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Crop production is the primary goal of agricultural activities, which is always

taken into consideration. However, global agricultural systems are coming

under increasing pressure from the rising food demand of the rapidly growing

world population and changing climate. To address these issues, improving

high-yield and climate-resilient related-traits in crop breeding is an effective

strategy. In recent years, advances in omics techniques, including genomics,

transcriptomics, proteomics, and metabolomics, paved the way for

accelerating plant/crop breeding to cope with the changing climate and

enhance food production. Optimized omics and phenotypic plasticity

platform integration, exploited by evolving machine learning algorithms will

aid in the development of biological interpretations for complex crop traits. The

precise and progressive assembly of desire alleles using precise genome

editing approaches and enhanced breeding strategies would enable future

crops to excel in combating the changing climates. Furthermore, plant

breeding and genetic engineering ensures an exclusive approach to

developing nutrient sufficient and climate-resilient crops, the productivity of

which can sustainably and adequately meet the world’s food, nutrition, and

energy needs. This review provides an overview of how the integration of omics

approaches could be exploited to select crop varieties with desired traits.

KEYWORDS
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1 Introduction

Since the origin of agriculture, food security has been one of the utmost precedence

contemplations. In turn, plant breeding is one of the oldest agricultural activities that

developed along with human civilization and a foremost method to meet the upsurged

food demand. Humans have been cultivating and selecting crops that would serve their
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taste, nutritional values, high yield, and resistance to biotic and

abiotic environments (Dossa et al., 2017). After the discovery of

Mendel’s laws (1866) plant breeding enter a new era (Mendal,

1866), afterward pedigree breeding was developed based on the

hybridization principle. The discovery of DNA structure (1863-

1865) revolutionized plant breeding in the molecular era

(Watson and Crick, 1953); thereupon, new breeding

techniques were introduced such as marker-assisted selection

(MAS) and the genetically modified (GM) approach (Shen et al.,

2022). These discoveries shifted plant breeding from utter

phenotype-selection to a combination of genotype and

phenotype selection. Based on technical innovations plant

breeding has been divided into four prominent categories;

ensuant selection by farmers, statistical and experimental

approach to improve selection, the convergence of genetic and

genomic data, and the currently progressing era of optimal and

precise design breeding (Shen et al., 2022).

Presently, it is a big challenge to feed the exponentially

growing world population in changing climate for agriculture,

particularly due to the diminution of fertile land with the

incessant conversion of fertile land to semi-arid and nutrient

deficient areas alongside salinity and waterlogging. The crop

production is already under risk due to climate change, mainly

staple food crops such as rice, maize, and wheat (Farooq et al.,

2022; Syed et al., 2022). Crop productivity will be significantly

impacted in the next decades by climate factors such as extreme

temperature stresses, nutrient toxicity, or deficiency, changes in

precipitation intensity and frequency, and other climate change-

driven problems including salinity, waterlogging, drought, and

land degradation (Teshome et al., 2020; Mahmood et al., 2021;

Raza et al., 2021a). In addition to the detrimental effects of

abiotic stress on plants, climate change has also exacerbated the

impact of biotic constraints (insect and fungus), which

significantly reduce the crop yield (Vaughan et al., 2018).
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These environmental constraints are the primary cause of the

declining food productivity, which directly impacts economies

worldwide. The basis for the sustained production of new

varieties to address current and upcoming issues is the genetic

diversity of crop plants.

Hence, an expeditious method of introducing elite climate-

smart cultivars with desired traits (stress tolerance, yield and

nutrition) is requisite. Plant breeding has always been pivotal for

developing agriculture to produce sufficient food for a growing

population. Its efficiency is tremendously improved by the

technological innovations through OMICS approaches

(genomics, transcriptomics, proteomics, metabolomics, and

phenomics) and ensued greater food supply to meet the ever-

increasing demand (Muthamilarasan et al., 2019; Yang et al.,

2021). Multi-omics studies of plants have played a crucial role in

interpreting metabolic pathways and their molecular regulators

that control key traits and the growth processes of multiple plant

species (Razzaq et al., 2019). Recent advances in next-generation

sequencing (NGS) technologies have managed high throughput

and swift data generation for OMICS experiments (Großkinsky

et al., 2017; Schmidt et al., 2020), which has improved the

accuracy, sensitivity, and detection throughput (Qi et al., 2019).

In addition, the integration of multi-omics data could

interpret gene functions and networks better, under different

biotic and abiotic stresses (Figure 1) (Yang et al., 2021). Using

comprehensive multi-omics techniques, researchers have

identified essential key factors in senescence, stress response,

and harvest index of many economically important crops such

as rice, wheat, soybeans, rapeseed, and maize (McLoughlin et al.,

2018; Peng et al., 2020; Uchida et al., 2020; Ma et al., 2021a; Raza

et al., 2021b). In the present review, we represent how the multi-

omics revolution has upgraded plant breeding efficiency to

enhance nutritional values, crop yield, and resistance against

biotic and abiotic stresses of wild species for sustainable food
FIGURE 1

The prospects, limitations, and outlook for multi-omics based agricultural development in the future. Different multi-omics data layers, their
interactions, the kinds of omics features found in each layer, and the methods used to evaluate omics data in various layers.
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security. In the future, the integration of multi-omics strategies

will play an immense role in improving genetic development and

crop breeding.
2 Multi-omics techniques accelerate
the genetic dissection of
complex traits

2.1 Genomics and pan-genomics

The relationship of genotype with phenotype is a

prerequisite for accurate breeding design. Therefore, it is

essential to genetically dissect the agronomic traits and

identify the corresponding phenotypic variations. Numerous

revolutions in DNA sequencing technology over the last 40

years have significantly improved sequencing throughput and

quality continued to reduce costs, and significantly facilitated

genome advancement and functional research (Shendure

et al., 2017).

NGS is a deep sequencing (DP) or massively parallel

sequencing (MPS) that permit plant genomes decoding. The

first plant genome of Arabidopsis was constructed 22 years ago

(Kaul et al., 2000; Theologis et al., 2000). Less than 300 whole

genome assemblies at the chromosomal level (representing

about 900 species) have been sequenced so far out of the

estimated ~0.5 million species in the green plant clade (Kress

et al., 2022), that include rice (Goff et al., 2002), maize (Schnable

et al., 2009), tomato (The Tomato Genome Consortium, 2012),

wheat (Ling et al., 2013) and rapeseed (Chalhoub et al., 2014).

Benefitting from available high-quality reference genomes, a

fairly large collection of genetic resources or populations of

different crops are genotyped at the whole genome level. For

example, it is estimated that whole-genome resequencing has so

far been done for more than 6,000 soybeans accessions (Zhang

et al., 2022b) and at least 10,000 rice accessions (Wing et al.,

2018), which provide abundant genetic variation resources for

genomic breeding of crops.

So far, advances in high-throughput sequencing technology

have made the reference genome available in more than 800

plants (Shen et al., 2022), and most of which are de novo

assembled by third-generation sequencing (TGS). The pan-

genome was proposed first in 2005 and rapidly developed in

recent twenty years due to the advent of Pacific Biosciences

(PacBio) and Oxford Nanopore Sequencing (ONT) platforms.

