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Lodging reduces grain yield in cereal crops. The height, diameter and strength

of stem are crucial for lodging resistance, grain yield, and photosynthate

transport in barley. Understanding the genetic basis of stem benefits barley

breeding. Here, we evaluated 13 stem related traits after 28 days of heading in a

barley DH population in two consecutive years. Significant phenotypic

correlations between lodging index (LI) and other stem traits were observed.

Three mapping methods using the experimental data and the BLUP data,

detected 27 stable and major QTLs, and 22 QTL clustered regions. Many

QTLs were consistent with previously reported traits for grain filling rate,

internodes, panicle and lodging resistance. Further, candidate genes were

predicted for stable and major QTLs and were associated with plant

development and adverse stress in the transition from vegetative stage to

reproductive stage. This study provided potential genetic basis and new

information for exploring barley stem morphology, and laid a foundation for

map-based cloning and further fine mapping of these QTLs.

KEYWORDS

barley (Hordeum vulgare L.), internode length, stem diameter, lodging resistance,
quantitative trait loci (QTL)
Introduction

Lodging largely impairs grain yield and quality, especially for high-yielding cultivars

(Islam et al., 2007), which is divided into stem lodging or root lodging (Kashiwagi et al., 2005).

In cereal crops, lodging is governed by genetic, field management and environmental factors

(Wu and Ma, 2016). In many agricultural systems, this is a tough challenge due to the
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complexity of stem lodging (Berry et al., 2004). Especially the large

panicles of modern varieties are more prone to lodging in the

presence of wind, rain and diseases (Martinez-Vazquez, 2016).

Lodging affects photosynthetic capacity of cereal crops and has an

adverse effect on grain development (Shah et al., 2017; Shah et al.,

2019). Besides, lodged barley is likely to be infected with diseases

and pests (Berry et al., 2004; Caier̄ ao, 2006).
Crop yield is affected by the source, sink and flow. Stems are the

most important storage organs during assimilation translocation

after anthesis (Matthias et al., 2016), and plants particularly rely on

the dry matter and nitrogen fixation of stems under stress (Housley

and Peterson, 1982). As a regular conduit for transporting water

and nutrients from root or leaves to panicle, stem structure is the

key to improve grain filling and high yield (Chen et al., 2004; Huang

et al., 2016; Zhai et al., 2018). Additionally, stem is the supporting

organ for proper distribution of leaves, which is beneficial to

improve the efficiency of sunlight use. Changes at the horizontal

location of plants in photosynthesis can lead to 27−31% reduction

in the yield (Pinthus, 1974; Berry et al., 2004). After heading of

barley, the flag leaf is the main photosynthetic organ (Yap and

Harvey, 1972), therefore, as a bridge from flag leaf to panicle, the

uppermost internode is especially crucial in the later stage for filling

of grain. Selection of lodging resistant cultivars is one of several very

important targets in cereal breeding program. The lodging

resistance correlated with stem strength, plant height, panicle type

and cell wall components (Shah et al., 2017; Khobra et al., 2019).

The dwarf and semi-dwarf genes were preferentially used to lower

lodging risk in barley during the Green Revolution (Hedden, 2003),

but several studies have shown that plant over short affected crop

yield (Islam et al., 2007), so enhancing the stem strength of plants is

another viable option to avoid lodging.

Many studies have been done on barley lodging (Cui and

Shen, 2011; Baker et al., 2014; Leblicq et al., 2016). Based on stalk

characteristics and lodging factors, a lodging index was proposed

to measure the lodging trait (Islam et al., 2007; Li et al., 2017),

thus, the lodging index becomes a comprehensive trait

composed of many single traits. Moreover, some studies have

indicated that leaf sheaths and vascular bundles are also crucial

contributing factors to lodging (Wu and Ma, 2020; Cornwall

et al., 2021). Lin et al. (2005) indicated that a lower pith

diameter/stem diameter ratio can improve stem strength. The

lignin and cellulose content of secondary cell wall (CW) also

affects the mechanical properties of stems (Jones et al., 2001;

McFarlane et al., 2014).

In recent years, many studies on stem related traits in barley

were reported. Such as Bellucci et al. (2017) performed genome-

wide association mapping of grain yield and cell wall polymer

content in winter barley. QTLs for the length of each internode

(Schmalenbach and Pillen, 2009), chromosome regions

containing significant associations with cellulose concentration

(Houston et al., 2015), characterization of plant height (Wendt

et al., 2016; Bélanger et al., 2018; Pu et al., 2021) have been

reported. Kristensen et al. (2016) identified some barley lodging
Frontiers in Plant Science 02
resistance loci. The focus of lodging in barley has been on root,

plant height and spike traits, limited research was performed on

the effect of stem strength, stem internode and node diameter

on lodging.

