lack

of nutrients, water, fertilizers or light). The new technologies

such as AI, sensors and robotics enables farmers to take a data-

driven approach to collect and analyze data to monitor the real-

time status of the plans and crops to improve production yield

quality. For precision agriculture, the grand challenges lie in

identification of cheap, robust, easy-to-use, rapid and automated

phenotyping methods that can feed into Decision Support

System. In addition, the field environment will provide

challenges in sometimes rapidly varying light conditions, wind

and temperature, as well as combinations of multiple stresses.

Despite all these challenges, automated and systematic stress

detection by field-phenotyping holds great promise to accelerate

Integrated pest management where on-farm live monitoring of

stress and disease are key factors to reduce the reliance

on pesticides.

In the future, the integration of automated data collection

and analysis, AI algorithms, robotics and decision support

systems will bring unmanned farming to our lives. Moreover,

the ground-level or aerial-level robotic systems will also have a

major role in plant phenotyping and precision agriculture, for

monitoring, disease control and harvesting.
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