Compared to short insertions/deletions (indels) and SNPs, the

structural difference (such as presence/absence variations

(PAVs) and structural variations (SVs)) identified by pan-

genome analysis play a vital role in the dissection of complex

traits. The structural differences that have been determined in
Frontiers in Plant Science 03
the pan-genome era requires a reassessment of the bases of

phenotypes. The SVs have already been associated with

environmental changes (Sutton et al., 2007; Cook et al., 2012)

flowering time (Nitcher et al., 2013; Würschum et al., 2015),

stress tolerance (Gabur et al., 2019), and plant domestication

traits such as plant architecture (Tan et al., 2008; Zhou et al.,

2009) and dehiscence (Lin et al., 2012).

It has been shown that SVs are associated with a wide range

of biotic and abiotic stress tolerance in a various crop species. In

maize, resistance to the sugarcane mosaic virus was induced at

the Scmv1 locus by a complex SV comprising several

transposable elements (TEs) that changed the expression level

of atypical h-type thioredoxin (Liu et al., 2017). In potato,

resistance to late blight in was acquired by two genes R1 and

ELR that were introgressed from wild potato although missing in

cultivated potato (Du et al., 2015). Furthermore, the graph-based

pan-genome will revitalize the re-sequenced data in intercepting

novel genetic variations, especially for large SVs (Shen et al.,

2022). In PAVs of varied sizes and different lines of sorghum, the

common deletion of a sulfotransferase gene conferred tolerance

to the parasitic weed Striga by minimizing its germination

stimulant effect (Gobena et al., 2017). Moreover, in abiotic

stress resistance, variation in HvCBF4 and HvCBF2 copy

number at the FR-H2 locus was linked to frost tolerance in

barley (Francia et al., 2016). Salt sensitivity in soybean was found

to be caused by an insertion of a Ty1/copia retrotransposon in

the GmGHX1 cation H+ exchanger gene (Qi et al., 2014). The

Pup1 locus in rice has been associated with the presence of a

receptor-like cytoplasmic kinase gene that confers tolerance to

phosphorus deficiency (Gamuyao et al., 2012). These studies

suggested that SVs, despite their narrow focus, are likely to

significantly influence crop improvement in changing climate.

Recently, the pan-genomes of cucumber, soybean, and rice

were analyzed using graph-based approaches, revealing

numerous novel large SVs and considerably easing the

identification of relevant genetic variations for certain complex

traits (Table 1) (Liu et al., 2020; Qin et al., 2021; Li et al., 2022a).

In-depth, the rice pangenome research has revealed that SVs and

gene copy number variations (gCNVs) supported environmental

response and artificial selection during the process of evolution

and domestication (Qin et al., 2021). A prior study on 25 inbred

lines of maize identified similarities between PAVs and heterotic

group membership (Darracq et al., 2018), showing that SVs can

be useful for characterizing heterotic groups and selecting

parental lines for the development of hybrid crops. In general,

the comprehensive genome composition heterogeneity outlined

by genomes and pan-genomes facilitates the establishment of

novel methodologies for plant scientists to investigate functional

alleles for phenotypic variations and for breeders to increase

genetic resources to enhance crop germ plasm in changing

climates (Della Coletta et al., 2021; James et al., 2021).
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2.2 Epigenomics

During the last few decades, epigenomics has been

developed into a frontier omics technique that can be used to

explain the changes in the regulation of gene activities and

expression under the epigenetic modifications of DNA

sequences (Saeed et al., 2022). These epigenetic changes, such

as DNA methylation, histone modifications, and chromatin

accessibility, may assist us in determining how crops adapt to

environmental changes without altering their DNA sequences.

Several techniques that can be used to investigate DNA

methylation in plants, including whole genome bisulfite

sequencing (WGBS), methyl-sensit ive amplification

p o l ymo r p h i sm (MSAP ) , a n d me t h y l a t e d DNA

immunoprecipitation (MEDIP) (Sun et al., 2022). The MSAP

and WGBS techniques are frequently used to investigate the

methylation status involved in regulating gene expression in

plants under environmental stresses. Epigenetic research has

revealed that drought-tolerant plants exhibited a more stable

methylome, with differentially methylated regions (DMRs)

linking genes primarily involved in the programmed cell death

and stress response in mulberry (Ackah et al., 2022), mungbean

(Zhao et al., 2022) and rice (Wang et al., 2016). Likewise, the

differentially methylated epiloci (DME) identified 12 stress-

related genes in rice genotypes under high temperature

treatment (Li et al., 2022b). The methylome content of alfalfa

plants increased during salinity stress, and 5-AzaC treatment

(DNA methylation inhibitor) reduced the salt tolerance (Al-

Lawati et al., 2016). Similarly, hypermethylation is one defense

mechanism for plants that protects them from potential injury

from heavy metal compounds and enables them to survive in
Frontiers in Plant Science 04
harsh environments (Raza et al., 2022a; Sun et al., 2022).

Numerous DNA-methylation studies have been conducted

associating with seed development, plant organ differentiation,

fruit ripening, and response to environmental stresses AND the

functional role in gene regulation (Zhang et al., 2018). These

studies provided evidence that DNA methylation may have

regulatory roles in determining plant stress tolerance under a

range of stress conditions.

In relation to plant growth and stress response mechanisms,

histone changes and chromatin remodeling are important

epigenetic processes that control gene expression by altering

the chromatin status and activating transcription regulators.

Most of techniques for detecting epigenome-level histone

modifications rely on immunoprecipitation such as chromatin

immunoprecipitation sequencing (ChIP-seq) and its modified

form ChIP-exo, which has more specific binding sites. Other

histone profiling techniques that are available and can be used

effectively include ChIPmentation (ChIP-Tn5 transposase

tagmentation), CUT&Tag (cleavage-under targets &

tagmentation), and DamID (E. coli deoxyadenosinemethylase

+ protein of interest) (Mehrmohamadi et al., 2021). However,

ChIP-seq is a commonly used technique in plants to identify the

interaction between DNA-methylation sites and histone

proteins (Chen et al., 2018). The dynamic variation in

H3K4me3 and H3K27me3 in castor beans under salt stress

was closely correlated with the transcript abundance of RSM1

(RADIALIS-LIKE SANT/MYB 1), which has previously been

identified as a positive regulator of salt resistance (Han et al.,

2020). Following the post-harvest desiccation phase, the ABA-

biosynthesis genes are activated in tea plants, resulting in ABA

accumulation due to increased histone acetylation and decreased
TABLE 1 List of recently available Pan-genome/integrated databases with available tools.