In the study, we performed QTL mapping of 13 stem related

traits after 28 days of heading using a barley DH population,

including uppermost node diameter (UND), second node

diameter (SND), third node diameter (TND), uppermost

internode length (UIL), second internode diameter (SID),

third internode diameter (TID), second internode length (SIL),

third internode length (TIL), uppermost internode diameter

(UID), main stem length of fracture (MSL), stem fresh weight

(SW), third internode breaking force (TIBF) and lodging index

(LI). The aims were to explore the relationship between stem

internode traits and lodging traits, and to predict and screen out

candidate genes related to stem development. The study will

deepen our understanding of the genetic basis of stem, and

provide new insights to boost lodging resistance breeding

in barley.
Materials and methods

Plant material

A doubled haploid (DH) population with 122 lines derived

from six-rowed barley Huaai11 and two-rowed barley Huadamai 6

was employed to identify QTLs (Ren et al., 2010). These accessions

were evaluated over two crop seasons (2020-2021, 2021-2022) in

the experimental farm of Huazhong Agricultural University,

Wuhan, China (30°C 48’N, 114°C 36’E), with three replicates in a

completely randomized block design. In each replicate, lines were

planted in double rows with 15 cm plant spacing and 20 cm row

spacing. Field cultivation management followed standard

agricultural practices for barley production.
Phenotyping

The heading date of each line was recorded, after 28 days of

heading, three plants with uniform growth were randomly

selected from each replicate and their main stems were cut at

the root to measure phenotypic data of stem related traits, and

the mean value for each phenotype was used for the analysis. The

main stem length (from the fracture of the stem to the apex of

the panicle, MSL, cm), uppermost internode length (UIL, cm),

second internode length (SIL, cm) and third internode length

(TIL, cm) were measured using a straight edge, the uppermost

node diameter (UND, mm), second node diameter (SND, mm),

third node diameter (TND, mm), uppermost internode diameter

(UID, mm), second internode diameter (SID, mm) and third

internode diameter (TID, mm) were measured at the middle of

them with a slide caliper. The breaking force of third internode
frontiersin.org
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(TIBF, N) was measured using a prostrate tester (DIK7400,

Japan), and the fracture site was arranged in the center of the

third internode (Supplementary Figure S1). Main stem fresh

weight (SW, g) is the weight from the fracture to the apex of the

panicle. Lodging index (LI) was calculated according to the

equation: (Li et al., 2017)

LI ¼ MSL� SW
TIBF=9:8� 5� 1000

� 100
Data analysis

The data was analyzed using SPSS 25 (USA). The best linear

unbiased predictor (BLUP) of stem traits was forecast using the

R package lme4. The broad-sense heritability (H2) was

computed using: H2 =VG/(VE/N + VG), N was the number of

environments (Liu et al., 2020). In this study, the BLUP was used

to analyze the Pearson correlation between stem traits. The plots

were drawn using R package ggplot2.
QTL analysis

A high-density genetic linkage map of this double haploid

population was constructed by Ren et al. (2016), which included

1962 markers on all seven chromosomes. It spanned 1375.80 cM of

the whole-genome with an average marker distance of 0.7 cM. Stem

related traits QTLs detection were analyzed in QTL IciMapping

v4.1 software. The mapping method ICIM-ADD in “MET”module

and “BIP” module was used to perform Multi Environment and

Single environment Trials analyses, respectively. The PIN was 0.001

and the step was 1.0 cM. Furthermore, QTL analysis for BLUP was

performed in BIPmodule. In addition, to overcome the interference

of row type (Rt), we used Rt as covariates. QTL analysis of

covariates was performed using QTL.gCIMapping software of R

(Feng et al., 2018). The LOD was set to 3.0, and the step was 1 cM.
Gene annotation for major QTLs

For the same trait, a QTL with an explained phenotypic

variance (PVE) ≥10% and positioned in at least two years

(including BLUP) as a stable QTL. To determine whether the

QTL is novel, we compared the physical locations of loci

detected here with those reported. The sequences of flanking

markers were searched at the National Center for Biotechnology

Information (NCBI). By searching the coding sequences, the

predicted candidate genes of the main QTL in the physical

interval were obtained from Barley genome assembly

Morex_v2.0. The orthologs of other plants genes in the barley

reference genome were identified using the Ensembl Plant

Database (http://plants.ensembl.org/Hordeum_vulgare/Tools/
Frontiers in Plant Science 03
Blast) (Mascher et al., 2017). We reviewed annotated