Species Accessions Available tools/information Database
name

URL Reference

Banana 15 RNA-Seq display, Synteny viewer, JBrowse, GO enrichment, Panache,
MusaCyc, Gigwa, Locus converter, Primer Blaster & designer

BGH https://banana-genome-hub.
southgreen.fr/content/panache

Droc et al.,
2013

Citrus 23 GWAS tool, JBrowse, CRISPR design, KEGG/GO enrichment, Pangenome
Search, Gene ID Convert

CPBD http://citrus.hzau.edu.cn/index.
php

Liu et al.,
2022c

Maize 26 JBrowse, GBrowse, NAM genomes, Newly Characterized, Pangenome Search,
Genes, Metabolic Pathways, Phenotype/Mutant Data, qTeller

MaizeGDB www.MaizeGDB.org Hufford
et al., 2021

Rapeseed 1689 GBrowse, KEGG/GO enrichment, Pangenome Search, Metabolic Pathways,
Phylogenetic analysis, Blast sequence, Statistics of Homologous Regions

BnPIR http://cbi.hzau.edu.cn/bnapus Song et al.,
2021

Rice 3010 GBrowse, Pangenome Search, Phylogenetic analysis, Blast sequence, PAVs,
and expression profiles

RPAN http://cgm.sjtu.edu.cn/
3kricedb/

Sun et al.,
2017

Soybean 204 GBrowse, Genetic Maps, RNA-Seq Atlas, Pangenome Search, Metabolic
Pathways, Pedigrees Database, Genotype Comparison Tool (GCViT)

PanSoy https://soybase.org/projects/
SoyBase.C2021.01.php

Torkamaneh
et al., 2021

Tomato 838 GBrowse, Browse QTLs, Pangenome Search, Alignment Analyzer, Motifs
Finder, Biochemical Pathways, Ontology Browser, Expression database

SolOmics https://solgenomics.net/
projects/tgg

Zhou et al.,
2022b

Wheat 16 Pangenome Search Wheat
Panache

http://www.
appliedbioinformatics.com.au/

wheat_panache

Bayer et al.,
2022

19
species

46 Pangenome of 19 species available, Phylogenetic analysis, Gene family
analysis

GreenPhylDB https://www.greenphyl.org Valentin
et al., 2021
fro
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H3K9me2 (Gu et al., 2021). According to a recent study on rice,

the dynamic nature of histone H3K27me3 and H3K27ac

modifications regulates gene expression that are responsive to

cold (Dasgupta et al., 2022). In addition to triggering broad

changes in the histone methylome, stress signals specifically

affect the methylation of genes responsive to stress (Xiao et al.,

2022). These results demonstrate a correlation between stress-

induced h i s tone modifica t ions and genome-wide

transcription remodeling.

Chromatin accessibility profiling has been carried out in

numerous plant species using DNase-seq (Dnase I

hypersensitive sites sequencing), Mnase-seq (micrococcal-

nuclease digestion sequencing), FAIRE-seq (formaldehyde-

assisted isolation of regulatory element sequencing) and

ATAC-seq (assay for transposase-accessible chromatin-

sequencing) has found a wealth of novel information about

the regulatory dynamics in plant genomes. Studies on chromatin

accessibility have made it possible to build transcriptional

networks that respond to environmental changes in rice

(Wilkins et al., 2016). To illustrate the effect of abiotic stresses

on A. thaliana two different techniques, FAIRE-seq and Dnase-

seq were used to capture the open chromatin states (Raxwal

et al., 2020). Moreover, chromatin accessibility analysis in maize

cold tolerant lines during stress has revealed the re-allocation of

resources from growth to defense (Jonczyk et al., 2020). To

investigate the relationship between chromatin characteristics

and gene expression in grapevine, chromatin accessibility was

determined using ATAC-seq, Hi-C, and ChIP-seq (Schwope

et al., 2021). Epigenetic changes are also involved in organ

development and cell differentiation across the species (Maher

et al., 2018). These studies contribute to our understanding of

how plants respond to environmental cues by changing their

gene expression, and how chromatin-based regulation of gene

expression is probably essential for these responses.
2.3 Transcriptomics

Transcriptomics is the study of “transcriptome” which refers

to the entire collection of RNA transcripts generated by an

organism’s genome in a cell or tissue (Zhou et al., 2022a).

Transcriptomics encompasses both mRNAs and ncRNAs in

the cells, and it has recently been used extensively in crop

breeding to investigate gene expression under different

conditions (Schiessl et al., 2020). Traditional profiling

approaches, which include differential display-PCR (DD-PCR),

cDNAs-AFLP, and SSH were initially used to assess

transcriptome dynamics, but these methods had poor

resolution (Nataraja et al., 2017). The emergence of advanced

throughput sequencing has allowed plant scientists to conduct

extensive transcriptomics research (Mir et al., 2019). Recently,

RNA-seq employing NGS methods has made it possible to
Frontiers in Plant Science 05
characterize the transcriptome more precisely than

with microarray.

The differential expression of mRNAs in rapeseed during

development stages was determined to find the candidate genes

controlling seed size (Niu et al., 2020). Signal peptides have been

linked to the regulation of many plants’ biological processes,

including immune response and development, according to the

rice transcriptome study (Wang et al., 2020a). A comparative

transcriptomic analysis of two extreme Chinese cabbage

genotypes revealed that ion homeostasis is a significant

biological pathway associated with plant’s instant adaptation

to salt tolerance (Li et al., 2021a). It was also discovered that the

transcription factors MYB, bZIP, and WRKY serve as regulators

in the salt-responsive signaling pathway of maize roots (Zhang

et al., 2021a). Similarly, genome-wide transcriptome profiling

showed that the apple’s WRKY gene family responded to various

biotic stresses (Zhang et al., 2021b). Transcriptome studies also

include various kinds of non-coding RNAs. These non-coding

RNAs come in many forms, including micro RNAs (miRNAs),

circular RNAs (circRNAs), long non-coding RNAs (lncRNAs),

ribosomal RNAs (rRNAs), and short interfering RNAs (siRNA),

and they thought to be a promising target for crop improvement

(Waititu et al., 2020; Zhou et al., 2022a). These non-coding

RNAs perform various functions, such as miRNAs involved in

slicing and post-transcriptional modification of target mRNAs.

While lncRNAs serve as important regulators in several vital

biological processes and circRNAs functioned as miRNA

sponges, transcriptional and splicing regulators, and

moderators of primary gene expression in plants (Lai et al.,

2018; Waititu et al., 2020). Whole-transcriptome sequencing in

plants was used to create the global landscape of these mRNAs in

plants, such as maize (Liu et al., 2022a) Chinese cabbage (Shi

et al., 2022) citrus (Fu et al., 2019).

Since it is generally recognized that different cell types play

different biological functions in plant growth and development,

it has become critically important in recent years to examine the

transcriptome responses of plants at cellular level. In molecular

biology, single-cell RNA-sequencing (scRNA-seq) is a high-

resolution method is growing in popularity for studying plant

functional genomes and transcriptional activity at the single-cell

level. This method enabled researchers to examine heterogeneity

in plants within different cell types (Yaschenko et al., 2022). The

polyploidization events in plants were poorly understood by

traditional transcriptome studies. However, the advent of

scRNA-seq enabled to study of female gametes cells

(Arabidopsis) without cross-contamination, advancing plant

hybridization, polyploid genetics, and reproductive biology

(Song et al., 2020). While scRNA-seq technologies have been

extensively used in animal science, their application in plant

sciences has just recently been understood. Hence, there have

been fewer studies on the high-throughput single-cell

transcriptome in plants than in animals until now. Thereafter,

this knowledge could be put to better use in breeding initiatives
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with innovative and targeted goals to assist, for instance, crop

production and quality, plant climate change adaptations, and

plant tolerance to biotic and abiotic stressors.
2.4 Proteomics

Proteomics is a technique for analyzing all the proteins

expressed within an organism, and it splits into four major

types: sequence, structure, function, and expression proteomics

(Aizat and Hassan, 2018). Different approaches are used to

analyze these types, for intence, sequence proteomics analyzed

by HPLC (high-performance liquid chromatography) (Hao

et al., 2018) and structural proteomics by nuclear magnetic

resonance (NMR), electron microscopy, crystallization, and X-

ray diffraction of protein crystals (Woolfson, 2018;

Opdensteinen et al., 2022). However, functional proteomics is

examined through various methods as yeast one (Y1H) or two

hybrids (Y2H) and protein micro-array profiling (Yang et al.,

2020; Mao et al., 2020).