information of the markers and identified potential candidate

genes (Cantalapiedra et al., 2015).
Results

Phenotype analyses

We phenotyped 13 stem related traits 28 days after the

heading in 2021 and 2022 (Table 1). Large variation of the stem

traits was also found, the coefficient of variation (CV) was 8.09

-34.11%. Broad-sense heritability of these traits was 67.00-

97.29%. The phenotypic differences in the stem of parents

were shown in Table 1. T-tests showed significant differences

(P< 0.05) in all stem related traits except TIBF and UND

between parents. Huadamai 6 owned higher values for UND,

SND, TND, SID, TID, UIL, SIL, TIL, MSL, SW, TIBF and LI in

two years than Huaai11, while Huaai 11 had more UID than

Huadamai 6. All 13 stem related traits showed normal

distribution (Figure 1).
Correlations between traits

The best linear unbiased predictor (BLUP) of stem lodging

traits was used for Pearson correlation analysis (Figure 2). The

results showed that TIBF was negatively correlated with LI and

TIL (P<0.01). UIL, SIL and MSL showed a significant correlation

with UND, SND and TND (P<0.01), and the length of each

internode had no correlation with TID. SID was positively

correlated (P<0.5) with UIL. The diameter of each stem node

was positively correlated with the stem diameter of each

internode (P<0.01). SW was positively correlated with UIL,

SIL, MSL, TIL, LI and TIBF. TIL and MSL had the highest

correlation with lodging index (LI).
QTL analysis

In total 103 QTLs were mapped on all chromosomes of

barley except 1H for stem related traits using the ICIM BIP

module in 2021 and 2022, including UND (10 QTLS), SND (5),

TND (7), UID (9), SID (13), TID (12), UIL (6), SIL (7), TIL (4),

MSL (9), SW (6), TIBF (8) and LI (7) (Supplementary Table S1

and Figure 3A). Of them, the phenotypic variance of a single

QTL was between 2.23% and 80.92%, with LOD values ranging

from 3.01 to 32.68, 55(53.40%) major QTLs with PVE values

greater than 10% were identified for UND (2 QTLS), SND (2),

TND (3), UID (5), SID (6), TID (7), UIL (3), SIL (3), TIL (4),

MSL (5), SW (4), TIBF (5) and LI (6) (Supplementary Table S1).

23 stable QTLs were detected for two consecutive years

(Table 2), and 14 stable QTLs had PVE of more than 10%
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(two years average). Moreover, we identified 17 tightly linked or

pleiotropic QTLs that influenced two or more traits, such as the

QTL at 662.45-671.63 Mb on chromosome 2H simultaneously

affected UIL, UND, UID, SID, TID and TIBF (Supplementary

Table S2). To avoid the influence of row type (Rt), we used Rt as

covariates for QTL mapping, a total of 91 QTLs were mapped,

including 43 novel QTLs and 4 novel stable QTLs

(Supplementary Table S3 and Table 2).

In a multi-environment QTL analysis, 93 MET QTLs were

identified for UND (9 QTLS), SND (5), TND (8), UID (8), SID

(10), TID (10), UIL (6), SIL (8), TIL (3), MSL (10), SW (5), TIBF

(6) and LI (5) (Figure 3B and Supplementary Table S4). Of them,

22 (23.66%) had PVE more than 10%. Besides, we found 21 QTL

loci that influenced two or more traits synchronously detected in

the ICIM MET module (Supplementary Table S5).

Further, to suppress the potential effect of the environment

on stem lodging traits, we used the BLUP of stem traits for QTL

analysis in the ICIM BIP module. 73QTLs were identified for

UND (8 QTLS), SND (6), TND (8), UID (7), SID (7), TID (7),
Frontiers in Plant Science 04
UIL (2), SIL (7), TIL (2), MSL (8), SW (5), TIBF (4) and LI (2)

(Supplementary Table S6). Of them, the LOD values ranged

from 3.03 to 32.23, and PVE of 26 (35.62%) QTLs was greater

than 10%.

Most QTLs detected by the three mapping methods were

located on chromosomes 2H, 3H, and 7H (Figure 4A). Figure 4B

is the Venn diagram of the QTL mapped in three mapping

methods. 45 QTLs were mapped by all three mapping methods,

and 36 QTLs were identified in the MET module and the BIP

module. The number of QTL for a single trait in each year was

shown in Figure 4C. Importantly, we identified 27 major and

stable QTLs (QTLs of one trait repeatedly mapped in multiple

mapping methods and in at least two years) or 49 stable QTLs

(QTLs of one trait repeatedly mapped in at least one year and

BLUP) (Table 2 and Figure 5). The PVE of 49 stably QTLs was

3.79- 43.57%, with a LOD value from 3.01 to 32.68

(Supplementary Table S7). In addition, we integrated a large

number of interlocking intervals for different traits. 22 regions

were found on all chromosomes involving 288 QTLs, including
TABLE 1 Phenotypic performance for the thirteen stem related traits in the DH population and their parents.

Traits Year Huadamai6 Huaai11 Ta DH Lines

Mean Mean Mean Minb Maxc SDd CVe Corrf H2g

UND (mm) 2021 5.49 4.81 ** 5.10 3.89 6.66 0.43 8.43 0.76 90.08

2022 4.92 4.72 4.61 3.47 5.95 0.44 9.54

SND (mm) 2021 6.75 5.96 ** 6.06 4.70 7.53 0.49 8.09 0.70 88.67

2022 5.95 5.62 ** 5.56 4.35 6.77 0.47 8.45

TND (mm) 2021 6.67 6.06 * 6.09 4.11 7.49 0.53 8.7 0.64 91.12

2022 6.90 6.47 * 6.26 4.99 7.70 0.57 9.11

UIL (cm) 2021 40.22 20.51 ** 27.24 18.45 40.22 4.25 15.6 0.74 92.78

2022 37.78 19.15 ** 24.64 15.20 37.70 4.55 18.47

SIL (cm) 2021 19.87 12.28 ** 15.81 9.54 23.71 2.95 18.66 0.85 97.05

2022 16.04 11.61 ** 15.72 8.49 22.39 3.05 19.4

TIL (cm) 2021 13.07 7.82 ** 9.48 5.42 14.81 2.41 25.42 0.85 67.00

2022 11.90 6.14 ** 10.26 6.89 15.25 2.76 26.9

UID (mm) 2021 3.45 3.67 * 3.48 2.58 4.50 0.33 9.48 0.68 80.42

2022 2.75 3.03 * 2.72 2.07 3.60 0.32 11.76

SID (mm) 2021 5.97 5.39 ** 5.36 3.96 6.90 0.47 8.77 0.75 93.92

2022 6.09 5.56 * 5.17 3.39 6.83 0.55 10.64

TID (mm) 2021 6.27 5.79 ** 5.55 4.21 7.29 0.51 9.19 0.76 95.48

2022 6.90 6.47 ** 5.55 4.09 6.80 0.52 9.37

LI 2021 10.79 5.09 ** 7.27 2.70 14.61 2.42 33.29 0.80 84.41

2022 9.94 4.86 ** 5.98 2.75 10.85 2.04 34.11

SW (g) 2021 8.51 6.82 * 7.22 3.98 10.32 1.33 18.42 0.69 90.56

2022 8.10 6.77 * 6.04 2.96 10.94 1.29 21.36

TIBF (N) 2021 12.40 11.60 12.14 6.61 19.33 2.80 23.06 0.87 84.32

2022 12.53 11.17 11.11 6.45 16.68 2.12 19.08

MSL (cm) 2021 78.04 43.60 ** 55.44 37.79 78.04 8.71 15.71 0.86 97.29

2022 72.46 40.03 ** 53.89 35.00 74.20 9.84 18.26
frontiersi
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1, 6, 6, 3, 2, 1 and 3 intervals for chromosomes 1H, 2H, 3H, 4H,

5H, 6H and 7H, respectively (Table 3).
Genes located within major QTLs intervals

In total, 49 stably QTLs were detected, and 26 stable QTLs

had PVE of more than 10% (Supplementary Table S7). We

explored a large number of interlocking intervals for different

traits (Table 3), such as the QTL at 662.45-671.63 Mb on

chromosomal 2H simultaneously affected UIL, UND, UID,

SID, TID and TIBF. We reviewed annotated information of

the markers and identified potential candidate genes

(Supplementary Table S8), based on the barley physical map

(Cantalapiedra et al., 2015). 44 genes were located at 460.97-

473.73 Mb interval on chromosome 2H. A total of 147 genes

were located at 626.22-633.07Mb and 530.99-532.66Mb on

chromosome 3H. And 244 genes were found in the interval

(599.96-614.73 Mb) on chromosome 4H. QTLs located at
Frontiers in Plant Science 05
approximately 6.81-9.87 Mb on chromosome 5H contained

101 genes. The important intervals on chromosome 7H were

81.89-83.77Mb and 297.27-382.25 Mb, containing 271 genes.

We also looked for genes in several other interlocking loci, which

included 360, 273, 383, 203, 160, and 794 genes selected for

chromosomes 2H, 3H, 4H, 5H, 6H and 7H, respectively.
Discussion

Major and linkage QTLs for stem traits

Most of the studies on lodging focused on plant height and stem

chemical composition (JSameri et al., 2009; Ren et al., 2013; Ren

et al., 2014; Wehner et al., 2015; Gong et al., 2016; Wendt et al.,

2016; Al-Abdallat et al., 2017; Bélanger et al., 2018; Hu et al., 2018;

Pu et al., 2021), on heading date focused on the change of

agronomic traits under drought stress and panicle traits in barley

(Pasam et al., 2012; Long et al., 2013; Alqudah et al., 2014; Gawenda
FIGURE 1

Phenotype distribution of 13 stem traits in each season (2021 and 2022) and BLUP value (best linear unbiased prediction environments).
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et al., 2015; Mohammadi et al., 2015; Alqudah et al., 2016;

Kristensen et al., 2016; Maurer et al., 2016; Alqudah et al., 2018;

Jabbari et al., 2018; Abdel-Ghani et al., 2019; Jia et al., 2019; Ward

et al., 2019; Jabbari et al., 2019; Moualeu-Ngangue et al., 2020), but

few studies on QTLmapping of stem diameter of internode or node

were reported.

In our study, 27 stable and major QTLs were identified for stem

related traits (Table 2). To notarize whether the QTLs here are new

loci, we compared the physical positions with those stem related loci

reported previously, and found some QTLs for stem traits were

consistent with QTLs for seedling traits or grain traits mapped in

previous reports (Table 3). For instance, different traits were

mapped previously in the interval of 122-129 cM and 131-137

cM on chromosome 2H (Wang et al., 2017; Du et al., 2019a; Wang

et al., 2019; Du et al., 2019b). Our research also showed evidence to

support the possible pleiotropy of the Vrs1 gene (Wang et al., 2016).

Similarly, a large number of QTLs related to plant height related

traits were also detected in the 626.22-633.07 Mb of chromosome

3H. In the same DH population, QTL for three internode length

(Qith3-13) and heading date (Qhd3-13), were also near this region

(Ren et al., 2013; Ren et al., 2014; Hu et al., 2018). In addition, in

another hotspot on chromosome 5H at 0.43-13.28 Mb, the QTL of

stem related traits we mapped was consistent with previously

reported traits of grain filling rate or panicle related traits (Du

et al., 2019b). These results showed certain correlation between

barley stem and grain yield.