The development of protein extraction and separation

techniques at the sample and genome-wide level has led to a

rapid breakthrough in plant proteome research. Traditional

proteomics methods rely on chromatography-based

approaches. However, enzyme-linked immunosorbent assays

(ELISA) could be used to study specific proteins. Subsequently,

some advanced gel-based techniques were developed for protein

quantification such as SDS-PAGE, 2-DE (two-dimensional gel-

electrophoresis), and 2D-DIGE (two-dimensional differential

gel-electrophoresis) (Yang et al., 2020).

In addition, protein microarrays and chips have been

developed to analyze protein expression in small amounts of

protein samples efficiently. Likewise, more hi-tech methods for

quantitative proteomic analysis have been developed, including

isotope-coded affinity tag (ICAT) labeling, stable isotope labeling

with amino acids in cell culture (SILAC), and isobaric tag for

relative and absolute quantification (iTRAQ) (Yang et al., 2020).

The three-dimensional structure of proteins can be determined

using a high-throughput technique called NMR spectroscopy,

which may help to explain how proteins work biologically

(Xiang et al., 2018). Despite the recent development of single-

cell sequencing technologies to study the mechanism of cellular

activity, single-cell proteome quantification still lags single-cell

transcriptome achievements (Kashima et al., 2020; Vistain and

Tay, 2021). However, Mass spectrometry (MS) has been evolving

recently to measure the single-cell protein level (Vistain and

Tay, 2021).

All the proteomic technological achievements could help

scientists study the environmental effects of protein

modifications in terms of crop resilience (Zhang et al., 2022a).

Numerous studies have used proteomic analysis of the genetic

complements of proteins to measure proteins and identify

changes in protein expression as they relate to crop response
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to abiotic stimuli (Ueda and Seki, 2020; Zhang et al., 2022a). So,

it might be possible to identify protein-regulatory mechanisms

and understand how a particular protein contributes to stress

tolerance by examining the proteome differences in crop

responses to abiotic stimuli (Yu et al., 2018). This can be

applied to crop breeding to increase agricultural outputs in the

future even in challenging environmental conditions (Schulze

et al., 2021).
2.5 Metabolomics

Metabolomics is one of the most current omics technologies

for probing metabolites and elucidating crop resilience.

According to the plant study trials, the inclusion of untargeted

metabolome detection sped up the development of integrated

metabolomics (Kumar et al., 2021). Primary metabolites are

required for the synthesis of lipids, sugars, and amino acids in

plants however, secondary metabolites comprised of flavonoids,

atropine, carotenoids, phytic acid, as well as ROS, coenzymes,

and antioxidants (Razzaq et al., 2019). Since metabolites are

typically the main product in complex metabolic cascades, they

can link the phenotype with the genome, transcriptome, and

proteome (Misra et al., 2018).

The plant kingdom contains at least 391000 unique

metabolomes (Nakabayashi and Saito, 2020); therefore, the

development of analytical techniques is required to determine

as many specialized metabolomes as possible. Analyses that are

either targeted or untargeted can be used to assess the relative

and absolute levels of metabolites. The analytical methods used

for metabolomics primarily comprised liquid chromatography-

mass spectrometry (LC-MS), gas chromatography-mass

spectrometry (GS-MS), capillary electrophoresis-mass

spectrometry (CE-MS), HPLC (high-performance liquid

chromatography), NMR, and direct flow injection (DFI)

(Razzaq et al., 2019; Raza, 2022).

NGS technologies have emerged as effective tools for

examining gene regulation and the molecular dynamics of

plant cellular responses to biotic and abiotic stresses

(Abdelrahman et al., 2018). However, it is now possible to

infer an early metabolic network from an organism’s genomic

sequence by integrating metabolomics and NGS (Pan et al.,

2020). The integrated information obtained from the NGS and

metabolites profiling could help us to improve the crops in

changing climatic conditions (Scossa et al., 2021). In the

presence of numerous biotic stresses, the crucial function of

metabolites in cereal crops, such as maize, barley, and rice has

been recognized (Yang et al., 2021). The integrated

transcriptome and metabolomic analysis of sesame

emphasized the significance of amino acid metabolism,

especially the saccharopine pathway, ABA metabolism, and

signaling pathway for drought resistance (You et al., 2019).

The identification of several candidate genes and metabolites
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associated with isoflavone synthesis and the tricarboxylic acid

cycle further supports the significance of these metabolic

pathways in the response of soybean to drought (Wang et al.,

2022). Similarly, the role of metabolites (phenolics and

phenylpropanoids) has been identified in maize under biotic

and abiotic stresses (Block et al., 2020). In tomato, Trichoderma-

induced biotic stress resulted in various metabolome alterations,

which revealed that treated plants accumulated more

isoprenoids (Coppola et al., 2019). In addition to stress

resistance, metabolomics research in combination with other

omics platforms is important for crop nutritional values that can

provide adequate insights about the quality-related genes to

develop future crops (Pott et al., 2021). These examples

demonstrate how omics research can define complex

molecular relationships. Therefore, metabolome studies

provide an integrated depiction of numerous activities

extending from the genome to metabolome as well as

phenotypic traits when combined with other omics data

including genomics, transcriptomics, and proteomics.
3 Multi-omics data integration for
crop improvement

Crop improvement, including high yield and tolerance to

biotic and abiotic stresses, is a long-term and time-consuming

process in current plant breeding. The development of omics

techniques and the rapid accumulation of omics data provide

possible solution and foundational information. Approaches to

integrating multi-omics information are being leveraged in

plants for a better understanding of molecular mechanisms

underlying complex traits and acceleration of the crop

improvement (Figure 3). Here, we discuss in detail how to

apply multi-omics strategies or tools to dissect the genetic

basis/architecture of complex traits and predict key agronomic

phenotypes in crops.
3.1 Genetic dissection of complex traits
using multi-omics data

To dissect the genetic architecture of complex traits,

candidate gene mining is an essential step. In the early days,

gene mapping is usually difficult due to the lack of a high-quality

crop genome. Luckily, the number of crop genome and pan-

genome have increased dramatically in the past 20 years,

bridging the genotype–phenotype gap easy. The most widely

used strategies to identify genes responsible for complex traits

are linkage mapping studies in family-based populations,

association mapping in natural plant population, joint linkage-

association mapping using both bi-parental and natural

populations, and genomic selection between diversification
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population produced by plant domestication. In linkage

analysis, genetic maps are usually constructed based on

segregating mapping populations, such as doubled haploid

(DH) lines, F2 populations, recombinant inbred lines (RILs),

and backcross inbred lines, is to be used for quantitative trait

locus (QTL) mapping. As an alternative to conventional linkage

analysis, bulk segregation analysis (BSA) (Gao et al., 2022)

coupled with next-generation sequencing (NGS) can be used

in the genetic mapping of simple qualitative traits controlled by

major genes when two sample pooling with extreme

phenotypes exists.