As expected, TIBF loci were mostly consistent with stem

diameter loci, while LI loci were mostly consistent with

internode length loci. In barley breeding, the relationship
Frontiers in Plant Science 06
between traits should be considered, dwarf barley has lower

grain yield due to its smaller biomass. We found that several

interlocking intervals were simultaneously located by TID, TND,

SND, MSL and LI (Table 3), which may be helpful to further

explore the relationship between stem strength and plant height.

QTL clusters of barley was iteratively reported (Qu et al., 2008;

Schmalenbach and Pillen, 2009; Liu et al., 2015; Wang et al.,

2016). The genetic mechanism of this general phenomenon

might be gene linkage and pleiotropic effects in the same

genomic region (Peng et al., 2003; Wang et al., 2015).

Nevertheless, both linkage and pleiotropy need to be verified

by further studies using cloning and fine mapping of gene

or QTL.
Possible genes associated with barley
stem development

Many genes have been shown to be pleiotropic in barley. Such

as sdw1/denso controls grain size, grain yield, the number of

tillers, and plant height (Kuczyńska et al., 2014). Annotating these

genes in each stable QTL interval by KEGG database, we found

some of them were related to cell division and plant development

(Table 4). The three genes detected in the chromosome 6H

interval at 510.42-517.07 Mb might involve in the stem

length of barley. GS1a gene (HORVU6Hr1G074030) plays a

role in nitrogen sensing or signaling and the efficiency of

photosynthetic or water use (Molina-Rueda et al., 2013).

RDRP1 gene (HORVU6Hr1G074220) and RDRP2 gene
FIGURE 2

Pearson correlation coefficients among 13 stem traits of BLUP. The two-tailed t-test was applied to test the significance of correlation
coefficients (*p < 0.05; **p < 0.01).
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(HORVU6Hr1G074180) regulate organic acid and amino acid

metabolites, biogenesis and spikelet development by small RNA

(Song et al., 2012; Jha et al., 2021). Another significant QTL area

underlying traits of UIL, SIL, TIL, MSL, LI on chromosome 3H at

626.22-633.07 Mb was physically close to HvGA20ox3

(HORVU3Hr1G089980) that encodes enzyme involved in

gibberellin (GA) biosynthesis (Wendt et al., 2016; Bélanger

et al., 2018). In addition, a region related to plant height traits

was also detected on chromosome 7H at 297.27-382.25 Mb, the

14-3-3D gene (HORVU7Hr1G061920) and BRI1 gene

(HORVU7Hr1G068990) located in the region plays an

important intermediate in GA signal transduction and involves

in the signaling of BRs (Pu et al., 2021), respectively. A stable QTL

was detected near HvVRT-2 (a flowering repressor regulated by
Frontiers in Plant Science 07
vernalization and photoperiod) on chromosome 7H (81.89-83.77

Mb), the gene maintains the transition from vegetative stage to

reproductive stage, thereby influencing spikelet morphology and

the internode development (Kane et al., 2005; Szűcs et al., 2006).

Comparative genomics has shown that the functions of

homologs are generally conserved. In addition to the partially

functional identification of genes in barley, we found several

potential candidate genes within the markers (Table 4), that might

play a key role in stem development. HORVU2Hr1G066890,

HORVU4Hr1G006310, HORVU7Hr1G108580 and HORVU7Hr

1G049340 annotate pyruvate dehydrogenase E2 component (Bohne

et al., 2013), might coordinate the synthesis of lipids and proteins for

the biogenesis of photosynthetic membranes. The gene SRP45 plays a

role in chloroplast development in rice which is orthologs of the
B

A

FIGURE 3

Chromosome distribution of QTLs associated with 13 stem related traits identified. (A) single-environment QTL analysis and (B) multi-environment
trials (MET) analysis.
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HORVU3Hr1G089450 (Zhang et al., 2013). HORVU2Hr1G093020

and HORVU4Hr1G006070 annotate beta-glucosidase, which is an

important part of cellulase involved in various physiological processes

in plants (Kawasaki et al., 2001). The GBE, a key enzyme in the

catalytic regulation ofa (1-6) glycosidic bond branch synthesis (Guan

et al., 1995), annotated by HORVU7Hr1G111190. The gene

(HORVU5Hr1G006350) that annotated as RHM (Saffer and Irish,

2018; Jiang et al., 2021), might be related to cell wall components. In

addition, we identified several homologous genes associated with

drought stress that might play a role in tiller and stem development.

HORVU7Hr1G062120 annotates RBM25, an RNA binding protein

in Arabidopsis thaliana that plays an important role in ABA-

mediated alternative splicing and stress response (Cheng et al.,

2017). YUCCA encodes a key auxin synthesis enzyme during

drought stress of cotton (Wang et al., 2021), which is annotated by

the HORVU7Hr1G067200. Another drought stress gene KCS

encoded by HORVU2Hr1G094090 enhanced drought tolerance,

increased the amount of chloroplast matrix, and increased stem

diameter, stem coat thickness, growth rate, and lignin content in jute
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(Zhang et al., 2019; Tong et al., 2021). Moreover, two potential

c a n d i d a t e g e n e s ( HORVU 4H r 1 G 0 7 6 4 6 0 a n d

HORVU4Hr1G076250) were found next to each other on 4H,

HORVU4Hr1G076460 encodes RBOH, DNA methylation of genes

related to seed development affected by heat stress during grain filling

(Mahalingam et al., 2021; Sakai et al., 2022). Brassinosteroid signaling

kinases (BSK) encoded by HORVU4Hr1G076250 is a key family of

receptor-like cytoplasmic kinases for BR signaling (Li et al., 2022),

which is crucial for the development of plants, immunity and abiotic

stress response, but these genes still are needed further verification in

barley. Our studies showed that candidate genes may be involved in

stem development and provide clues for further fine positioning.
Stem traits for barley breeding programs

In this study, we measured the breaking force of the third

internode and calculated the lodging index to observe the

relationship between the traits after 28 days of heading
TABLE 2 Major and stable QTLs identified for thirteen stem related traits in two years using multiple mapping method.

QTL Chr.a Position (cM) Physical interval (Mb) LOD PVEb ADDc Year Mapping methodd

qUND7-1 7H 184 75.24-83.77 3.50-13.46 6.26-21.77 + 2021, 2022, BLUP BIP, MET, Rt

qSND2-1 2H 123 645.22-645.37 7.34-10.11 16.11-18.99 + 2021, 2022, BLUP BIP, MET

qTND5-1 5H 0/22.5 0.43-13.28 3.94-5.97 6.36-11.50 – 2021, 2022, BLUP BIP, MET, Rt

qUIL3-1 3H 33 626.22-633.07 12.9-13.85 20.99-30.37 + 2021, 2022, BLUP BIP, MET, Rt

qSIL3-1 3H 33 626.22-633.07 18.66-30.45 16.47-38.97 + 2021, 2022, BLUP BIP, MET, Rt

qTIL3-1 3H 33 626.22-633.07 15.71-22.40 31.75-32.94 + 2021, 2022, BLUP BIP, MET, Rt

qTIL7-1 7H 134/136 297.27-382.25 12.96-21.39 24.32-30.69 + 2021, 2022, BLUP BIP, MET

qUID3-1 3H 79 530.99-532.66 6.85-6.98 12.67-15.73 – 2021, 2022, BLUP BIP, MET, Rt

qUID4-1 4H 29 599.96-614.73 6.08-6.51 11.4-13.74 – 2021, 2022, BLUP BIP, MET, Rt

qUID4-2 4H 151/158 7.86-16.17 4.20-4.68 7.01-10.44 + 2021, 2022, BLUP BIP, MET, Rt

qSID4-1 4H 28 614.17-614.73 3.70-4.56 5.91-5.98 – 2021, 2022, BLUP BIP, MET, Rt

qSID4-2 4H 148 15.50-16.98 10.52-10.54 15.56-19.65 + 2021, 2022, BLUP BIP, MET, Rt

qSID5-1 5H 4 0.43-4.15 3.05-5.75 4.87-7.73 – 2021, 2022, BLUP BIP, MET, Rt

qTID3-1 3H 52 602.92-603.14 4.42-8.82 5.58-12.76 – 2021, 2022 BIP, MET

qTID5-1 5H 4 0.43-4.15 5.05-8.82 6.52-12.82 – 2021, 2022, BLUP BIP, MET, Rt

qTIBF3-1 3H 52 602.92-603.14 3.82-4.89 9.5-10.39 – 2021, 2022, BLUP BIP, MET

qTIBF5-1 5H 17 6.81-9.87 4.68-5.19 10.31-15.48 – 2021, 2022, BLUP BIP, MET

qMSL3-1 3H 33 626.22-633.07 17.02-26.35 17.52-39.85 + 2021, 2022, BLUP BIP, MET, Rt

qMSL6-1 6H 77 510.42-517.96 5.68-10.90 4.58-11.72 + 2021, 2022, BLUP BIP, MET, Rt

qSW2-1 2H 79 460.97-473.73 3.78-5.77 6.54-10.33 + 2021, 2022, BLUP BIP, MET, Rt

qSW7-1 7H 160 167.59-214.88 6.34-9.60 11.40-19.27 + 2021, 2022, BLUP BIP, MET, Rt

qLI3-1 3H 33 626.22-633.07 9.5-14.39 15.46-23.97 + 2021, 2022, BLUP BIP, MET, Rt

qLI7-2 7H 134 297.27-382.25 12.98-18.06 22.69-32.56 + 2021, 2022, BLUP BIP, MET

qcUIL6-1 6H 84 91.14-91.15 3.35-3.64 5.82-6.63 + 2021, 2022 Rt

qcSIL7-1 7H 137 337.03-358.83 10.07-21 14.65-43.57 + 2021, 2022 Rt

qcUID3-2 3H 220 12.78-23.92 3.17-3.22 6.18-9.17 – 2021, 2022 Rt

qcMSL7-2 7H 126 264.8-264.81 16.48-20.53 21.08-33.61 + 2021, 2022 Rt
aChr, Chromosome; bPVE, The phenotypic variation explained (in %) by each QTL; cADD, additive effect, positive values indicate that the alleles coming from Huadamai 6, negative values
indicated that the alleles coming from Huaai 11; dMapping method, BIP (single-environment QTL analysis), MET (multi-environment trials analysis) and Rt (covariate QTL analysis).
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(Figure 2). The results showed that TIBF was negatively