For association analysis, we usually exploit genetic variation

of the whole-genomic level in natural populations, to use linkage

disequilibrium (LD) to map genes that cause a specific

phenotype. In addition, a gene-based association approach,

transcriptome-wide association studies (TWAS) can be used to

investigate gene-trait associations using genetically regulated

gene expression (Wainberg et al., 2019). The genes selected

during domestication and artificial selection play an important

role in modern crop breeding. Genome-wide selective sweep

analysis is usually used to identify the major genes that enhance

environmental adaptation (Lu et al., 2019; Li et al., 2021b),

involved in morphotype changes (Kang et al., 2021), and

selection for key agronomic traits (Hu et al., 2022).

However, gene identified as part of functional genomic

studies, is just the beginning of the genetic dissection of

complex traits. Its major disadvantages are: (1) The number of

genes identified by QTL mapping is far beyond experimental

expected. (2) It’s difficult to directly infer the causal relation

between genes and final phenotypic traits due to the lack of

evidence of middle omics. To address it, the integrating

genomics with other omics data sets will reduce further

candidate genes and benefit system analysis of gene function.

Molecular phenotype is defined as a collection of molecular

characteristics (i.e., mRNA transcripts, proteins, and metabolic

compounds) in central dogma (Pramanik et al., 2020), which can

be used for deep phenotyping. These phenotypic data permit a

better understanding of end-to-end mechanistic from genes to

final traits in crops (Figure 2). Recent advances in omics

techniques allow for producing many molecular phenotypes at

a larger-scale population level, making the association

implementation of multi-omics molecular phenotypes

easy (Table 2).
3.2 GWAS + epigenome-wide association
studies (epi-GWAS or EWAS)

Epigenome-wide association studies (EWAS) is a powerful

method for identifying traits-associated epigenetic variation,

specifically variation in DNA methylation, which has been

used in human studies (Rakyan et al., 2011; Hawe et al., 2022).

The integration of EWAS (i.e., methylation quantitative trait loci
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FIGURE 2

Strategies of multi-omics data integration between different layers of omics data to dissect the complex agronomic traits and phenotype
prediction by using machine learning methods.
TABLE 2 Recent GWAS studies combined with RNA, protein, and metabolites to find the target traits in breeding programs.

Multi-omics approach Crops No. of accessions used Target trait References

EWAS Maize 263 Development stages Xu et al., 2019

EWAS Maize 51 Adoptive evolution Xu et al., 2020

EWAS Palm 31 Reproductive defect Ong-Abdullah et al., 2015

EWAS Soybean 45 Domestication history Shen et al., 2018

EWAS Wheat 104 Adaptation/stress Gardiner et al., 2018

TWAS Cotton 251 Fiber Li et al., 2020

TWAS Cotton 216 High temperature Ma et al., 2021

TWAS Maize 323 Leaf architecture Lin et al., 2022

TWAS Maize ~1500 Tocochromanols Wu et al., 2022

TWAS Maize 299 Kernel traits Kremling et al., 2019

TWAS Millet 398 Metabolic traits Li et al., 2022c

TWAS Rapeseed 505 Seed oil content Tang et al., 2021

TWAS Rice 305 Glycemic index and texture Anacleto et al., 2019

TWAS Sorghum 869 Intrinsic water use efficiency Ferguson et al., 2021

TWAS Tomato 610 Fruit ripening Zhu et al., 2018

TWAS Tomato 580 Fruit and pathogen Szymañski et al., 2020

PWAS Maize Natural population
(ZHENG58 × SK RIL)

Kernel traits Zhou et al., 2021a

MWAS Millet 360 Grain quality Li et al., 2022c

MWAS Mellon 44 Taste and flavor Moing et al., 2020

MWAS Rice 533 Agronomic traits Wei et al., 2017

MWAS Soybean 398 Seed oil content Han et al., 2022

MWAS Tomato 610 Fruit quality/ripening Zhu et al., 2018

MWAS Tomato 76 Leaf vs other tissues Nunes-Nesi et al., 2019

MWAS Tomato 76 Seed metabolites Alseekh et al., 2020

MWAS Tomato 580 Fruit and pathogen Szymañski et al., 2020

MWAS Tomato 107 Steroidal alkaloid Dzakovich et al., 2022

MWAS Wheat 182 Kernel traits Chen et al., 2020
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(meQTL)) with GWAS can help us to illuminate functional

mechanisms underlying genetic variant-trait associations (Huan

et al., 2019). However, there are still few EWAS applications

based on the large-scale population level although the studies on

GWAS have been widely used in plants, which present novel

opportunities but also create new challenges for future

crop improvement.
3.3 GWAS + transcriptome-wide
association studies

GWAS and transcriptome-wide association studies (TWAS)

are renowned techniques for locating genomic regions or genes

for which DNA sequence or gene expression variations are

associated with quantitative variability in a trait of interest

(Ferguson et al., 2021). TWAS is a useful tool to complement

GWAS since it explores the relationships between variations in

transcript abundance and phenotypic variance. The most recent

use of Fisher’s combination test to integrate GWAS and TWAS

offered proof-of-concept by showing how it improved the

efficiency with which identified associated genes could be “re-

discovered” for well-known maize kernel traits (Kremling

et al., 2019).

GWAS-implicated genes were further refined using

expression QTL (eQTL) analysis through TWAS as a fine-

mapping technique to find candidate genes. To identify the

key genes affecting both the glycemic index and cooking

properties of rice, a similar approach was used to determine

the amylose content and ultimate stickiness (Anacleto et al.,

2019). Cotton eQTL mapping was employed in a prior study to
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connect the regulatory variations to gene expression in fiber

formation (Li et al., 2020). TWAS creates a direct relationship

between gene expression and phenotype utilizing eQTL data, as

contrasted to the functional study of leading SNPs or homology-

based identification of relevant genes for GWAS locations (Zhu

et al., 2018). These studies provided evidence that examining the

intermediary transcriptome between variome and phenome can

help us better understand the regulatory functions of genetic

variations driving phenotypic change.
3.4 GWAS + proteome-wide
association studies

Protein QTL (pQTL) analysis, which has produced

proteome networks for clinical applications, has been used

extensively in epidemiological research (Suhre et al., 2017), but

it is still rarely used in plant-based GWAS studies. Moreover, it is

important to comprehend the functional contexts of gene

expression variation through modern crop breeding (Jiang

et al., 2019). Recently, pQTL mapping of maize inbred lines

was studied using an integrated multi-omics approach to

identify the candidate genes associated with kernel size (Zhou

et al., 2021a). These findings revealed that genes involved in

signal transduction, amino acid metabolism, and an unidentified

mechanism may control maize kernel size. Protein abundance

variation in crops gains a new level of functional context owing

to an integrated multi-omics approach combining pQTL

analysis. The use of protein-based GWAS studies in crop

breeding is still limited and needs to be utilized to discover the

hidden candidates to improve the breeding programs.
FIGURE 3

Schematic representation of the importance of integrated omics techniques in accelerating the development of future crops to feed the
exponentially growing population. The development of climate-resilient and nutrient-rich crops is facilitated by integrated multi-omics
approaches paired with genetics approaches, improved plant breeding, gene editing, and computational modeling techniques in a systems
biology approach.
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3.5 GWAS + metabolome-wide
association studies

Metabolite-based genome-wide association studies

(mGWASs) or metabolite QTL (mQTL) made it possible to

concurrently screen a large number of accessions for possible

associations between their genomes and various metabolites and

can provide insights on the genetic basis of complex traits and

metabolic diversity (Peng et al., 2017; Fang and Luo, 2019; Li

et al., 2022c). To discover new associations between genes and

metabolites, mGWASs has been effectively used on several

model plants and agronomic crops (Zhu et al., 2018; Zeng

et al., 2020; Li et al., 2022c). The mGWAS analysis discovered

notable variations in the core genetic architecture and the

natural variability of the metabolites between different

subgroups of foxtail millet (Li et al., 2022c). The degree of

natural variability in metabolism and its genetic and

biochemical regulation in tomatoes have been extensively

elucidated by the integration of metabolomics, linkage

mapping investigations, and mGWAS (Zhu et al., 2018). The

metabolic breeding history of the tomato was recently

discovered by an integrated analysis of eQTL and mQTL (Zhu

et al., 2018). Understanding the mechanisms driving the

evolution of metabolism is made possible by the mGWAS

investigations. Despite the great progress that has been made

in the mGWAS research, comprehensive understandings of

metabolic control are still rare.

In addition, integration of eQTL, pQTL, and/or mQTL can

be used to predict the quality trait to facilitate breeding as in the

phenotypic prediction, multi-omics data modeling can explain

that how a final phenotype is controlled by the differential

expression of mRNA, protein, and metabolite in the central

dogma. Similarly, Xu et al. (2016) found that the predictability of

hybrid rice yield can be further increased by using these omics

data. An earlier investigation utilizing potato tubers has

demonstrated how a particular trait is related to gene

expression, protein profiles, and metabolite data using the

random forest regression method (Acharjee et al., 2016). These

omics platforms can help us to develop strategies for integrating

these omics data sets to forecast phenotypic features. This results

in networks with relatively small sets of interlinked omics

variables that are better able to predict the desired trait.
3.6 Exploiting multi-omics data for
phenotypes prediction

Integrating data from multiple sources to create a model that

can be used to predict complex traits and improve predictive

accuracy is imperative. To date, an increasing number of

statistical models including linear and nonlinear models, have

been developed and widely used in phenotypes prediction.
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Genomic Best Linear Unbiased Prediction (GBLUP) is a linear

model, which has been used extensively for genotype to

phenotype prediction. To identify optimal prediction models,

Wang et al. (2019) and Xu et al. (2016) have demonstrated that

GBLUP generally yielded better results than other prediction

methods using multi-omics data for selecting hybrid rice.

Recently, Hu et al. (2021a) built a two-kernel linear model for

multi-omics prediction of oat agronomic and seed nutritional

traits in multi-environment trials and distantly related

populations, show greater prediction accuracy than GBLUP.

Similarly, as an extension of linear models, Linear mixed

models (LMMs) have great potential multi-omics data

prediction analysis (Weissbrod et al., 2016). However, a large

amount of noise presented in high-dimensional omics data will

limit predictive power of LMM. To filter out the noise, several

novel methods were produced by extending the standard LMM

and combining them with other prediction models (e.g.,

Bayesian sparse linear mixed model (BSLMM) (Zhou et al.,

2013) and penalized linear mixed model with generalized

method of moments estimator (MpLMMGMM) model (Wang

and Wen, 2022)) have been proposed for modeling multi-

omics data.

In nonlinear methods, machine learning (ML) is a new

programming paradigm that can learn statistical rules from

large-scale complex data, providing a scalable and

interpretable framework for multi-omics integration and is

usually applied to phenotypes prediction of crops in practice.

The basic ML model can be divided into two major types

supervised learning and unsupervised learning (Wang et al.,

2020b). In supervised learning, classification (e.g., quality traits)

and regression (e.g., quantitative traits) are the two major tasks

to be predicted. Through the integration of multi-omics data

using random forest, Acharjee et al. (2016) perform prediction of

four quality traits in potato, including tuber flesh color,

differential scanning calorimetry (DSC) onset, tuber shape and

enzymatic discoloration. Deep learning (DL) is a specific subfield

of machine learning which extensively used in the life science

and health field for high-dimensional multi-source data

integration and phenotype prediction (Chaudhary et al., 2018).

Although DL has been rarely reported in multi-omics

integration studies of the crop, it still has great potential and

advantages for crop breeding in the future. Unsupervised

learning is mostly used to seek the representations in data,

such as clustering, association, and dimensionality reduction

(DR). Among these, DR plays an important role in high

dimensional biology due to reducing the number of random

variables to consider. For instance, the algorithms of DR applied

in maize contribute to the development of multi-omics data

association studies (Liu et al., 2022b).

ML has revolutionized plant research to analyze and

interpret large phenotypic data sets, as it is now possible to

measure and correlate genotypic to phenotypic data at different

levels. In addition, ML also made it possible to access large
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amounts of high-throughput data and solve problems in

pertinent domains by using freely available software, and

algorithms such as DL in prediction of protein structures

(Senior et al., 2020). However, there are still many challenges

such as large data sets, different species, genotypes, phenotypes,

and variable environments, and the heterogeneous and

fragmented nature of the data (van Dijk et al., 2021). Contrary

to ML modules, statistical approaches were used to predict

genotype to phenotype in traditional approaches. These

approaches have been very effective since they produce good

estimation values (p-value), easy to interpret and not

complicated to use as compared with ML modules. However,

similar issues are also addressed in advanced ML research, and

solutions are being discovered in the plant research field (Azodi

et al., 2020) to expand the multi-omics research in

variable environments.
4 Challenges and future perspective

4.1 Environmental challenges

The pressure on agricultural systems worldwide is rising

owing to the world’s exponentially increasing population, which

is expected to hit 10 billion in the next 30 years (Scossa et al.,

2021). The rising global temperature, which is expected to

increase by 1.1 to 5.4°C by the end of this century, is also a

challenge for agriculture (Tollefson, 2020). These frightening

projections indicate that crops would experience heat stress and

a rise in the frequency of droughts during their growing seasons

(Rustgi et al., 2021; Raza et al., 2022b). Furthermore, climatic

changes will probably increase the intensity of both single and

combination abiotic stresses, including drought (Shahzad et al.,

2021), cold, heat, salinity, and submergence (Anwar et al., 2021).

Abiotic stresses are expected to worsen with the predicted

climate-change scenarios by increasing the prevalence and

severity of insects, pests, and pathogens as well as weed species

proliferation and beneficial soil bacteria, as well as endangering

essential plant pollinators (Zenda et al., 2021). The world’s most

resource-constrained and populous regions would endure

malnutrition and food insecurity due to the lower food yield

brought on by these changes (Molotoks et al., 2021). Even

though resistant and high-yielding varieties have evolved into

intensive farming methods, it is crucial to consider the

probability that crop yields, land use, and food demand will

increase in the future (Voss-Fels et al., 2019).