correlated with LI and TIL. Compared with the strength

trait, the correlation between LI and plant height trait was

highly significant. All the traits were significant and positively

correlated with SW. And the diameter of each stem node was

positively correlated with the stem diameter of each
Frontiers in Plant Science frontiersin.or09
internode. SIL and TIL had no correlation with SID and TID,

a similar phenomenon occurs in rice (Guo et al., 2021),

suggesting that improving stem strength might not change

plant height.
Stem strength can be affected by various factors. The leaf sheath

could provide great physical support (Cornwall et al., 2021).
B C

A

FIGURE 4

(A) Stacked map of QTL number of QTLs with 13 stem related traits identified on each chromosome. (B) Venn diagram of QTL detected by the
three modes. (C) The number of QTL for a single trait in each year.
FIGURE 5

Chromosomes location of reliable QTLs for 13 stem traits.
g
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TABLE 3 Putative pleiotropy or linkage of QTLs on linkage groups in barley and other traits reported to be associated with these regions from
the literatures.

Chr.a Position
(cM)

Physical
interval
(Mb)

Nur.b Involed traits Mapping
method

Previous QTLsc

1H 118 29.73-36.73 3 UIL, MSL MET,
BLUPd

drought stress21,22; development1; malting quality2; biomass yield3; root traits12; water
deficit15; flag leaf18

2H 38 182.8-185.87 3 UID, SID BIP, MET

2H 75/79 460.96-
473.73

16 SID, TID, TND,
TIL, SW

BIP, MET,
BLUP, Rt

culm internode length19; drought16,22; development1; leaf blade area7; grain and spike
number8; root Cl– content9; malting quality2; TKW, protein content6; seedling root
traits20

2H 94/95 541.63-
548.62

8 UND, SID, TID BIP, MET,
BLUP, Rt

2H 123/129 645.22-
651.53

15 SID, TID, UND,
SND, TND, MSL

BIP, MET,
BLUP

drought tolerance20; culm internode length19; seedling characteristics24; grain size and
weight25; grain yield and phosphorus efficiency14; water deficit15; leaf length and
area23; grain filling; flag leaf18

2H 132/137 662.45-
671.63

14 UID, SID, TID,
UND, UIL, TIBF

BIP, MET,
BLUP

seedling characteristics24; leaf blade area7; biomass DSI, osmotic adjustment 3;
seedling root traits11,12; leaf length salt stress12; water deficit15,22; grain filling26

2H 162 695.79-
696.24

4 UID, TID, TIBF BIP, MET,
BLUP, Rt

grain size and weight25

3H 0/3 686.48-
695.72

8 SND, TND BIP, MET,
BLUP, Rt

drought stress21

3H 33 626.22-
633.07

31 TID, UIL, SIL,
TIL, LI, MSL

BIP, MET,
BLUP, Rt

drought stress21; seedling characteristics24; grain size and weight25; leaf length and
area23; grain filling26

3H 52 599.15-
602.92

7 TID, TIBF BIP, MET,
BLUP

grain size and weight25

3H 79 530.99-
532.66

23 UID, SID, TID,
UND, SND, TND,
SIL, SW

BIP, MET,
BLUP, Rt

seedling characteristics24; water deficit15

3H 205 34.96-37.47 12 SID, TID, UND,
SND, TND

BIP, MET,
BLUP, Rt

3H 222 12.78-23.92 3 UID, SND Rt

4H 28 599.96-
614.73

16 UID, SID, TID,
UND

BIP, MET,
BLUP, Rt

drought tolerance20

4H 148 14.61-22.49 23 UID, SID, TID,
UND, SND, TND

BIP, MET,
BLUP, Rt

leaf length and area23

4H 158/164 0.41-8.31 7 UID, TID, SW BIP, MET,
BLUP

leaf length and area23

5H 4/22 0.43-13.28 30 UID, SID, TID,
UND, SND, TND,
TIBF

BIP, MET,
BLUP, Rt

grain size and weight25; water deficit15; grain filling26; flag leaf18; drought tolerance20,
Drought Stress15

5H 153 379.45-
428.15

4 TID, TND BIP, MET,
Rt

6H 77 510.42-
517.07

11 TID, UIL, SIL,
MSL

BIP, MET,
BLUP, Rt

lodging resistance17

7H 16/32 620.49-
639.84

14 TID, TND, UIL,
SIL, MSL

BIP, MET,
BLUP, Rt

straw yield10; development1; tiller number4; leaf blade area7; seedling root traits11; leaf
number in salt stress13; water deficit15;drought16,22