Plant breeders are putting forth innovative strategies to deal

with the growing need for food grains in the context of

environmental problems such as rising global temperatures,

irregular rainfall patterns, and concurrent changes in pest and

disease attacks (Figure 3). Resource depletion (land degradation,

nutrient insufficiency, water availability) makes it even more

important to enhance agriculture sustainably and reduce its CO2
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emission (Mir et al., 2022). Increased temperatures and higher

CO2 levels, which are connected to the impoverished nutrient

density of several staple crops, exacerbate the serious health

issues encountered by billions of malnourished people in low-

income regions (Macdiarmid and Whybrow, 2019). Plant

breeders have developed better cultivars of various crop plants

to achieve these goals, generally by utilizing traditional plant

breeding techniques involving genetic crossing and selection for

the desired features. However, this approach chiefly focused on

the crop’s major gene pool (Kaiser et al., 2020). Recent

developments have made it possible for molecular plant

breeding to now uses integrated multi-omics approaches,

allowing plant breeders to insert desired genetic variations in

the crop genome from a larger gene pool with better accuracy

and speed. Hence, molecular plant breeding techniques are being

aggressively added to the traditional crop improvement methods

to efficiently get the desired results (Mir et al., 2022).
4.2 Challenges in multi-omics
data integration

4.2.1 Data archiving and sharing
There is an increasing need for integrated, rigorous omics

research, like many other scientific domains. Data archiving is

crucial for the repeatability of both individual and integrated

omics datasets, as well as for adhering to Findability,

Accessibility, Interoperability, and Reusability (FAIR)

principles (Krassowski et al., 2020). The demand for open

sharing of scripts and codes for these analyses (MATLAB,

Java, R, and Python, etc.) via websites like GitHub (https://

www.github.com), where developers can share code, review

code, manage projects, and develop software alongside other

developers, is a potential solution. High-throughput molecular

abundance data, primarily gene expression data, are archived

and publicly distributed via the Gene Expression Omnibus

(GEO) collection at the National Center for Biotechnology

Information (NCBI) (Rangwala et al., 2021). There are a few

integrated omics databases (Table 1) available that can help

researchers to better comprehend the flow of genetic

information (RNA, protein, metabolite and phenotype) of

which a trait is influenced.

4.2.2 Data interpretation
The biggest challenge for omics datasets is the understanding

of that large datasets. Biomarker discovery is one of the main

goals of multi-dimensional omics approaches; regardless of the

omics layer from which the key molecules are derived, the

specificity and sensitivity of molecular biomarkers are crucial

for the application of findings to breeding research and their

practical application. Complex multi-layered network

interpretation and curation are arduous, computationally, and

time-consuming and demand in-depth knowledge of the
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biological system under study. Studies using an integrated omics

approach frequently choose significant biological pathways and

processes for hypothesis testing that are not physiologically

relevant without applying a biological understanding of the

system. Being familiar with understudied biological systems is

crucial since it takes time and is often challenging to integrate

the verification of datasets and networks (genes, proteins, and

metabolites) for key biological pathways or mechanisms.
4.3 Future crops thanks to integrated
multi-omics

4.3.1 Crops with stress resistance
Several potential solutions to these issues have been put

forth, including the development of climate-resilient crops,

increasing the efficiency with which natural resources are used,

diversifying agricultural systems, and linking agricultural

intensification to the preservation of natural ecosystems (Peng

et al., 2020). The most efficient approach to adapt our

agricultural system to handle climate change is to design crops

with desired agronomic traits that are climate resistant (Table 3)

(Kumari et al., 2020) to that specific environment and demand.

Omics approaches now enable developing elite climate-smart

cultivars with desired traits like high yield, abiotic and biotic

stress tolerance, and nutritive quality (Naeem et al., 2022;

Reimer et al., 2022).

To accelerate genetic advancement and reduce the effects of

climate change on crop yield, advanced integrative breeding

platforms are required (Bevan et al., 2017). A single reference

genome cannot provide the full range of genetic variation needed

for crop breeding. Therefore pan-genome research could help us

to understand the genome composition of the population,

whether cultivated, landrace, or wild progenitors. The PAVs in

various species have been identified by a variety of biotic stress-

responsive genes (Cook et al., 2012). The pan-genome of B.

napus was examined to characterize disease-resistant genes, and

106 potential QTLs associated with blackleg resistance were

found recently (Dolatabadian et al., 2020).

The developmental processes, epigenetic markers like

histone modifications and DNA methylation influence how

plants respond to environmental signals. The patterns of DNA

methylation and subsequent differential expression of genes

related to stress have all been shown to be influenced by a

variety of biotic (Correa et al., 2020) and abiotic stress conditions

such as water stress, nutrient deficiency, temperature stress, as

well as in vitro stresses (such as tissue culture) (Scossa et al.,

2021). If epigenetic processes also control plant phenotypic

variation, then at least in part, hence epialleles should be

considered when developing crop enhancement strategies.

On the other hand, meiosis has the potential to transfer

stress-induced DNA methylation states, leading to some types of

transgenerational memory (Dar et al., 2022), even though
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paramutation-like activities might complicate inheritance

patterns (Minow et al., 2022). The availability of several

important natural or induced epigenetic variations for

agriculture, such as rice, maize, and soybean (Lloyd and Lister,

2022), demonstrates how screening epialleles can significantly

increase the genetic variation that breeders can exploit to

improve agricultural practices.

Moreover, integrated transcriptome and metabolome studies

revealed that canola seedlings could survive the impacts of

alkaline-salt stress by controlling the metabolism of organic

acids and amino acids in roots (Wang et al., 2021). Another

study has demonstrated that ZmUGT genes may control SA

(salicylic acid) homeostasis at transcriptional and metabolic

levels, contributing to maize pathogen defense response (Ge

et al., 2021). Integrated transcriptome and proteomic datasets to

identify pathways driving S. subterranea resistance in potato

roots were examined, and this multi-omics approach discovered

an increase in glutathione metabolism at the RNA and protein

levels in the resistant cultivars (Balotf et al., 2022). Therefore,

integrated omics techniques enable detailed comprehension of

complicated physiological and molecular mechanisms

underlying several crucial traits of agronomic value (Singh

et al., 2020), integrating large molecular datasets and the

developing predictive models for those key traits (Scossa et al.,

2021). Developing climate-smart cultivars require a

comprehensive, critical, and effective approach (Pazhamala

et al., 2021). When it comes to generating climate-ready crops,

these multi-omics-generated data will need to be combined with

contemporary plant breeding and gene editing techniques

(Gogolev et al., 2021). These high throughput sequencing

technologies and integrated multi-omics platforms will help

the breeders to develop climate-smart elite cultivars with

desired characteristics to fight challenging climatic conditions.
4.3.2 Crops with better nutrition
Since crops are the main source of vital nutrients like

vitamins, iron, zinc, folate, fiber, limiting access to and

consumption of plant-based diets can have detrimental effects

on one’s health. For example, it can increase the risk of non-

communicable diseases (NCD) and lead to increased nutritional

deficiencies that may be challenging to ameliorate through food

substitution (Scheelbeek et al., 2018). In the context of such

climate change, enhancing crop nutritional quality through

breeding, agronomic management, or transgenic techniques

becomes essential. A promising, affordable, and sustainable

method for ensuring that millions of people have healthy diets

is the genetic biofortification of crops through breeding (Zenda

et al., 2021).

Identification of the key genes, metabolic pathways, and

QTLs that assist in understanding the genetic architecture of

plant nutrient uptake is crucial for the successful improvement

of crop nutritional quality. These nutritional qualities have been
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targeted using a variety of omics approaches, the results of which

have improved GAB initiatives (Roorkiwal et al., 2021). Potential

QTLs have been found in the major cereals related to nutrition

such as rice (Park et al., 2019; Calayugan et al., 2020), wheat

(Krishnappa et al., 2017; Ruan et al., 2020), and maize (Yang

et al., 2016).