7H 107/134/
151

225.25-
382.25

26 TID, SND, UIL,
SIL, TIL, MSL, LI

BIP, MET,
BLUP, Rt

grain size and weight25,grain filling26, flag leaf18

7H 160 166.04-
214.88

10 TID, SND, TND,
UIL, SW

BIP, MET,
BLUP, Rt

drought stress21; grain size and weight25; grain yield and phosphorus efficiency14
Frontier
s in Plant Sc
ience
aChr, Chromosome; bNur, The number of QTLs included; cPrevious QTLs or Hotspot: 1Alqudah et al. (2014), 2Mohammadi et al. (2015), 3Wehner et al. (2015), 4Alqudah et al. (2016),
5Maurer et al. (2016), 6Pasam et al. (2012), 7Alqudah et al. (2018), 8Gawenda et al. (2015), 9Long et al. (2013), 10Al-Abdallat et al. (2017), 11Abdel-Ghani et al. (2019), 12Jia et al., (2019),
13Ward et al. (2019), 14Gong et al. (2016), 15Moualeu-Ngangue et al. (2020), 16Jabbari et al. (2018), 17Kristensen et al. (2016), 18Jabbari et al. (2019), 19Sameri et al. (2009), 20Tarawneh et al.
(2020), 21Zhang et al. (2019), 22Dhanagond et al. (2019), 23Du et al. (2019a), 24Wang et al. (2017), 25Wang et al. (2019), 26Du et al. (2019b). dBLUP : QTL analysis for BLUP was performed in
BIP module.
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Lodging resistance is usually related to stem diameter. Simonneau

et al. (1993) showed that during drought stress stem diameters

contract in response to changes in internal water status. Therefore,

it can be used as a selection criterion for stress tolerance (Sallam

et al., 2015). In our study, the finding is reflected in the consistency

of QTL loci. Then, the study of the genetic basis of stem

development may help us to fight global climate change.

Collectively, because of the importance of plant height and

stem diameter in lodging resistance, stress resistance, grain yield,

and photosynthate transport in barley, a stem with a suitable

height and strength is usually preferred in barley breeding.
Conclusions

In this study, 27 stable and major QTLs, and 22 QTL

clustered regions were identified for 13 stem related traits. We

also methodically compared the genetic correspondence with

other different traits at the same locus. In total, 22 genes were

identified as promising candidates associated with plant

development and adverse stress, which were closely related to

lodging resistance, stress resistance, photosynthate transport and

grain development in barley. The identification of QTL

conferring stem related traits can help us to know the genetic

basis of stem and ameliorate lodging resistance potential of
Frontiers in Plant Science 11
barley, and is useful in future marker-assisted barley

breeding programs.
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TABLE 4 Twenty-three candidate genes from the target interval.

Candidate genes Physical interval (Mb) Involved traits Potential function

HORVU2Hr1G066890 452.88-473.73 SW, UID, SID, TID, TND DLAT (pyruvate dehydrogenase E2 component)

HORVU2Hr1G092760 645.22-651.53 MSL, UND, SND, TND, UID, SID, TID, TIBF YUCCA (indole-3-pyruvate monooxygenase)

HORVU2Hr1G092290 651.53-653.98 MSL, UND, SND, TND, UID, SID, TID, TIBF Vrs1/Int-d

HORVU2Hr1G093020 662.45-671.63 UIL, UND, TND, UID, SID, TID, TIBF bglX (beta-glucosidase)

HORVU2Hr1G094090 662.45-671.63 UIL, UND, TND, UID, SID, TID, TIBF KCS (3-ketoacyl-CoA synthase)

HORVU3Hr1G089450 626.22-633.07 TID, UIL, SIL, TIL, MSL, LI SRP54 (signal recognition particle subunit)

HORVU3Hr1G089980 626.22-633.07 TID, UIL, SIL, TIL, MSL, LI HvGA20ox3

HORVU4Hr1G006310 7.86-16.17 UND, SND, TND, UID, SID, TID, SW DLAT (pyruvate dehydrogenase E2 component)

HORVU4Hr1G006070 7.86-16.17 UND, SND, TND, UID, SID, TID, SW bglB (beta-glucosidase)

HORVU4Hr1G076460 599.96-614.73 UND, UID, SID, TID HvRBOH

HORVU4Hr1G076250 599.96-614.73 UND, UID, SID, TID BR-signaling kinase

HORVU5Hr1G006350 0.43-13.28 UND, SND, TND, UID, SID, TID, TIBF, SW RHM (UDP-glucose 4,6-dehydratase)

HORVU6Hr1G074030 513.37-517.07 UIL, SIL, MSL GS1a

HORVU6Hr1G074220 513.37-517.07 UIL, SIL, MSL RDRP1

HORVU6Hr1G074180 513.37-517.07 UIL, SIL, MSL RDRP2

HORVU7Hr1G036130 81.89-83.77 UND HvVRT-2

HORVU7Hr1G049340 166.75-214.88 SW, UIL, SND, TND DLAT (pyruvate dehydrogenase E2 component)

HORVU7Hr1G061920 288.27-382.25 SIL, TIL, MSL, LI 14-3-3D;

HORVU7Hr1G062120 288.27-382.25 SIL, TIL, MSL, LI RBM25 (RNA-binding protein 25)

HORVU7Hr1G068990 288.27-382.25 SIL, TIL, MSL, LI BRI1

HORVU7Hr1G108580 620.49-632.89 UIL, TND, MSL DLAT (pyruvate dehydrogenase E2 component)

HORVU7Hr1G111190 620.49-632.89 UIL, TND, MSL GBE (1,4-alpha-glucan branching enzyme)
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