In recent work, GWAS was used to conduct comparative

genomics to identify the genomic regions controlling the

nutritional content of grains. In a recent GWAS study, 190

genotypes of Eleusine coracana were used to discover the genetic

regions affecting grain nutritional content (Fe, Zn, Mg, Ca, Na,

K, and proteins) (Puranik et al., 2020). Enhancing nutrient

bioavailability requires a thorough understanding of the

mechanisms behind crop nutrient absorption, transport, and

assimilation into seeds because numerous genes and complex

metabolic pathways are involved. Using omics techniques, it is

feasible to comprehend the genes and metabolic pathways

involved in nutrient uptake or biosynthesis, absorption,

transport, assimilation, and storage (Zenda et al., 2021). For
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instance, a metabolic technique has been carried out to target

carotenoid biosynthesis pathways and maximize the level of b-

carotene in crops (rice, maize, and potato) considering that beta

carotene and carotenoids are the primary precursors to vitamin

A (Qutub et al., 2021; Sharma et al., 2021).

Since aflatoxin contamination has serious effects on human

and animal health (Ojiewo et al., 2020), thus transcriptomics and

metabolomic investigations have been performed to elucidate

the aflatoxin biosynthesis in peanuts to develop the resistant

varieties. The high oleic acid level is a pivotal quality attribute

determining peanut flavor, stability, shelf life, and nutritional

value. Therefore, high oleic acid and low linoleic acid in peanut

cultivars have been developed using a various genetic technique,

including QTL analysis, molecular markers, and gene editing

(Amoah et al., 2020; Ojiewo et al., 2020). Therefore, these

genomic advances (genomics, transcriptomics, proteomics,

metabolomics, and gene editing) have made it possible to

incorporate multiple agronomic traits into a single cultivar.

Future developments in integrated genomic approaches are
TABLE 3 List of stress (abiotic and biotic), nutrition, quality, and post-harvest related QTLs for future crop improvements.

Stress/Trait Crops/Plants QTLs Reference

Cadmium toxicity Rice qCd-7 and qCdT7 Liu et al., 2019

Chilling Rice qLTSS3-4 and qLTSS4-1 Schläppi et al., 2017

Cold tolerance Rapeseed qLTGA9-1 and qLTGC1-1 Zhu et al., 2021

Drought Maize qWS-GY3-1 and qWW-GY3-1 Hu et al., 2021b

Drought Rice qDTY2.4, qDTY3.3, qDTY6.3, qDTY11.2, qDTY1.1 and qDTY8.1 Yadav et al., 2019,
Vikram et al., 2012

Drought Rice qDTY 1.2, qDTY 2.2 and qDTY 1.3 Sandhu et al., 2014

Drought/Grain Yield Wheat qGYWD.3B.2 Shukla et al., 2015

Salinity Maize qSFS1, qFFS1, qFDS1, qRLR1, and qFLR1 Luo et al., 2019

Salinity Rice qSL7 Jahan et al., 2020

Salinity Rice qSES1.3, qSL1.2, qRL1, and qFWsht1.2 Rahman et al., 2017

Salinity Wheat QPh-2D, QPh-4B and QPh-6A Luo et al., 2021

Waterlogging Barley QTL-WL-4H Zhang et al., 2017a

Zinc and Iron toxicity Rice qSdw3a, qSdw3b, qSdw12 and qSFe5/qSZn5 Zhang et al., 2017b

Bacterial Wilt Chili Bwr6w-7.2, Bwr6w-8.1, Bwr6w-5.1, Bwr6w-6.1, and Bwr6w-7.1 Lee et al., 2022

Mildew Cucumber pm2.1, pm5.1, and pm6.1, dm2.1, dm5.2, and dm6.1 Wang et al., 2018

Sclerotinia stem rot Rapeseed qSRA2, qSRA3b and qSRC8 Wu et al., 2019

Nutritional value Rice qPr1, qPC1, qZn.1, qMn.1, qCa1-1, qFe1.1, qCo.1, and qAA.1 and qSr.2 Mahender et al., 2016

Oil/Protein Soybean qOil-5-1, qOil-11-1, and qPro-14-1 Huang et al., 2020

Oil content Rapeseed Oil-A2-1-EJ and Oil-A5-1-DE Rout et al., 2018

Postharvest Apple QTL Z16.1 Wu et al., 2021

Postharvest Lettuce qSL4 Sthapit Kandel et al., 2020

Postharvest Soybean qPS-DS16-1 and qPS-DS16-2 Seo et al., 2020

Phosphorus efficiency Maize q14-2, q15-2, and q19-2 Li et al., 2016

Phosphorus efficiency Wheat QSpute-4B.2 and QTpute-4B.2, and QTpute-4B.1 Yuan et al., 2017

Pod shattering Rapeseed qSRI.A06 and qSRI.A09 Liu et al., 2016

Starch Rice qRS7-1 and qRS7-2 Selvaraj et al., 2021

Vitamin E, C and Carotene Tomato Vitc10.1, vitc8.1, vite5.2, and bcrn11.1 Gürbüz Çolak et al., 2020

Yield Rapeseed cqSGC–C2, cqSOC–A5–3, and cqSPS–A7–2 Zhou et al., 2021b
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anticipated to make it easier to detect important genetic

variations, identify key genes driving priority traits (high yield,

stress resistance, and high-level micronutrients and proteins),

and introduce those priority traits into elite cultivars, boosting

economic and the nutritional value of those cultivars.
5 Conclusion and perspective

Recent developments in sequencing and phenotyping

technologies have made it possible to extract distinctive

genetic variations from the diverse spectrum of germplasm for

use in plant breeding. To demonstrate how various omics

techniques have anchored agricultural research and

development projects, we have described several pertinent

instances in this context. The identification of candidate genes,

proteins, and metabolites encompassing numerous quantitative

and quality traits of agronomic significance in major crops have

been made possible primarily using these omics’ techniques,

especially genomics, transcriptomics, proteomics, and

metabolomics to study how plants respond to different biotic

and abiotic stresses. Additionally, machine learning contributed

to integrating the GWAS to produce a full set of data on genetic

variation to predict the phenotypic parameters influencing the

improvement of quality, quantity, or stress tolerance. Moreover,

GWAS at the epigenome, transcriptome, protein, and metabolic

levels could help the scientists to identify the detrimental and

beneficial alleles for crop breeding. Through molecular breeding,

or genetic engineering techniques, several reported candidate

genes and metabolic pathways have been implemented in

breeding programs. Integrated omics platforms are the latest

avenue with significant potential in crop breeding to bridge the

gap between environmental challenges and food security.

Researchers will be able to implement innovative methods in

forward/reverse genetics and breeding programs using an

integrative omics platform that provides access to entire

bioinformatics data. In conclusion, omics-based breeding

research and cutting-edge technologies significantly impact

crop yield, nutritional value enhancement, and stress tolerance

to feed the globe. Multidisciplinary partnerships between plant
Frontiers in Plant Science 14
scientists, computational biologists, breeding corporates, and

farmers should be established to share knowledge and build a

community to discover novel and ground-breaking insights in

crop breeding using multi-omics techniques.
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